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Chapter 1

Introduction

1.1 Background

The digitalization that takes place in the society today will also have an impact within mainte-
nance. Computerized maintenance management systems and advanced signal processing of
vibration data have been around for decades. However, more formalized digital models that
have predictive capabilities used to support maintenance decision are hardly used in practice.
The term ‘digital twin’ is very popular in these days, and in order to realize the potential of such
digital twins within maintenance it is required to establish maintenance models which can be
implemented as part of the “twins”. A challenge in many companies is the inherent conflict be-
tween operations and maintenance. From the operations perspective one would like to produce
as much as possible, whereas the maintenance department also require to shut down produc-
tion in order to carry out maintenance. The idea is that various digital twins can help to sort out
some of the conflicting objectives and avoid sub-optimization.

In the literature a huge number of mathematical models exist but they are not often used in
practice. Therefore it is important to establish a limited number of mathematical models that
covers in a reasonable manner the most common situations.

The following references are based on an NTNU specialization report by Thiruthiyappan
(2022): The role of wind turbines (WTs) for producing clean, renewable energy is crucial for
reaching the climate goals of the 2015 Paris Agreement. The onshore wind industry is a proven
and a mature technology that has an extensive global supply chain and now the offshore wind
industry is expected to grow rapidly (Technologies, 2022). The global wind report 2022, pub-
lished by the Global Wind Energy Council (GWEC) shows that 93.6 gigawatt (GW) of new instal-
lations in 2021 brings the global cumulative wind power capacity to 837 GW, showing a year-
over-year growth of 12% (Lee and Zhao, 2022). Figure 1.1 depicts the installed capacity of on-
shore and offshore wind farms from 2017 to 2021 in GW, with a 1.8% decrease from 2020 to
2021 due to the COVID-19 pandemic. In 2020, only 6.9 GW of offshore installations was com-
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Figure 1.1: New installations onshore and offshore in GW (Lee and Zhao, 2022)

missioned. Whereas, in 2021, 21.1 GW was commissioned, which is a threefold increase in the
offshore wind market. The world’s total offshore capacity reached 57 GW, which is 7% of all
global installations (Lee and Zhao, 2022). This suggests a strong trend and higher offshore wind
farm capacities to be installed in the upcoming years.

Due to more consistent wind speeds offshore than when compared with onshore locations,
deploying larger WTs with higher capacity in the sea can take advantage of this (Technologies,
2022). Hence, greater wind power generation is achievable. However, the harsh weather con-
ditions, largely variable aerodynamic, gravitational, centrifugal and gyroscopic loads induce
higher failures rates, and frequency of faults and failures in the WTs (Badihi et al., 2022). Fur-
thermore, the remote locations of the offshore WTs sites make it difficult challenge to conduct
maintenance tasks (Zhang et al., 2022). This is due to greater logistics costs, difficulties with
maintenance scheduling in consideration with weather condition uncertainties and or lower
skilled manpower (Badihi et al., 2022). Presently, operation and maintenance (O&M) costs ac-
count for anywhere from 10% to 30% of the total energy generation cost of onshore WTs, whereas
in offshore WTs the O&M costs can surge up to 25% to 50% (Badihi et al., 2022). This issue must
be addressed and hence, to upkeep offshore WTs cost-effectively, ensure efficient production
and financial viability of wind power, it is crucial to maintain offshore WTs reliability and avail-
ability (Badihi et al., 2022). For this predictive maintenance (PdM) is an appealing strategy for
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the offshore wind industry (Zhang et al., 2022). PdM aims to monitor the condition of mechani-
cal components and predict the upcoming failures. Implementing the PdM strategy can reduce
the unexpected failures of critical offshore WTs components with RUL prediction and increase
the production availability of WTs. The number of trips to the sea for maintenance activities can
thus be reduced hence improving the safety, the maximum working life of critical WTs compo-
nents are utilized and catastrophic damages can be avoided (Fox et al., 2022).

1.2 Objectives

The main objectives of this course compendium is to introduce the reader into maintenance
theory and apply methods, models and programming techniques to improve maintenance and

operations of offshore wind farms. In particular the reader shall:

1. Become familiar with maintenance concepts and mathematical models used in mainte-

nance planning and optimization
2. Understand interaction between maintenance and operations

3. Get familiar with the concept of digital twins and develop simple digital twins demon-

strating interaction between maintenance and operations

4. Become motivated to learn more

1.3 ICT-tools and resources

A large number of mathematical models are presented in this compendium. In order to apply
these models to support maintenance it is required to have some tools. Most of the models
presented can be run from the spreadsheet mode in Excel. To support this, a dedicated Excel
fail is presented, i.e., the MaintOp.xlsm file. This file contains build-in code for many of the
models presented.

An alternative to run the models from within Excel, it is also possible to implement these
models in Python. An introduction to Python is provided for this course, and example files are
provided from the Python repository .

A set of solutions to exercises can be found in the Solution repository .

1.4 OQOutline

Chapter 2 describes the main elements of a computerized maintenance management system

(CMMS). A CMMS is a digital tool which is essential for efficient maintenance management.


https://folk.ntnu.no/jvatn/eLearning/commonFiles/MaintOp.xlsm
https://folk.ntnu.no/jvatn/eLearning/Python/
https://folk.ntnu.no/jvatn/xtra/maintOp/Python/
https://folk.ntnu.no/jvatn/xtra/maintOp/Solutions/
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However, a CMMS is usually a static tool containing information regarding the asset in terms of
inventory listing, preventive and corrective maintenance activity conducted, and work orders
for future activities to be conducted.

Chapter 3 presents a framework for structuring elements of so-called digital twins. The DNV-
RP-A204 (2021) recommended practice is a starting point and then various digital twins are in-
troduced and we discuss how these could interact.

Chapter 4 defines the basic maintenance terminology followed by reliability terminology
and concepts. Classical age and block replacement maintenance policies are introduced.

Chapter 5 presents the ideas behind predictive maintenance. We introduce state variables
and stochastic processes which are the basis for the maintenance models developed. The start-
ing point is the classical PF-model, but also the Wiener and gamma processes are introduced.
The concept of remaining useful lifetime (RUL) is defined.

Chapter 6 introduces a model where degradation could be defined in terms of a finite num-
ber of degradation levels. Markov theory is applied in order to establish the required mainte-
nance models.

Usually maintenance activities are grouped together to save the so-called setup cost and
Chapter 8 presents a framework for grouping of maintenance activities and how to include op-
portunistic maintenance in the optimization process.

The criticality of failures depends significantly on the downtime after a failure. Downtime
again depends on the spare part strategy, and Chapter 9 introduces several models for spare
part management.

For prioritization of renewal projects and modifications we have a long-term perspective of
investments and net present values (NPV) is often used as a way to distinguish between future
costs and cost we pay now. Chapter 10 introduce basic concepts and formulas used in life cycle
cost (LCC) analysis.

All models presented in this course require numerical values for the model parameters.
Chapter 11 gives an introduction to reliability data analysis. The starting point is life time data
analysis, but also methods for estimating model parameters in the Markov model is presented.

In recent years artificial intelligence (Al) and machine learning (ML) have been introduced
into more and more application area. Chapter 12 introduces some basic ML-concepts. Al is not
covered in this presentation.

The main focus in this course compendium is on maintenance modelling and mathemati-
cal modelling to support maintenance optimization. However, to establish a complete mainte-
nance plan we can not afford to establish a detailed maintenance model for all items. Reliability
centred maintenance (RCM) is a holistic approach to establish a preventive maintenance pro-

gram and Chapter 13 presents the main ideas of RCM.



Chapter 2

Computerized maintenance mangement
system

2.1 Introduction

A computerized maintenance management system (CMMS) is software that centralizes mainte-

nance information and facilitates the processes of maintenance operations. The folloing section

is mainly based on Pedersen (2020). To understand the objective of a CMMS it is fundamental

to understand what is maintenance management. Maintenance management is all activities of
the management that determine the maintenance objectives, strategies and responsibilities, and
implementation of them by such means as maintenance planning, maintenance control, and the
improvement of maintenance activities and economics. In particular:

* Planning, scheduling, and managing maintenance for parts, vehicles, and other essential
equipment

* Predicting potential issues and scheduling regular maintenance tasks to eliminate them

* With more real-time data, it is possible to streamline the maintenance process and make
it more cost-effective

An important aspect of maintenance management is to understand the maintenance manage-
ment loop depicted in Figure 2.1:

The core of a CMMS is its database. It has a data model that organizes information about
the assets and equipment a maintenance organization has to maintain, as well as materials and
other resources to do so. The main objectives of a CMMS are:

¢ Provide data for decision

* Organize and manage work orders, i.e., task describing maintenance tasks to be executed

6
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Resources Results
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Figure 2.1: Maintenance management loop NORSOK-Z008/HAVTIL

e Report and document the technical condition, and maintenance activities carried out
* Make sure that the maintenance management loop in Figure 2.1 is “closed”

Experience shows that an efficient CMMS enables lower operations and maintenance costs due
to

e Efficient information retrieval (overview of assets)

e Efficient platform of communication (Work orders, spares management)
and more explicitly increased availability of a plant or system due to

* Preventive Maintenance just in time

e Lower MLD (efficient information retrieval, efficient communication, efficient spares or-

dering etc. )
¢ Lower MRT due to access to documentation
e Lower MDT

where MLD = Mean Logistic Delay, MRT = Mean active Repair Time, and MDT = Mean Down
Time.

Important modules of a CMMS are:
* Equipment register - for registering company’s equipment / assets

* Work Order module - for planning and performing efficient maintenance and modifica-
tion
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Preventive Maintenance module - automatic generation of work orders based on mainte-

nance plan, condition monitoring - notifications
* Procurement module - spare parts management,

* Documentation module - for handling drawings, procedures, and other information.

Analysis module - for handling statistical data on failures, remaining useful lifetime pre-

diction etc.

2.2 Equipment register

The components are registered with a number in an hierarchic system. The components be-
come and individual object with a history and information linked to it. (NORSOK Z-DP-002).
Typical information in the equipment register for an object is:

* Sizes, capacities, operations and maintenance manuals

Location in the plant

Preventive maintenance program
* Documentation

* Spares

2.3 Work order module

The work order module is a register of jobs planned and going on in a plant. It is important to
have jobs prioritized and done the right way, by skilled personnel using the required methods
and procedures.

* Jobs are described in individual work orders with an independent number and, well de-
fined scope, listing of activities with manpower requirements described, listing of spares
and tools needed, how to do inspection, what to report, time schedule etc.

* Good job instructions are essential, they shall be detailed enough to have the job done
according to requirements. Task analysis if often recommended to develop good job de-

scriptions.

* Include the people going to do the work in writing and outlining the work order if possible.
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Requisition control is also an important aspect, i.e., who has the authority to order work and
defining the scope. The system will only allow certain people to authorize work and use of re-

sources. A work order shall describe the plan for implementation of the work:
e Time frame for the job
e Personnel amount and type needed
e When must activities happen in time, i.e., a time interval for execution
A work order must also have a closing report, i.e., specification of:

¢ Time used

What has been done

Updated drawings - As Built

Outstanding work

* Handover reports, signed check lists

Important findings for continuous improvement

2.4 Preventive Maintenance module

The main purpose of preventive maintenance module is to administrate planned maintenance.
The preventive maintenance module shall be able to generate work orders automatically based
on maintenance plan, for example established by Reliability Centred Maintenance (RCM). Fur-
ther alarm lists from condition monitoring system should also be able to generate automatic
preventive maintenance work orders. A well defined preventive maintenance work order con-

tains:

e Work description

Procedures - requirements

A list of tools needed

Alist of spares

Plan -time, resources, manpower etc.

Report requirements, checklists
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2.5 Documentation module

The documentation module shall ensure easy access to documentation:
* Beware is the documentation updated and valid ? Can it be trusted?
¢ (Can store photos, videos, paper-based info
* Can extract information online

e Easyretrieval

Efficient way of communicating

2.6 Analysis module

The main purpose of the analysis module is to support the continuous improvement processes,
and reference is made to Analysis/Improvement in Figure 2.1. Of particular interest is to review
failures, direct failure causes and root causes. It is also important to be able to estimate perfor-

mance metrics like:

Failure rates, and the failure rate function

PF-intervals

e MDT

e MLD

e MRT

Availability



Chapter 3
Digital twin

3.1 Introduction

A digital twin is a digital representation of a real-world entity or system. The implementation of
a digital twin is an encapsulated software object or model that mirrors for example a physical
system, historical and future maintenance activities, or an operational plan. Data from multiple
digital twins can be aggregated for a composite view. The notion of a digital representation
of real-world entities or systems is not new. Its heritage goes back to computer-aided design
representations of physical assets or profiles of individual customers. The difference in the latest
iteration of digital twins, adopted from Gartner (2019), is:

1. The robustness of the models with a focus on how they support specific business out-
comes such that high reliability and efficient maintenance

2. Digital twins’ link to the real world, potentially in real-time for monitoring, and control

3. The application of advanced big data analytics and AI/ML to drive new business opportu-

nities
4. The ability to interact with them and evaluate “what-if” scenarios

Experience shows that there is no common definition of the term digital twin, and the aspects
to implement in the various companies digital twin varies.

In the recommended practice on qualification and assurance of digital twins (DNV-RP-A204,
2021) it is proposed to define a “ladder” for the evolutional stages of a functional element of a
digital twin as depicted in Figure 3.1.

No reported study has been carried out to document evolutionary stages within mainte-

nance. Many companies are implementing digital twins for maintenance, but to our knowledge,

11
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Level
- A
8
;) s
[
o . .
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;
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1 Descriptive

:

Disconnected

v

Figure 3.1: Evolution stages or capabilities of a functional element of a digital twin (DNV-RP-
A204)

the main effort is on systematizing various systems on the descriptive level and to some extend
the diagnostic level.

An objective for offshore wind operation and maintenance is to reach a predictive level for
the digital twin implementations according to the stages in Figure 3.1.

Input Analysis Output

e Data streams e Computation e Interaction
e Events/ models e Visualization

transatcion e Algorithms e Reccomended
e Master data e Data actions
e Documentation transformation e Information
e Metadata e Search e Automation Decisi

. . ecision support

e Data history algorithms e Search results

Digital twin common foundation

e Domain knowledge e Cyber security
e Asset information model e Integration
e Sensor infrastructure e Change management

Figure 3.2: Elements of a digital twin (DNV-RP-A204)

DNV-RP-A204 also presents a generic model for the elements of a digital twin. Figure 3.2
indicates a process from input through analysis to output.

To build up the input blocks in Figure 2 we need to integrate several sources, e.g., Buildiing
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information management systems (BIM), CMMS, FRACAS and GIS models.
If the ambition also is on the diagnostic and predictive evolution stages the output block
needs to be formally linked to the analysis block where input is analysed in (near) real-time.
Finally, the prescriptive and autonomy evolution stages relates to decision support in Fig-
ure 3.2, where “support” at the ultimate stage means e.g., automatic generation of maintenance
work orders, automatic shutting down of road sections or railway lines in case of bad weather,
increased degradation levels etc.

3.2 Digital twin labelling

According to DNV-RP-A204 (2021) a digital twin is defined as a Virtual representation of a system
or asset that calculates system states and makes system information available, through integrated
models and data, with the purpose of providing decision support over its lifecycle. In order to be
more explicit regarding functionality of the digital twin we propose to label the digital twins

according to the various application domains. The following labelling categories are proposed:

* The Operations DT: This DT contains operational plans, cost related to lost production,

opportunity windows for maintenance etc

e The Condition DT: This DT contains information regarding the condition of the “hard-

ware”. In principle this DT contains both current condition, and historical data
e The Risk DT: This DT contains the risk picture

e The Environment DT: This DT contains information regarding the environment, such as

temperature, precipitation, wind etc.

e The Maintenance cost DT: This DT contains the relevant mathematical models used for

optimizing maintenance, interacting with the Operations DT

We will not elaborate on technical issues, i.e., how these DT are sharing data, how we can con-
duct “what-if” queries etc.

3.3 Operations DT

The operations DT relates to operational plans, agreed deliverables, logistics etc. For example
for a raiolway system the operations DT typically contains the time table, and any planned de-
viations from the plan. For example freight trains are not necessarily scheduled in advanced.
For train operations it is also important to have a model describing how failures and planned

maintenance work on the track will affect the throughput, i.e., cancellations, delays etc. For
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road segments there will not be any time table, but important information would be daily traffic
(ADT) split to a required level, i.e., by months and working days vs weekends. For a wind farm
the operations DT contains plan for which turbines to operate, blade pitch, yaw drive direction
etc.
In order to respond to short term what-if queries, it is required to have a model-based foun-
dation and/or data driven based foundation if we have sufficient data for training purposes.
Long term what-if queries would typically be expected changes in traffic volume.

3.4 Condition DT

The condition DT contains information regarding the condition (health) of the assets. Part of
such information is contained in a computerized maintenance management system (CMMS).
Information from online and offline condition monitoring systems are usually not transferred
directly to the CMMS, thus the condition DT also include information from condition monitor-
ing system as well as supervisory control and data acquisition systems (SCADA). Thus, the basic

information contained in a DT is:
e The plant hierarchy with the relevant objects

* Information regarding events for each object, in particular preventive maintenance and

corrective maintenance tasks

* Condition information from condition monitoring systems, both off-line and on-line sys-
tems

¢ Information from the SCADA system

In this context we include both the information about the asset, e.g., a plant hierarch with
the relevant objects (physical items) and the information from condition monitoring systems,
and any event information related to objects.

Although measurements from condition monitoring systems may be available there is still a

challenge for the condition DT to respond on:
* Early warnings or anomaly detection

e Diagnostics, i.e., clarify which part is degraded, what is the degradation mechanism etc,
see Figure 3.1

* Prognostics, i.e., how will degradation evolve over time, and when will the item not be able
to perform it’s required function any more, also see Figure 3.1 for prediction.
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Typical approaches for handling these challenges are signal processing, first principle approaches
(white box), probabilistic modelling and signal processing (grey box) and machine learning
(black box).

3.5 RiskDT

For the operation and maintenance phase of a system the (static) risk models could be catego-
rized into:

e Qualitative and semi-quantitative models and techniques like bow-tie, FMECA, HAZOP,
Task Analysis and preliminary hazard analysis (PHA)

* Quantitative system risk and reliability models like fault tree analysis, event tree analysis

and Markov analysis
e Structural reliability models including assessment of loads and strengths.

In order to make what-if inquiries to the risk DT it is important to explicit link the risk models
to:

e The items and elements in the condition DT
e The environment DT

* Other factors that have an influence, and are expected to change over time, e.g., changes

in maintenance resources.

3.6 Environment DT

The environment DT shall contain all aspects of the environment, this means for example in a
real-time perspective current temperature, precipitation, wave heights and wind speed are im-
portant. But these dimensions can only partly cover the environmental impact on the asset. For
example the impact of precipitation on a railway system in terms of risk of insufficient drainage
capacity depends on existing water saturation of the soil, snow melting in surrounding areas etc.
To establish relevant and useful environment DTs is therefore very demanding. An important

element of an environment DT is weather forecasting.
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3.7 Maintenance cost DT

The maintenance DT contains information regarding planned and executed maintenance, as
well as logistics, personnel plans, how maintenance is organized etc. Cost models are required
in order to set up what-if inquires for example related to changing time and amount of mainte-

nance.

3.7.1 White-, grey- and blackbox models

The models introduced above are often denoted grey-box models because the degradation is
only partial described, this in contrast to so-called white-box models. The following character-

istics are often used

» White-box models. These are models where the physical degradation of an item is de-
scribed by the laws of physics, chemistry etc. For example a fatigue model for crack prop-

agation.

* Gray-box models. These are models where degradation is modelled by probabilistic mod-
els. In the current work Markov state models have been used, but other common models
are the Gamma, Wiener and Inverse Gauss processes. Typically the degradation incre-
ments are described by stochastic jumps. These processes may include covariates rep-
resenting physical conditions, but the relation between the increments and the physical
conditions and factors are usually established by regression methods rather than physical
laws. In Chapter 5 several probabilistic models are introduced.

* Black-box models. The black-box models aim to make predictions regarding future degra-
dation without specifying any model. These models are “trained” by large amount of data.
Typical models are machine learning methods like deep neural networks and Random

forests.

In this course we primarily use gray-box models where some of these models are motivated by
white-box models. For example there are physical degradation models stating that the degra-
dation rate increases with increasing degradation level, which is then used when setting up the

probabilistic gray-box model



Chapter 4

Preventive Maintenance

4.1 Introduction

The objective of this chapter is to demonstrate aspects of maintenance as part of a reliability
analysis. In addition to passively treat maintenance as part of the reliability, we will also investi-

gate some models for maintenance optimization.

sz Maintenance: The combination of all technical and management actions during the life cy-
cle of an item intended to retain the item in, or restore it to, a state in which it can perform as
required.

Maintenance is important to achieve a high availability. Generally availability depends on

the following factors:
1. Inherent reliability (e.g., quality, type of material used and design principles)
2. Maintainability (how easy it is to perform maintenance)

3. Maintenance support (resources, spare parts etc)

4.1.1 Maintenance Categories

The maintenance is often categorized into (Rausand et al., 2021):

1. Corrective maintenance (CM), i.e., tasks performed as a result of a detected item failure or
fault, to restore the item to a specific condition. CM tasks may be carried out immediately
or be deferred.

17
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2. Preventive maintenance (PM), i.e., planned maintenance tasks performed prior to fail-
ures. The activities are carried out in order to reduce the probability of failure, or increase
the mean time to failure (MTTF). There are several types of PM tasks:

(a) Age-based

(b) Clock-based (calendar based)

(c) Condition-based

(d) Opportunity-based

(e) Overhaul, e.g., as part of a turnaround

3. Predictive maintenance, i.e., maintenance based on prognoses for the degradation of the
item.

Note that the categorization varies from standard to standard, e.g., some standards include pre-
dictive maintenance as part of condition-based maintenance. Figure 4.1 depicts the categoriza-
tion used in EN 13306.

Maintenance

Before failure

After failure

Preventive
maintenance

Corrective
maintenance

Predetermined
maintenance

Condition based
maintenance

Predictive
maintenance

Deffered
(planable)

Non predictive

. Acute
maintenance

Figure 4.1: Maintennace categories (EN 13306)

4.1.2 Preventive Maintenance Policies

A preventive maintenance policy is a strategy that aims at minimizing the long run cost. A pol-
icy both deals with qualitative issues like replace an item periodically at a given age, and quan-
titative issues like what age that should be. The classical maintenance policies were basically

considering age or calendar time as the decision variable to use in the optimization. In light of
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“predictive maintenance” the condition of an item and future operational loads are becoming
more important in order to minimize long run cost. Examples of both types of models will be

investigated.

== Preventive Maintenance: Maintenance carried out at predetermined intervals or according
to prescribed criteria and intended to reduce the probability of failure or functional degradation
of an item.

4.1.3 Terminology and Cost Function

This section presents important terminology adapted from Rausand et al. (2021) with some ad-

ditional terms.

* Maintenance task: A specific task to maintain an item determined by “what, where, how

and when”. A task is part of the task space, <, i.e., o = a;, ay, as, ...

* Maintenance decision: A process 0 to select a specific maintenance task a; € </. § depends

on available data 2, cost, operating conditions etc.

* Maintenance strategy: An overall framework describing how the maintenance decision
problem shall be approached. A strategy embraces an objective function, often denoted

the cost function:

e Cost Function: C = C(a,d,t,2,%0c, teal,-..). In addition to the maintenance task and the
data the cost function depends on the time ¢ of executing the maintenance, the opera-
tional context Pgc, the calendar time fcy), ... (e.g., inside / outside working hours) and so
on. A specific note is made regarding the notation used for the time. In some presen-
tations ¢ is used for the time axis, but in many other presentations we use 7 to denote
time, for example the length of a maintenance interval. When we deal with maintenance
grouping we need to distinguish between the running time ¢ and the local time x; for the
individual components. Also note that time may be multi-dimensional, for example if we

carry out both a failure-finding-task and a replacement-task.

To optimize maintenance we would like to minimize the cost per unit time. In many situations
this will be to minimize the expected maintenance cost in a renewal period divided by the ex-

pected length of the renewal period:

o EIC(TR)]

4.1
E[TR] @1
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The cost function in Equation (4.1) does not indicate any decision variable, i.e., which variables
the cost function should be minimized with respect to. In literature the cost function is often

denoted the objective function. The following situations are the most common:

* An item is periodically maintained at intervals of length 7. The cost function is denoted
C(7) and the challenge is to find the value of 7 that minimizes the long run cost per unit
time. The optimal value is denoted 7%, and the minimal value of the cost function is de-
noted C*.

* Asituation has occurred where we need to make a “here-and-now” decision regarding the
next maintenance. Current time is fy and running time from #, is denoted ¢. The time
elapsed since last maintenance is x, i.e., maintenance was carried out at time fy — x. The
objective is to determine time from #, until next maintenance is to be carried out. The
cost function is denoted C(¢) and the objective is to find the value of # that minimizes the
cost function over some limited time horizon. In this situation we usually use a so-called

marginal cost approach.

* Also here we are going to make a “here-and-now” decision, but there are only a limited
set of opportunities for maintenance. The first opportunity is now, i.e., at time #,, the next
opportunity is at time #; and there could be more opportunities at times £, f3,... and so
on. In this situation it is often not possible to specify an explicit objective function, hence
we denoted the objective function Cy, Cy,, Cy,,... for the maintenance opportunities at

times ty, 11, 2, ... respectively.

e The condition of an item is the critical information used to determine the next mainte-
nance. If we are able to specify the condition by a one-dimensional health indicator, say
X (1) and assuming the item will fail when the health indicator exceeds a threshold ¢, i.e.,
when X (#) = ¢, then it is reasonable to carry out maintenance whenever X(t) = m, where
m < ¢. The cost function is then a function of the maintenance limit m, i.e., C(m), and the
objective is to find the value of m that minimizes C(m). For items where the health indica-
tor only can be revealed by inspections, we also need to determine the optimal inspection
strategy, i.e., the cost function, C(r, m) is depending both on the inspection interval T and

the maintenance limit m.

4.1.4 Reliability terminology

To develop maintenance models that can support preventive maintenance strategies requires
a proper understanding of basic reliability terminology and models. In this section some basic
ideas are presented, and readers familiar with reliability theory can skip this section. Reliability

is about the ability to perform one or more required functions and we need some definitions:
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== Function: An activity, process, or transformation stated by a verb and a noun that describes

what must be accomplished.

Examples of functions are provide torch, stop flow of fluid and detect gas. Further:

sz Reliability: The ability of an item to perform as required in a stated operating context and

for a stated period of time.

Note 1: The term item could be a technical system a subsystem or a component
Note 2: The required performance must be specified, by e.g., laws, customer requirements etc.

Note 3: When we describe past reliability we use the term achieved reliability, whereas the single
word reliability is always used to describe future reliability.

In some situation we will define reliability of a service, e.g., a bus service in a town:

iz Service reliability: The ability of the service to meet its supply function with the required

quality under stated conditions for a specified period of time.

4.1.5 States and transitions

Some items only operate in one state, e.g., a cooling pump may always be pumping. Other
components operate in two or more states, e.g., a safety valve may be in an open position, or
a closed position. For each state the item might have different functions. For example a valve
in an open position has two main functions, i.e., keep open and close upon demand. Failing to

perform a function is denoted a failure, and more precisely:
s Failure: The termination of the ability of an item to perform as required.

A failure is then an event that occurs in time, whereas a fault is a state where the item is
not able to perform as required. An error is a “discrepancy between a computed, observed or
measured value or condition and the true, specified or theoretically correct value or condition”.

See Figure 4.2 for an illustration.

i Fault of an item: A state of an item, where the item is not able to perform as required.
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Performance Error
A
N Target value
Critical value
, / —Fault state——
Failure \
»Time

Figure 4.2: Failure and fault

i Failure mode: The manner in which a failure occurs, independent of the cause of the failure.

To understand the failure mode concept it is important to have focus on how the failure

manifest it self, and not on the cause of the failure.

4.1.6 Failure causes and effects

i Failure cause: Set of circumstances that leads to failure.

The term ‘cause’ is a difficult term and in our context we distinguish between the “direct” or

“proximate” cause and the “root cause’, i.e.,:

iz Proximate cause: An event that occurred, or a condition that existed immediately before the

failure occurred, and, if eliminated or modified, would have prevented the failure.

== Root cause: One of multiple factors (events, conditions, or organizational factors) that con-
tributed to or created the proximate cause and subsequent failure and, if eliminated, or modi-
fied would have prevented the failure.

Note that the direct or proximate cause on one level in a system hierarchy may be the effect
of a failure mode on a lower level. For example the proximate failure cause of a pump might
be a “bearing failure”, where again the failure mode of the bearing is to provide “friction less”
rotation of the impeller.

“Behind” the bearing failure we may find the root cause, e.g., lack of lubrication (grease). To
trace root causes we may even go further behind, e.g., lack of maintenance and even deficiency

in the maintenance management.
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4.1.7 State variable

The state variable of an item is used to specify the state of a component. In some situations we
use the state variable to enumerate the various state a component can be in, i.e., x, whereas in
other situations we will also treat the stochastic behaviour of the item, hence the state variable

will be a stochastic variable:

lifthe item is functioning attime ¢
X() = (4.2)

Oifthe item isinafailed state attime ¢

Note that we use an uppercase letter for the state variable when treated as a stochastic variable,
and a lowercase letter when we just enumerate or consider a specific value of the state of the

item.

4.1.8 Time-to-failure

The time-to-failure, or lifetime of an item is the time elapsing from when the item is put into

operation until it fails for the first time. If we denote the time-to-failure with 7 then
T =min{z: X(f) =0}

Note that “time” sometimes is measured indirectly, e.g., by the number of kilometres driven
by a car, the number of times a switch is operated, and the number of rotations of a bearing.

Since X(t) is a stochastic variable, the time-to-failure, T, is also a stochastic variable. To
grasp the reliability metrics we could relate these metrics to what we would observe if did ex-
periments and collected the true lifetimes of the items. In the textbook several examples of such

“empirical metrics” are given.

4.1.9 PDF and CDF

Assume that the time-to-failure T is a continuous distributed stochastic variable with prob-
ability density function f(#) and cumulative distribution function F(¢). Figure 4.3 shows the
probability density function (PDF).

To interpret the PDF we have for small A¢:

Pr(t<T=<t+AD) = f(H)At

i.e., the probability that a new item will fail in the interval ¢ to ¢+ At equals the PDF at time ¢
multiplied with the length of the interval.
Figure 4.3 does not give any indication why the item fails. A failure mechanism is a physical
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A0

Time ¢

Figure 4.3: Probability density function, f(f)

or chemical process that leads to failure. Fatigue is one such mechanism where fatigue cracks
develop into a breakage, i.e., a failure. Figure 4.4 illustrates the situation.

The lower part of the figure illustrates the crack propagation. Due to different loads the crack
propagation is considered as a stochastic process, and different trajectories are indicated. When
the crack size reach a critical value, i.e., the failure limit / in the figure, the item will fail. Since
the crack propagation is random, also the time-to-failure will be random, and the corresponding
probability density function is indicated in the upper part of the figure.

A0

/ Failure threshold /

\

Time ¢
Figure 4.4: Different trajectories of crack propagation leads to stochastic time-to-failure

In some cases it is possible to measure or by other means assess the underlying process. In
such cases we know a specific trajectory as time goes by, and we may utilize this knowledge to
make more precise prediction of the time-to-failure as time goes by, that is f(#) in Figure 4.4 will
be sharper and sharper. If the underlying development cannot be observed, the original f(¢) in
Figure 4.3 is the only knowledge we have regarding coming failures. Section 4.1.11 introduces
the failure rate function, which is the conditional probability of failure as a function of time, and
will be the expression to use in order to determine when to perform a preventive maintenance
action.

The relation between the cumulative distribution function (CDF) and the probability density
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function is given by:
t
F()=Pr(T=1) :f fuwdu
0

4.1.10 Survivor Function

The survivor function of an item is defined by:

R(t)=1-F(t)=Pr(T > 1) :fmf(u)du

t

i.e., the probability that a new item will survive the time interval (0, #].

4.1.11 Failure Rate Function

The failure rate function is essentially the conditional probability that an item will fail in a small
time interval given that it has not failed up till now. The probability that an item will fail in
(t,t+ At] when we know that the item is functioning at time ¢ is:

Pr(t<T=t+A1) F(t+AD)-F(1)
Pr(T > 1) a R(®)

pt,A)=Pr(t<T<t+At|T>1) =

If we investigate the ratio p(t,At)/At we get the failure rate function z(t) of the item:

t,At Prte<T<t+At|T>t
(1) = tim P0AD _ ypy, PE<T=1+A1T>10)
At—0 At At—0 At
. Fa+Ap-F@®) 1 f()
= lim =
At—0 At R(r) R(p)

And for small At:

Pr(t< T =t+At|T > 1) = z(t)At

N

i -
»

()

Time ¢

Figure 4.5: Typical shape of z(?), i.e., a bathtub shape
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Figure 4.5 shows a typical shape of z(t). This shape of the failure rate function is the origin
of the name bathtub curve for the failure rate function. In an early life the item may be exposed
to so-called “burn-in” failures. This could be failures related to errors during installation, or
defects during manufacturing. Then there could be a rather long period of normal operation
with low probability of failure. As time goes by “wear-out” often brings the item to it’s end of life.
It should be noted that not all items will follow the bathtub curve.

Note that f(#) is the probability of failing at time ¢, whereas R(?) is the probability of surviv-

f@

ing time ¢. In z() = 5 we divided by R(z), so even if the probability of failing at large times ¢ is

low, the fraction becomes very high since we hardly survive ¢, i.e., the denominator R(#) = 0.

4.1.12 Effective failure rate

The effective failure rate, Ag(7), is the unconditional expected number of failures per time unit
as a function of the maintenance interval 7. Consider an item with an increasing failure rate

function z(¢) at the end of life:

¢ Ifno preventive maintenance is conducted and the item is only maintained upon a failure,
the effective failure rate will be quite high, see the left part of Figure 4.6

e If we maintain at time 7, this corresponds to “removing” a part of the right hand side of
the bathtub curve, resulting in a lower effective failure rate, i.e., shown in the middle of
Figure 4.6

 If we further reduce the maintenance interval, say to 7, the resulting effective failure rate
could be quite low, i.e., shown in the right part of Figure 4.6

Eff. failure rate
A without mnt'nce / A 4
Eff. failure rate: A4
\ / \Eff. failure rate: A,

| > >

71 72

Figure 4.6: Effective failure rate for various maintenance decisions

If the failure rate function is known we may approximate the effective failure rate by the

average failure rate function in the interval [0, 7):

T

AE(T)zlf z(ndt (4.3)
T Jo
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4.1.13 Age and calendar based policies

The age and block replacement policies are two classical maintenance models that can motivate
the models we will derive in this course.

Age Replacement Policy - ARP

In the age replacement policy an item is replaced or overhauled to an as-good-as-new condi-
tion when the item reaches a specified age. We usually consider a replacement rather than an
overhaul, but the situation is the same if an overhauled item is as-good-as-new after an over-
haul. The age at replacement is denoted 7 and the challenge is to find the optimal 7, say 7*. The

situation is characterized by:

e Theitemisreplaced with a new item, or repaired to an as-good-as-new (AGAN) state when

itreaches the age 7

e If the item fails before the scheduled maintenance, the unit is replaced and the “mainte-

nance clock” is setto 0

e In Figure 4.7 T; and T> are failure times where the item is replaced with a new item or

repaired to an as-good-as-new state
e The cost of a preventive replacement is ¢

* The cost of a corrective replacement, i.e., replacing a failed item is ¢ + k

v

Figure 4.7: ARP

Let f(r) denote the time-to-failure distribution of the item and assume that the item is as-
good-as-new after a replacement. The time between two consecutive replacements is called a
replacement period. This period is stochastic, and the mean time between replacements is:

T

MTBR(7) = f

T T
tf(t)dt+TPr(T>T)=...:f (1—F(l‘))dt=[ R(t)dt
0 0 0

where T is the (potential) time to failure, and we have used partial integration to derive the
formula.

For each replacement period we always have to pay the cost c. If a replacement period ends
with a failure, we have to pay an extra cost k. The probability of paying the extra cost is Pr(T <
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7) = F(1). The long run cost per unit time is then given by:

Costin a cycle _ C+kF(1)
Expected length of a cycle Jo A=F(0)drt

Ca(r) =
Numerical methods are required to minimize Ca (1)

Numerical methods for calculating MTBR(7)

In case of Weibull distributed times-to-failure, the following Python code may be used to calcu-
late MTBR(7):

from scipy.integrate import quad

import math

def iMTBR(t,alpha,lmbda):
# Integrand, i.e., 1-F(t;alpha,lmbda)
return math.exp (- ((t*1lmbda) **alpha))

def MTBR(tau, MTTF, alpha):
lmbda=math.gamma(1+1/alpha)/MTTF
I,err = quad (iMTBR, 0, tau, args=(alpha, lmbda))

return I
print ("Test: MTBR",MTBR(40,100,3))

where iMTBR () is a function returning the integrand in fOT (1-F(1))dt. To minimize the objec-

tive function in Equation (4.4) we can make a plot in Python:

from scipy.integrate import quad
from numpy import arange, zeros
import math
import matplotlib.pyplot as plt
def iMTBR(t,alpha,lmbda):
# Integrand, i.e., 1-F(t;alpha,lmbda)
return math.exp (- ((t*1lmbda) **alpha))
def MTBR(tau, MTTF, alpha):
# Carry out numerical integration by using scipy quad-function
lmbda=math.gamma(1+1/alpha) /MTTF
I,err = quad(iMTBR, 0, tau, args=(alpha, lmbda))
return I
def C_A(tau, MTTF, alpha, c, k):
# Objective functino
lmbda=math.gamma(1+1/alpha)/MTTF
return (c + k*(l-math.exp(-((tau*lmbda)**alpha))))/ \
MTBR (tau, MTTF, alpha)

# Parameters



CHAPTER 4. PREVENTIVE MAINTENANCE 29

MTTF = 4
alpha = 3
c = 15
k = 51
xlist=zeros ([21])
ylist=zeros ([21])
# Calculate objective function for relevant arguments
i=0
for tau in arange(1,3.1,0.1):
xlist[i]l=tau
ylist[i]=C_A(tau,MTTF,alpha,c,k)
i+=1
plt.plot(xlist, ylist)
plt.xlabel(r’$\tau$’)
plt.ylabel (r’$C_A(\tau)$’)
plt.title(’Cost as function of maintenance interval?’)
plt.savefig (’ARPoutput.svg’)
plt.show ()

Block Replacement Policy - BRP

In a block replacement policy an item is periodically replaced at predefined points of time. The
argument for this could be that we have many identical components, and it is more convenient
to perform the preventive maintenance at the same time (i.e., a block replacement). Another
argument for a block replacement policy could be that this is much easier to manage by our
computerized maintenance management system (CMMS). Figure 4.8 illustrates the situation.
T, and T are failure times, but they will not affect the time of the next preventive activity. It
seems a bit “waste” of useful life to replace at time 47 but this may be defended by lower admin-

istrative cost.

v

T 1

T
t=0 7 2t 3 4z 57 6r Tt 87 97 10z 11« 12¢

Figure 4.8: BRP

The situation is slightly different from the ARP, and also a different cost structure is used:
e The item is replaced every 7 time unit

* An item may fail one ore more times between periodic replacements, if this happens it it

assumed that the item is immediately replaced or repaired to a-good-as-new condition

e The cost of a preventive replacement is ¢
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e The cost of a corrective replacement, i.e., replacing a failed item is k

In this situation the replacement period is always 7. In each period we always have to pay the
cost ¢. In addition we pay the cost k for each failure. The expected number of failures is given
by the renewal function, W (r) = E[N(7)]. Thus the average cost per time unit is:

c+ kW(T)
Cp(1) = ——

Note that W(7)/7 is the average expected number of failures per time unit when the item is
replaced every 7 time unit. This is often written:

Ag(7) = e

For small values of 7 compared to the MTTE it is unlikely that we have more than one failure
in an replacement period. This means that the expected number of failures in a replacement
period is given by the average value of the failure rate function, z(¢). If we assume that failure
times are Weibull distributed, we obtain:

a
WO (IESTL)

MTTF

where MTTF =T'(1 + 1/a)/A. In this situation it is straight forward to find an analytical solution
for the optimal replacement period:

., MITE [ ¢
T =
ri+1/a) V (a—hk

4.1.14 Marginal cost approach

The age- and block replacement policies discussed in the previous section find the optimal in-
terval by minimizing expected cost per time unit. This is the standard approach we use to op-
timize maintenance intervals. However, this approach is rather static and can not take into
account real-time information that would be relevant for optimizing the next maintenance in-
terval.

To include here-and-now information relevant for the next maintenance we often use a
marginal cost approach. That is, we consider the situation from now on until the next preven-
tive or corrective maintenance action. Let ¢ be running time from now on, and let x be the time
elapsed since last preventive maintenance action, i.e., the “local age” of the item under consid-
eration. We now seek the value of ¢ that minimizes the (marginal) expected cost in the interval
[0, £] plus the average cost from ¢ until the end of a longer time horizon to consider, i.e., up to
some time 7.
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In order to obtain the average cost in the longer perspective, assume that we already applied
the ARP or BRP approach to calculate some average cost per unit time, say C*. The challenge
is now to calculate the expected cost in the interval [0, f]. Various aspects could be taken into
account. To demonstrate the approach, we consider the age replacement policy, and assume
that the cost of the preventive activity ¢ depends on the time ¢, i.e., ¢ = ¢(¢), but the additional
failure cost k is fixed. The marginal cost approach is now to minimize the objective function:

t
C(t) = kF(t|x)+C*(T - t)+C*f (t—uw) f(tlx)du+ c(t) (4.4)
0

where F(t|x) =1— R(t+ x)/R(t) and f(t|x) = f(t+ x)/R(t) are the conditional CDF and PDF
respectively for time-to-failure given that the item has survived up to time x. Further R(¢) and
f (1) are the unconditional survivor function and probability density function respectively.

Note that to minimize the objective function in (4.4) we can choose any T which is larger
than the optimal ¢. So if we have some tentative optimal value, we could just let T be 10 times
longer. Further we need the average cost per time unit, C*.

4.1.15 Interval optimization - General approach for non-observable failure

progression

Reliability Centred Maintenance (RCM) is a systematic approach to determine appropriate main-
tenance tasks. Chapter 13 presents the main steps required to run an RCM exercise. RCM pro-
vides a dedicated decision logic to determine the type of maintenance, and we essentially dis-

tinguish between the following situations:

1. Itis possible to observe a (health) indicator that can warn about coming failures, see Fig-

ure 4.4

2. It is not possible observe such an indicator, but there are ageing mechanisms, see Fig-
ure 4.3

3. There is no indicator, there is no ageing, and the function of the item is hidden.

In this section we focus on situation 2 where we do not have any indicator, but we may use the
age of the component, the number of hours operated, the total mileage run by a car etc. to
decide upon next preventive maintenance.

Consider an item where a preventive maintenance (PM) action is conducted at predeter-
mined intervals due to an increasing failure rate function z(#). Typically we assume that time-

to-failure is Weibull distributed where the failure rate function is given by:

z(t) = aA ! (4.5)
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In order to find an optimal interval for the preventive maintenance action we establish the av-

erage cost per time unit as a function of the maintenance interval, say 7:
C(t) = cpm/T + AE(T) [ccm + CEp + CEs] (4.6)

where cpyr is the cost of a preventive maintenance action (to prevent failures), ccyv is the cost
of a corrective maintenance (CM) action if a failure occurs, Ag(7) is the effective failure rate, i.e.,
the expected number of failures per time unit when the component is preventively maintained
every 7T time unit, cgp is the expected production losses upon a component failure, and finally
cgs is the expected safety cost upon a component failure, including material damages and envi-
ronmental losses.

There is no general formula for obtaining cgp and cgs upon an item failure. Within the do-
main of safety and reliability analysis there are several models and methods that apply. More
information about these methods can be found in the course ntnu.no/studier/emner/PK6031.

Often we are able to make a direct argument to establish cgp and cgs, and for the production

losses we are often able to specify the cost by:
CEp = pp (cpMDT + c1) 4.7)

where pp is the probability that a failure of the actual item results in a production loss, cp is the
production loss per hour (in NOKs or Euros) given a system failure, MDT is the mean down time
upon a failure and cr is the trip cost, i.e., a cost that is paid, but independent of the duration of
the downtime.

Often the mean down time is split into MDT = MLD + MRT where MLD is the mean logistic
delay time, and MRT is the mean active repair time. For offshore wind MLD would usually be
the dominating factor.

To minimize the objective function in Equation (4.6), we usually let ¢y = ccm + cgp + cgs de-
note the expected unplanned cost upon a failure to simplify.

The effective failure rate depends on the time-to-failure distribution of the item. The Weibull
distribution is a widely used distribution for ageing components. In the case of Weibull dis-
tributed times-to-failure we may find approximation formulas for the effective failure rate. If we
know the mean time to failure, MTTF (without maintenance), and the ageing parameter, a, of
the time-to-failure distribution of the item, the effective failure rate may be approximated by:
eqStream: Effective failure rate approximation:

Ag(T) =

ra+ l/a)) a1 ws)

MTTF

where I'(-) is the gamma function. The approximation is good when the maintenance interval


https://www.ntnu.no/studier/emner/PK6031
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is small compared to the MTTE If the maintenance interval is approaching the MTTF value, the
approximation in Equation (4.8) is not very accurate for large values of 7, and we might use the

following improved approximation, see Kwang Pil et al. (2008):

Ag(1) =

F(1+1/a))“ra_l [1_ 0.lar® (0.09a-0.2)T 1.9)

+
MTTF MTTF? MTTF

The approximated effective failure rate in Equation (4.9) is usually sufficient, but if higher pre-
cision is required we may use renewal theory. From the fundamental renewal equation we have
W(t) = Fr(t)+ fot W(t—x) fr(x)dx. Here W (t) is the expected number of events up to time ¢ in
a renewal process. In case we have a reasonable initial numerical approximation for W(t), say

Wy (1) we may use the following iteration scheme:

t
W) = Fr(0) +f0 Wi (6 = ) fr(0)dx

to obtain better and better solutions for W (t). As a starting point we use:

ra+ 1/a))“ a1y _

I+ I/a))“ a
MTTF

Wo (1) = /1E(l‘)t=( MTTE

In the following we assume that the approximation in Equation (4.8) is sufficient for our pur-
pose. By equating the derivative of C(7) in Equation (4.6) to zero, we find the optimal interval to
be:

., MTTF ( CPM )”“ @.10)

' "ra+valeg@-1

Example 4.1 Wind turbine

We are considering a wind turbine of 10 MW. In average we assume that the output effect is 6
MW, where wake effects, periods of low wind speed etc. cause reduction in the produced energy.
The average loss per kilowatt hours (kwh) is assumed to be 0.5 NOKs. An electrical motor is used
for jawing control. In case of a failure of the motor we assume that we have to shut down the
wind turbine until the motor is repaired or replaced.

The motor is assumed to have an increasing failure rate function, where the ageing is rather
strong, i.e., the ageing parameter is a = 3.

MTTF is assumed to be five years if no preventive maintenance is carried out. Under normal
weather conditions we the mean downtime is 12 hours. The cost of a preventive replacement of
the motor is cpy = 15 000 NOKSs. The cost of a corrective replacement is ccy = 30 000 NOKs. In
addition to the cost of repairing the failed motor, there is a loss of electricity production.

In order to apply Equation (4.10) we need the PM cost, i.e., cpy = 15 000 NOKs, the CM cost,
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i.e., ccm = 30 000 NOKs, and the downtime cost, i.e., cgp = MDT-0.5-6 000 = 36 000 NOKs. Total
(unplanned) cost upon a failure is thus cy = ccm + cgp = 66 000 NOKs. Note that in this example
pp =1, and ¢ = 0. The optimal interval is given by:

*

T =
ra+1/a)

MTTF ( CPM )”“ 4 (15000

1/3
= ) ~ 2.7 years
I'(1+1/3) 166 000-3

cyla—1)

Alternatively, we could solve the problem by a minimization routine, for example by the Solver

in Excel. The cost function to minimize is:

Cr)=cpm/T+A(T)cy

Often we introduced the pre-calculated effective failure rates:
 Low ageing: Ag(1) = 0.797/MTTF?
e Medium ageing: Ag(7) = 0.7172/MTTF?
e Strong ageing: Ag(r) = 0.6773/MTTF*

Since a = 3 we may alternatively use the formula for medium ageing when solving the problem
in e.g., Excel.
As a third option, we could also make a plot of the cost function. In this case we might

visualize all cost elements, i.e., we use

C(t) =cpm/T+ AE(T)cy = cpm/T + AR(T) (com + CEP)

Figure 4.9 depicts the cost elements. Hours is the time unit on the x-axis, and the optimal value
is around 24 000 which is slightly less than three years as found by the analytical solution. Note

that expected production losses dominate the corrective maintenance cost.

4.1.16 Digital twin

The objective function in Equation (4.6) is used to find an optimal maintenance interval for
items where we cannot utilize the condition of the item, but where there is ageing. The result is
an interval which in the long run is optimal. In some cases, there are specific conditions which

will affect our decision regarding maintenance. For example:

* The maintenance window is “closed” at the optimal point of time for maintenance
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Cost function
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Figure 4.9: Cost function for the yaw motor

* The preventive maintenance cost is temporarily deviating from the average preventive

maintenance
* Production losses upon a failure is temporarily deviating from the average value
* etc.

In principle we would have a “digital twin” for production, for the weather etc. which could
be combined with the objective function in Equation (4.6) in order to make real-time decision
regarding the point of time for the next maintenance. For example, if the price of electricity is
very high, i.e., cgp, and we are approaching the time of next maintenance, we could insert the
current value of cgp and minimize Equation (4.6) to find the next point of time for maintenance.

A more demanding situation is if maintenance window is “closed” for a period of time when
preventive maintenance is scheduled. We will elaborate on this, and make the following as-

sumption:
e Current time is

* The current age of the item is x, i.e., it is x time unit since last maintenance was carried

out, thus the last maintenance was then carried out at time 79— x
e 7% is the optimal maintenance interval

e The maintenance window will close just after time is #y, and reopen at time #;, where #y <
Ip—x+71" <1, ie, the due date for next maintenance is within the closed maintenance

window

e The alternatives for executing the preventive maintenance is therefore f, and #;
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Failure rate function
A

Z(x+t)

Now
Figure 4.10: Failure rate function in relation to the weather window
 If we postpone the maintenance to t;, and the item fails before the maintenance window
opens, we will loose the production until the maintenance window opens.

Figure 4.10 depicts the failure rate function from #y — x to #;.
In the modelling we still assume that time-to-failure is Weibull distributed with PDF and

survivor function given by:

(1) =ar(An* e A" 4.11)
and
R(H)=Pr(T>t)=1—-Fp(t)=e M° (4.12)
where
rd/a+1)
Y (4.13)

In the modelling we assume there is a fixed cost of failure ¢t and corrective cost Ccy. But in
addition to the immediate cost of a failure during the period of a closed maintenance windo is
cp per time unit until the component could be repaired.

If we decide to carry out the PM activity at time fy, i.e., just before the maintenance window
closes the expected cost until the maintenance window opens at time t; is:

Iw

Cy, = cpm + [1 = R(tw)] (ccm + c1) + ¢p Of(t) (tw—1) dt (4.14)
=

If we postpone the next PM activity to time ¢; the expected cost up to, but not including time

is:
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Iw
Cy, = [1—R(tw+ x)/R(x)] (ccm + 1) + ¢p . f(t+x) (tw—1t)dt/R(x) (4.15)
=
Note that C ;1 is not including the preventive maintenance cost time #;. Preventive maintenance
cost is not to be paid if there has been a failure during the closed maintenance window, hence

we add the expected preventive maintenance cost in order to obtain:
Cy, = Cj, + cpmR(tw + )/ R(x) (4.16)

Further if PM is carried out at time f; the time to the next preventive maintenance is ty shorter
compared to waiting until time #;, hence to be able to compare we add the expected total cost

in a time interval of length #y, i.e.,
Cyp=Cy +C"tw (4.17)

where C* = C(r") is given by Equation (4.6). The PM should be carried out at time ¢, if C;, < C,,

else we should wait until the maintenance window opens at time ¢;.

4.2 Hidden function

If the function of a system being analysed is hidden, periodic functional or proof testing may
reveal failures. In this situation, therefore, the maintenance activity is periodic proof test. The
more frequent a proof test is carried out, the less likely the item will be in a fault state upon a
demand. Such a demand could be to activate the process shut-down in emergency situations,
or to start a back-up pump in case of the main pump is failing. In this situation we calculate the
so-called PFD (Probability of Failure on Demand) indicating the proportion of time the system
cannot perform the required function. Functions having hiden functions often comprises N
identical elements and we require k or more of these elements to function in order to ensure

that the system is functioning. Such systems are denoted a koo N system. The PFD is found by:

+BATI2 (4.18)

( N ) (A,T)N_]H—l
PFD(7) = _—

N-k+1) N-k+2

where

e [ is the proportion of common cause failures, i.e., causes that result in a simoulatneous

failure of all N elements

e If there is only one element, we use the usual formula PFD = A7/2
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x!

 The binomial coefficient is given by (;) = o

The cost equation is given by:

C(t)=cpr/Tt+ N-cgA(1 = A1/2)+ cy-PED(7) - fp (4.19)

where
* cpr is the cost of performing a proof test of all the N elements

e cg is the cost of repairing one of the NV elements if found in a fault state by a proof test

cy is the cost of a hazardous event

fp is the rate of demands, e.g., the rate of gas leaks

PFD(7) is given by Equation (4.18)

In this situation, we cannot find a solution by equating the derivative of the cost equation (4.18)
to 0, and we must then either minimize C(7) numerically, or graphically.

To better understand the term N - cgA(1 — A7/2) we realize that the mean time to failure is
1/A but a failure is not revealed immediately, and in average it takes 7/2 time units until a failure
is revealed. This means that the mean cycle length, or mean time between failures, is 1/A +
7/2=(1+A1/2)/A and the corresponding frequency of repairs is A/(1 + A1/2). Using the Taylor
expansion 1/(1+x) = 1 —x gives A/(1+ A1/2) = A(1 — A7/2). Multiplying with the number of
elements N and the repair cost Cy gives the final cost for repairs.

Problems

4.1 Timing Belt. The timing belt of a car is a critical component. If it fails, there is a large risk

that this causes serious damages to the engine. In this problem we assume the following:

e MTTFwo = 175000 km (WO means Without Maintenance, i.e., the MTTF if we do not re-
place the timing belt preventively)

e a =3 =ageing (shape) parameter in the Weibull distribution for time-to-failure

* cpym = 7000 NOKs (Cost of preventively replacing the timing belt)

* ccm = 35000 NOKs (Cost if the timing belt fails, i.e., major damages to the engine)
Find the optimal interval for replacing the timing belt by using the following methods:

1. Analytical, i.e., taking derivatives and set equal to 0
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2. Graphical solution

3. Numerical solution (for example the Excel Solver or scipy.optimize in Python)

4.2 Timing Belt, continued. The timing belt Problem 4.1 is more realistic if we include the fol-

lowing assumptions:

e Pr(Need to rent a car|Breakdown) = 0.1

Cost of renting a car = NOK 5000

Pr(Overtaking |Breakdown) = 0.005

Pr(Collision|Overtaking |Breakdown)=0.2
® CCollision = 25 million NOKs

Find the optimal interval in this situation, and compare with the previous exercise.

4.3 Jaw motor example Implement the jaw motor example in Python where you use a numerical
routine for minimizing the objective function. Compare the result by using Equation (4.8) and

Equation (4.9) for the effective failure rate.

4.4 Consider the motor used for jawing control above where the ageing parameter is a = 4 and
MTTF = 5 years if no preventive maintenance is carried out. The cost of a preventive replace-
ment of the motor is cpy; = 15 000 NOKs. The cost of a corrective replacement is ccy = 30 000
NOKSs. The cost of loss production is 0.5-6000 = 3000 NOKs per hour. Assume that current age of
the yaw motor is ) = x = 17 000 hours, i.e., the due time for maintenance is approaching. But,
it is expected difficult to approach the turbine for the next 14 days. That is the next opportunity
for maintenance is t; = fp+14-24 = 17 336. Determine if it pays off to advance the next PM. Note
that 7 is used to denote running time, but here we can assume that ¢ = 0 corresponds to the last

maintenance, i.e., x = 17 000 hours ago.

4.5 We are considering the maintenance of an emergency shutdown valve (ESDV). The ESDV
has a hidden function, and it is considered appropriate to perform a proof test of the valve at
regular intervals of length 7. The cost of performing such a test is NOK 10 000. If a test reveals a
hidden failure the cost of repairing the failed valve equals NOK 50 000. If the ESDV is demanded
in a critical situation, the total (accident) cost is NOK 10 000 000. The rate of demands for the
ESDV is one every 5 year. The constant failure rate of the ESDV is 2-107% hrs™!). Determine the
optimum value of 7 by:

* Finding an analytical solution

 Plotting the total cost as a function of 7
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* Minimising the cost function by means of numerical methods

4.6 In order to reduce testing it is proposed to install a redundant ESDV. The extra yearly cost of
such an ESDVis NOK 15 000. Determine the optimum test interval if we assume that the second
ESDV has the same failure rate as the first one, and there is a common cause failure situation,
with =0.1. Will you recommend the installation of this redundant ESDV?

4.7 We will assess the maintenance of a pump system. The pump system consists of an active
pump, pump A, and a stand-by pump, pump B. Typically, pump A is run during normal opera-
tion. If pump A fails, pump B can be started. If we succeed in starting pump B, we assume that
pump B will not fail while pump A is being repaired. After pump A is repaired, pump A is put
into operation, while pump B is put back into cold stand-by. For pump A, we assume that an
overhaul will ensure that the pump is almost as good as new after the overhaul. Furthermore, a
BRP strategy is followed. Reliability data to use are given below:

Parameter Value Explanation (all cost amounts are given in NOK)

MTTF4 8000 Mean time to failure of pump A (hours) if we do not perform preventive
maintenance.
qs 0.1 The probability that pump B will not start when needed. In the first part

of the exam paper, this value should be used. In subsequent tasks, the
value should be calculated.

MTTFp 16000 Mean time to failure of pump B (hours) if we do not perform preventive
maintenance (overhaul). The MTTF value applies to the time the pump
is in cold stand-by. We disregard the posibility that the pump may fail
during operation, as the time it is running is very short.

a 3 Aging parameter of the pumps. Same aging parameter for both pumps.
The time-to-failure of both pumps are assumed to be Weibull dis-
tributed.

CPM 4000 The cost of performing preventive overhaul task. The same value for
both pumps. We assume that the preventive overhaul task means that
we can consider the pumps almost as good as new after the work has
been done.

ccM 9000 The cost of repairing a pump that has failed. This cost is greater than
the preventive activity because the task cannot be planned and there
may be consequential damage (the entire pump must be replaced).

CFT 1000 Cost of performing a function test (proof test) of pump B.

MDT 8 Mean downtime (hours) in case of pump A failure.

cy 25000 Production loss per hour the system does not produce.




CHAPTER 4. PREVENTIVE MAINTENANCE 41

We assume that the stand-by pump B cannot fail during operation since it will run for very few

hours.

a)

b)

c)

Write down the cost equation, i.e., the objective function, to determine the optimal main-
tenance interval of pump A assuming the fixed probability, gg, that pump B will not start

upon a demand.

Find an expression for the optimal interval and insert numeric values to find that interval,

i.e., anumerical value of 7.

Explain how an optimal interval could be obtained by numerical minimization of the ob-
jective function, carry out such minimization and compare the result with the answer

found in problem a).

4.8 We consider Problem 4.7 but will consider the maintenance of pump B. We will perform both

an overhaul with interval 75 o, and a proof-test with interval 7 pr, where 75 1 < 75,0-

a)

b)

c)

c)

Give arguments for why we would use both of these maintenance activities, i.e., proof-test
and overhaul. Hint: Time-to-failure of the stand-by pump during stand-by is assumed to
be Weibull distributed.

Write down an expression for the effective failure rate of the stand-by pump as a function
of 7g,0. Then use this expression as the “failure rate”, i.e., “A” in the unavailability formula:
q = PFD = A1/2. Insert numerical values, and calculate the probability that the stand-by
pump will not start if 75 o = 14 000 and 7 rr = 7 000. Compare with gg used in problem
Problem 4.7.

Write down the cost function where you now treat the cost as function of all maintenance
intervals, i.e., C = C(7a, 7,0, T,Fr). Hint: Remember that you have to account for overhaul
and proof-test of the stand-by pump, and the cost of repairing the stand-by pump.

Find a simultaneous optimal solution for all the maintenance activities, i.e., minimize the
cost function wrt 75,75 0 and 7g pr. If you are not able to minimize with respect to 74,7 o
and 7 1, keep 74 equal to the value you found in Problem 4.7, keep 75 o = 14 000, and
then minimize with respect to 7g pr. Then keep keep 74 equal to the value you found in
Problem 4.7 keep 7p pr equal to the value you just found, and then minimize with respect
to 7g,0. Finally keep 750 and 7 rr equal to the values you just obtained, and minimize

WIT TRA.



Chapter 5

Predictive Maintenance

5.1 Introduction

In contrast to traditional calendar based preventive maintenance the main idea of a predictive
maintenance strategy is to utilize component condition, future loads, and opportunity windows

to determine a “just in time” plan for maintenance. Condition information is basically used for:

e Anomaly detection, i.e., early warning of coming events
e Diagnostics, i.e., the search for root causes behind symptoms observed

* Prognostics, i.e., estimation of degradation rate, time to failure, remaining useful life etc.

based on relevant information

Akey element of PAM is use of sensor technology to assess the condition of the equipment. Con-
dition monitoring is a method to evaluate the condition of equipment by performing periodic
(offline) or continuous (online) equipment monitoring. In addition to the condition monitoring
system (CMS) predictive maintenance often involves data from the supervisory control and data
acquisition systems (SCADA). Data from the computerized maintenance management system
(CMMS) is crucial in order to make predictions, i.e., the prognostics part.

In this presentation main focus is on the prognostics part of predictive maintenance.

5.2 The PF-model

The PF-model is one of the classical models within predictive maintenance. The basic idea in
our context is that failure is regarded as a two- stage process. First, at some time a defect in the
system becomes detectable, i.e., a potential failure (P), then, after some delay-time, the system
fails due to the degeneration of the defect, i.e., a failure E Backer and Christer (1994) present an
exhaustive review of the models based on the the PF interval concept.

42
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Figure 5.1 illustrates the situation behind the PF-model. On the y-axis we use the term
‘health indicator’ whereas in other presentations the term ‘failure progression’ is used. The idea

is that there is “something” that could be used to spot a coming failure.
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Figure 5.1: PF-Model

The point “P” depicts a potential failure, i.e., the time where a coming failure is observable.
The time interval from the failure is first observable, and till a failure occurs is very often denoted
the PF-interval. We will in the following denote this situation the “PF” situation because the PF-
interval will be central in the understanding of effective maintenance strategies. An example
could be a rail which is exposed to a combination of fatigue and a flat wheel which initiates a
crack (potential failure, P). However, such cracks could be detected by ultrasonic inspection,
and hopefully we will detect the crack before it propagates to a rail breakage, i.e., a failure (F).
Note that if no maintenance is carried out, the time to failure will have an increasing failure rate
(IFR).

To establish the effective failure rate we recognize that the two point of times “P” and “F”
in Figure 5.1 are stochastic variables. This means that it is random when a potential failure
occurs and the time it takes before it develops to a failure. The PF-interval is therefore also
stochastic, and is denoted Tpp. As an example consider a rail where a crack can be initialized at
different places of the rail, and thus time before the crack “reaches the surface” will vary. Another
situation is where the crack propagation depends on the load, e.g., the number of heavy axels
passing the track.

Periodic inspection is conducted at intervals of length 7 to detect potential failures. The
length of the inspection intervals should not be longer than the average PF-interval. However,
since the PF-interval varies from time to time, and because there is also probability that a po-
tential failure is not revealed during an inspection, the inspection interval should be shorter
than the average PF-interval. A prerequisite for using the PF-intervals in maintenance planning
is that a failure is alerted by some degradation in performance, or some indicator variable is
alerting about the failure. Such a variable could be vibration, cracks, increased temperature etc.
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The following quantities will be relevant when calculating the effective failure rate as a func-
tion of the maintenance interval:
e Mean PF-interval length, Epg
e Standard deviation in PF-interval length, SDpg

* Probability that an existing crack (or another warning situation) will be detected by an
inspection, p; = 1 — g, given that it is possible to detect the crack by condition monitoring
method

» Coverage of the inspection method, i.e., percentage of cracks that could be detected, PC
e Interval length between inspections, T
e Frequency of potential failures, fp

In appendix E an expression for Qg (7, Epp, SDpg, q1) is derived. This function represents the prob-
ability that the maintenance strategy fails to reveal a potential failure in due time. It is required
to program this function in Excel VBA, Python or another programming language. The effective

failure rate can now be calculated by:

AE(T) = frQo(7,Epr, SDpr, q1) (5.1)

In order to obtain the optimal inspection interval we also need the rate of renewals:
PE(T) = fo [1 = Qo(7,Epr, SDpr, q1) ] (5.2)
The cost function to minimize is given by:
C(1)=Ci/T+ Ap(1)Cp + pe(1)Cr (5.3)

where Cj is the cost of inspection, Cr is the total cost of a failure, and Cy, is the cost of renewal,

i.e., the cost of fixing a potential failure before it has developed to a failure.

Example 5.1 Ultrasonic inspection of rails

Rail breakages are a serious threat to railway safety, and periodic ultrasonic inspection of the

rails is a required safety barrier for safe operation of the railway infrastructure. The objective of

inspection of the rails are to detect presence of defects such as cracks and track misalignments.
Cracks are initiated within the rail and, as the rail operation proceeds, they worsen if no

recovery action is undertaken. An ultrasonic inspection car is used to detect potential defects.

Candidate defects are verified by a manual inspection with a hand-held trolley with ultrasonic
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inspection equipment. Defects, or cracks, are assigned a “severity class” and a corresponding
maintenance procedure is currently undertaken:

2b Keep rail under observation, and perform a new inspection every 3 MBT
2a Keep rail under observation, and perform a new inspection every 1 MBT
1 Repair the defect quickly, i.e., within one month
0 Repair failure immediately and initiate traffic restrictions until failure is fixed.

where MBT is million gross tonnage passed at the specific location. A zero-defect is considered
to be a failure, and would develop to a rail breakage in short time, i.e., a state E From an op-
timization point of view, both the frequency of inspection and the follow up regime should be
optimized.

In this example we will only consider the frequency of running the inspection car. See Vatn
(2023) for a more comprehensive study also considering follow-up strategies for the various de-
fect states.

We consider a railway line where the rails are approaching the technical life time. With tech-
nical life time we mean that the rails are worn-out, and the rate of fatigue cracks are increasing.

The rate of new cracks detected by the ultrasonic rate (the rate of potential failures) is cur-
rently 0.5 failures per 10 km per year. The number of potential defects that cause rail breaks
depends on the inspection interval. Of the rail breakages, we again assume that 5% gives derail-
ment. The cost of a derailment is on average NOK 15 million. Correction of potential defects
(before they result in a rail breakage) costs NOK 20,000, while repair after rail breakage costs
NOK 40,000. The expected PF interval length is assumed to be 5 years , and the standard devi-
ation of the PF interval is assumed to be 3 years. It costs NOK 4,000 per 10 km of ultrasound
inspection that can reveal potential errors. The probability that a defect (potential failure) is not
detected by the ultrasonic train is 20% per run.

The Qo (7, Epp, SDpr, g1 function is implemented in MaintOp.xlsm , and Table 5.1 shows the
parameter used.

Figure 5.2 shows the cost contributions per 10 km for the various cost elements. The optimal
inspection interval is 7* = 1.2 years if found by using the Solver.

5.3 Predictive maintenance and Cox-proportional models

Predictive maintenance is about utilizing information regarding the condition of a component
and the future expected loads in order to judge the correct time for intervention. In the previous
section a simple model was derived but the current condition of the component and the fu-

ture expected loads were not explicitly used. Some formalism is required for such a utilization.


https://folk.ntnu.no/jvatn/eLearning/commonFiles/MaintOp.xlsm
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Table 5.1: Parameter values specified in Excel

Parameter Value Formula/Value

c_R 20000 20000

c_CM 40000 40000

c_Safety 750000 =0.05*15000000

c_I 4000 4000

c_F 790000 =C_CM+C_Safety

f 0.05 0.05

e_pf 5 5

sd_pf 3 3

q 0.2 0.2

tau 1.2 1.2

Qo0 4.278E-02 =QO0(tau,e_pf,sd_pf,q)
C(tauw) 5910 =c_I/tau + f*Q_0*c_F+f*(1-Q_0)*c_R

This will be crucial for digital twins where a computerized mathematical model of the system
is established where real time information regarding state, production profile and plans etc are
connected via internet of thins (IoT).

Areasonable simple extension of the model used in the previous section will be derived. The
starting point is the failure rate function, z(#). We stick to the Weibull distribution where the
failure rate function is given by z(f) = aA%t%"!. We observe that z() does not contain neither
the current state nor the future loads. The so-called Cox-proportional hazard model Cox (1972)
is often used to incorporate the current state in the failure rate function.

It should be noted that in a Cox-proportional hazard model we will utilize the current state

measured by some health indicator and future loads in the model for time-to-failure. However
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Figure 5.2: PF-Model
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in this model we do not explicit model how the health indicator will develop from now on. This
means that there is a “here and now” assessment of the time-to-failure distribution. Typically
such a model could be established from statistical data. Later on we will introduce the Wiener
and gamma processes where we explicit make a model for how the health indicator will develop.

Let y be the vector of current relevant state information for the component, for example
temperature, vibration level and so on and let x(f) be the vector of average loads in the time
period [0, ). The failure rate function may be written on the form:

2(tly, X(D) = z0(1)eP1Y eP2xD (5.4)

where 3; and 3, are regression coefficient vectors established by for example statistical analy-
sis of data. zy(¢) is a baseline failure rate function, typically on the form zy(¢) = a1® %1 tis
running time measured from the current time, say #.

Now assume that the parameters a, A, 3; and [3, are all known. Further assume that the
current component state, y, is known and that we have an estimate of future load x(¢). The cost

equation to minimize is:
C(0) = comoe™""? + cuFr(tly, x(1) (5.5)

where the cumulative distribution function is given by:

— t —
Fr(tly,x(t)) =1—exp (—fo z(uly,x(u))du (5.6)

A main objective when establishing digital twins for maintenance and operations is to set up a
regime for data collection and analysis. It is beyond the scope of this presentation to describe
relevant statistical methods. Typically a partial likelihood estimation approach is recommended
where the impact of the regression coefficient is estimated, and then a separate approach is used
for estimation of the failure rate function. See e.g., Cox (1972).

If no data is available we might use expert judgements for elicitation of the relevant model
parameters. As a basis for our argument we will use the PF-model illustrated in Figure 5.1 as a
conceptual model. The history up to the potential failure is now of limited value, the only is the
current state and future loads. We assume that the potential failure as just occurred. Let T be the
length of the PF-interval, and let Fr(tly, x(1)) denote the cumulative distribution function of the
PF-interval. If we do not have statistical data to estimate the model parameters, the following

procedure may be used for elicitation of the model parameters:

1. Assess the expected length of the PF-interval under the assumption of insignificant future
load x(z). Denote this value by ¢.
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2.

7.

Asses the consistency of the PF-interval by the shape parameter « in the Weibull distribu-
tion. As a rule of thumb use
e a =2 corresponds to a variety of failure mechanisms and causes leading to a failure.
* a =3 corresponds to a few failure mechanisms and causes leading to a failure.

e a =4 corresponds to a rather specific failure mechanism / failure cause leading to a

failure.

. Calculate the intensity parameterby A =T'(1/a +1) /¢.

. For each y; in y let y; = 0 correspond to the condition at the point of time P in Figure

5.1. This corresponds to no significant damage or degradation for the actual regression
variable.

. For each y; in y let y; ¢ be a critical value for that particular regression variable. Under

the assumption that all other regression variables y; =0, j # i assess the reduction in ¢ by
some factor, say k;. Note that there is no specific “rule” to determine y; ¢, and the higher
value chosen, the lower value will be assessed for ¢.

. Calculate the corresponding regression parameters by §; = —(Ink;)/y; c, i.e., for the ele-

ments in f;.

Repeat the procedure for each x;(f) in x(f) to find the elements of ..

Figure 5.4 illustrates the idea behind the factor k;. The expected length of the PF-interval

equals ¢ if the state variable y; = 0. Then we can imagine a situation where y; = y; ¢c. With such

a critical value of the state variable y; the expected PF-interval is much shorter, say k;¢. From

such an argument we can determine the factor k;.

Vi
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A= &=E(PF|y=0)~

\ 4

Figure 5.3: Elicitating of the factor k;

Example 5.2 Using vibration data and expected average loads

If the PF-model in Figure 5.1 is found realistic for the maintenance challenge at hand, there are
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two challenges. The first one is to determine the inspection strategy to reveal potential failures.
The second challenge is the response to a revealed potential failure. Often it is not possible to
fix a potential failure immediately, or at least it will be very costly. Fixing the problem requires
planning, access to spare parts, resources etc. To model this, we assume that there is an upper
limit for repair/renewal cost, say cgo. This cost represents the cost if the repair/replacement
cost is carried out more or less immediately after the potential failure has been revealed. Then
we assume that the cost will become lower if we could wait ¢ time units before we do the work.
Various models for the drop in cost could be used, but in the following we assume an exponen-
tial drop. Further if a failure occurs before ¢ we have to pay some unplanned failure cost, say cy.
This means that if we decide to wait ¢ time units from now on until we will execute the work, the

expected cost as a function of ¢ is given by:

t/0

C(n = CR,oe_ +cyFr(1) (5.7)

In Equation (5.7) neither the current condition nor the future load is considered. Let y be the
vibration level measured by the so-called “RMS" value (Root Mean Square) which is an ISO con-
vention. Technically the RMS value is calculated by multiplying the peak amplitude by 0.707. For
machines of medium size the vibration level is mapped into zones where zone A is the normal
level which we here assume corresponds to y = 0, zone B which still is considered acceptable
ranges from y = 1.8 to y = 4.5, zone C which is critical ranges from y = 4.5 to y = 11.2 and zone
D corresponds to y > 11.2. A machine in zone D is considered to have serious damages within
very short time and is therefore often protected by a protection system causing the machine to
shut down (TRIP).

y = RMS
11.2

D=Failure

4.5

1.8

120

Figure 5.4: Levels for the root mean square based on ISO
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The future operational load is specified by the variable x which measures the portion of time
the machine is run on more than 90% of maximum capacity. A high value of x is expected to
increase the degradation rate and hence give a shorter value of the PF-interval.

In the elicitation process the maintenance engineer assess the mean residual time to failure,
i.e., the time until the protection system will trip the system (PF-interval) to be ¢ = 120 days
when an anomaly situation occur, i.e., drifting into zone B. Since only vibration and excessive
load is considered as influencing factors of the PF-interval the shape parameter is assessed by
a=4.ThisgivesA=T(1/a+1)/¢{=1(1.25)/120 = 0.00775.

For the elicitation of the k-factor for the RMS a critical value for the vibration is set to yc =
4.5. The expert now assess that given such a value, the expected number of days until a trip
occurs is 6 days. The corresponding reduction factor for the remaining time to trip is assessed
to ky =6/120 = 0.05. This gives fy = —(In ky)/ yc = —(In0.05)/ (4.5 - 1.8) = 0.05. Note that we use
4.5-1.8 rather than 4.5 because 1.8 is considered as the “zero-point” for y corresponding to level
A is considered to be normal vibration level.

A machine running with 90% of maximum capacity or more in xc = 0.25 = 25% of the time
is assessed to have a reduction factor of kx = 0.1 (12 days to failure in average). This gives Bx =
—(Inkx)/xc=-(n0.1)/.25=9.2.

The relevant parameters required to calculate the cumulative distribution function for the
PF-interval in Equation (5.6) have now been established. Now assume that we have observed
y =4 and from the production it is desired to run on high load in 10% of the time, i.e., x = 0.1.

The cumulative distribution function in Equation 5.7 did not include the explanatory vari-
ables. Further there is no extra profit related to running at “full speed”, i.e., running at a higher
load than 90%. To access the extra profit we assume that if the machine is run at 90% load or
more, then the extra profit that day is pyr Assuming a linear relation the total extra profit by
running at high load in x portion of time for ¢ days is pyrx¢. This amount is then subtracted

from the cost function, and we get:

t

C(t,x) = cpoe” "% + cy Fr(tly, x) - purxt (5.8)

where
t
Fr(tlx,y) = 1—exp(—f z(uly,x)du)
0
and

z(t]y, x) = A% 19 1 ePr(y-1.8)+Pxx
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Note that we use y — 1.8 because the “zero-point” for y is 1.8 corresponding to level A is “normal
vibration”.

The cost/profit figures are as follows: cg = 15,000, cy = 30,000 and pur, = 1,000 where all
values are given in NOKs. The characteristic time in the decay function is given by 6 = 30 days.
In the example we also assume that there is a maintenance window only once a week, and the
first opportunity will be in 3 days.

Inserting in Equation (5.6) and using the cost function in Equation (5.5) Table 5.2 indicates
that we should use the opportunity that comes after 31 days.

Table 5.2: Results for the Cox proportional hazard rate model

t Repair Downtime Production Total

3 13573 0 -300 13273
10 10748 33 -1000 9781
17 8511 273 -1700 7085
24 6740 1074 -2400 5413
31 5337 2907 -3100 5145
38 4227 6224 -3800 6650
45 3347 11185 -4500 10032

Note that the cumulative distribution function calculated by Equation (5.6) is the uncondi-
tional distribution function given we were at point of time P in Figure 5.1. In reality since y =4
it is reasonable to believe that some days has elapsed since the potential failure was evident. A
conditional distribution function is therefore more appropriate. This means that we also need
to assess the time since the potential failure occurred. Let 7y be the current time, and assume
that the time since the potential failure (P) is s time units. Let ¢ denote the running time from
now on, i.e., fy corresponds to ¢t = 0. Using the rule for conditional probabilities we obtain the

following modified cost function:

1-Fr(t+sly,x(t+5))
1 - Fr(sly,x(s))

C(r) = CPM,()e—t/H +cy|l-

— PHLXT

In the example calculation this conditional approach is not used. O

Example 5.3 Towards a real time model - The digital twin
The previous example is now used as motivation for developing a simple stochastic digital twin.
A digital twin may be viewed as a digital simulation model with built in analytics, decision sup-
port, and selflearning features. Learning features will not be discussed in this example, and only
glimpse of analytics is provided.

The digital twin is represented by two models, one maintenance model and one production
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model, where these models interact via the Internet of Things. In the following the maintenance
model is denoted the maintenance twin and the production model is denoted the production
twin. The physical counterpart of the maintenance twin is the actual component state, the phys-
ical load on the machine, the actual maintenance carried out the actual time the machine can
not produce due to preventive and/or corrective maintenance and so on. The physical counter-
part of the production twin is what is actually being produced, when the production takes place,
the economic value of the production, the cost of production, the various machines being used,
the use of personnel and resources and so on.

Let I be the operational windows for execution of a preventive maintenance task of the
packing machine, i.e., the point of times 71,7, + 7,71 + 27,.... The decision support to be pro-
vided by the maintenance twin upon a potential failure situation is now:

t/

min C(1) = cpmoe "% + cu Fr(tly,x(1) (5.9)

teg

The maintenance twin represented by Equation 5.9 has to be implemented on a digital plat-
form, for example MS Excel. The maintenance twin needs to be fed with data from the produc-
tion twin. Here the production twin is very simple, only a set of predefined scenarios combining
different values of cpm o, cy,y, and x(f). Table 5.3 shows the data used in this simple MS Excel
representation of the two twins interacting. In a real life implementation the data in Table 5.3
needs to be generated by the ERP system, the SCADA system and so on.

Table 5.3: Data used in the production twin

CPM,0 cy x  CPS message/Comment

y
15000 35000 4 0.1 Baseline (from example)
15000 35000 3 0.3 High futureloads
5000 35000 3 0.1 Cheap PM due to low production
2
4
3

15000 35000 0.15 Lower degradation
15000 35000 0.15 Very high degradation
15000 100000 0.15 Very high failure cost

5.4 Gradual failure progression

The PF-model in Section 5.2 illustrates what we often denote a “fast failure progression” be-
cause the length of the PF-interval is relatively shorted compared to the time between potential
failures. This means that there is no sign of degradation for a long time, and then some failure
mechanism become evident and the item will fail within short time if nothing is done.

In this section we will introduce a general framework. The basis is still that maintenance is
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condition based where the understanding of degradation of the item determines appropriate
maintenance action and time for maintenance.

In the following we distinguish between:

* {X(1),t =0} is a stochastic process describing the actual degradation of the item at time ¢

e {Y(1),t=0}isastochastic process describing the measurements of degradation of the item

at time ¢

where the measurements typically contain noise. Degradation could be crack lengths, corrosion
depths, vibration levels etc. In some situations it may be difficult to distinguish the variation in
the degradation process from the measurement errors. In this presentation we will not explicitly
consider imperfect measurements of the degradation in order to make simple presentations. We
will therefore not make an explicit definition of what is the difference between {X (), t = 0} and
{Y (1), t=0;}.

Figure 5.5 shows a typical example of the development into a failure. On the y-axis the figure
shows {X (1), t = 0} the actual degradation. As for the PF-model this would be some health indi-
cator like crack length, corrosion level, wear etc. In addition to the failure limit we introduce a
maintenance limit, i.e., when {X(t), t = 0} exceeds the maintenance limit, a request for mainte-
nance is put forward. An important decision variable is then what the maintenance limit should
be.

| .
»
¥

Failure limit

X(t)

!
Time ¢

Figure 5.5: Gradual failure progression

5.5 Remaining Useful Lifetime

In degradation modelling (prognostics) the term Remaining Useful Lifetime (RUL) is introduced.
RUL(#) is a stochastic variable that measures the time from f; until the item is not “useful” any
more. The term ‘Useful’ needs to be defined, for example a failure, or some other bad perfor-

mance. Since RUL is a stochastic variable, we often need the distribution function, i.e.,

Pr(RUL(%,) < 1) = FruL() (2) (5.10)
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where t is the current time, and ¢ is a future point of time, typically measured from ¢, as the
starting point.

A huge number of mathematical models for RUL prediction exist in the literature. In the
following a limited number of ideas are pursued. The definition in Equation (5.10) will not help
us since there is no explicit link to the condition or degradation of the item. A more explicit
definition of RUL is therefore:

RUL(%) =min{h: X(ty+ h) € Z}} (5.11)

where & is the set of states where the item is considered not useful. In Figure 5.5 this corre-
sponds to all values above the “Failure limit”. The RUL distribution (CDF) is defined as:

Pr(RUL(fo) < ) = Pr(min{h: X(fo+ h) € 23} < tIT > o, Y (T)re; ) (5.12)

where we condition on the fact that the item is still useful (T > 1), and the knowledge of the
measurements, i.e., the various observations (Y). In Equation (5.12) X (fy+h) is the actual degra-
dation A time units ahead of current time . When we condition on Y (&) ;¢ T this means that
the only information we have at the current time ¢, is the measurements, i.e., the process {Y (u)}
sampled at various points in time, i.e., the set 9. In principle we do not know the actual states
of the system up to the current time, but since T > ty, we for sure know that X (u) ¢ Z;, u < 1.
The Wiener and gamma processes are popular stochastic processes used to model degrada-
tion. Both processes assume that the change in degradation level in a small time interval can
be described by a stochastic variable. In the Wiener process these changes can be both posi-
tive and negative, whereas in the gamma process the changes are always positive, i.e., positive
increments. There are various pros and cons for these two processes. The gamma process is
more intuitive, since increments (degradation) is always positive which is true for man failure
mechanism, i.e., we can not improve unless some measures are taken. On the other side, mea-
surements of the degradation often show that the change in degradation level from one point of
time to the next may be negative. This could then be caused by measurement errors (noise).
Both the Wiener and gamma processes assume that {X(#), f = 0} can take any value in some
range. In some situations we limit the value of the process to a countable number of values. The

Markov process is such a process also very relevant for maintenance modelling.

5.6 Wiener Process with Linear Drift

Before we define a Wiener process with drift we define the Wiener process {W;, t = 0} by:

1. Wo=0
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2. W has independent increments: for every ¢ > 0, the future increments Wy, — W;, u =0,
are independent of the past values Wy, s < t.

3. W has Gaussian increments: Wy, — W; is normally distributed with mean 0 and variance
u, WI+L£ - W[ ~ ‘/V(O) u)-

4. W has continuous paths: W; is continuous in .

Note the slightly different notation where in some situations we use {W;, t = 0} and in other sit-
uations we use {W (1), t = 0}.
We now define stochastic process:

Xi=ut+oW;

as a Wiener process with linear drift ¢ and infinitesimal variance 0.

It follows that X; = X(¢) is normally distributed with mean ut and variance o?¢t. Further X
has Gaussian increments: X;,, — X; is normally distributed with mean pu and variance o’u,
ie, Xpoy—Xp ~ JV(,uu,aZ u).

It is well known from the theory of stochastic processes that the time T when the process
for the first time reach the level ¢ is inverse-Gauss distributed with parameters a = ¢/u and
B=(l10)>.

For the inverse-Gauss distribution, i.e., X ~IG(a, ) we have:

. /B B(x—a)?
fxxa,p) = Py €x (_Za—zx) (5.13)
and
, VB 1 VB L) 2p
Fx(x;a,p) =@ 7\/}—\@% +@ —7\/}—\@% e P’ (5.14)
The expected value and variance are given by:
EX]l=a

Var(X) = /B
In the Wiener process with parameters p, o the time, T to first passage of the threshold ¢ is then

T ~1G(/p, (010)?)
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and the expected value and variance are given by:
E[TI=¢/u

Var(T) = o020/ 13

5.6.1 Maintenance decision problem

Figure 5.6 shows the Wiener process with drift and gives the motivation for the maintenance
decision problem. The elements in the model is discussed in the following.

A X

L TLﬁ,

L.

R »
fo Time

Figure 5.6: Maintenance model with deterministic lead time 77,

We consider the following situation:

e The degradation process can be monitored continuously without any uncertainty, and the
degradation level at time ¢ is X ()

¢ A failure occurs the first time X(¢) = ¢

e When degradation reaches the maintenance limit, m a request is placed to replace the
component with a new component, in Figure 5.6 the maintenance limit is reached at time
fo

e There is a deterministic lead time, say T, i.e., the time elapsed from the replacement re-
quest is placed until it is executed

e The objective is to determine the maintenance limit, m < ¢, i.e., how close to the failure
limit we dear to go
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e Figure 5.6 shows one trajectory of the degradation up to the maintenance limit, and from
three on several trajectories are shown to illustrate the randomness in the degradation. If
X(t) = ¢ for some t < ty + T, the item fails before it is replaced which is indicated with the
filled area under the RUL-distribution (Remaining Useful Life).

The cost equation to minimize is:

cg + ce F(Tlm) + cp fy* f(tlm) (T - dt

Cim) =
MTBR(m)

(5.15)

where

cr = cost of renewal/replacement

¢ ¢ cost of failure (additional cost for corrective maintenance and extra cost for the failure
event)

* ¢p = cost per hour down time

e F(t) and f(¢) are CDF and PDF for the remaining useful lifetime (RUL), given we are at the

maintenance limit 7 at some point

e MTBR(m) = Mean Time Between Renewals, given the decision rule to request a mainte-

nance at m

We now consider one maintenance cycle:

Assume that we at time ¢ in this cycle observe Y (f) = m

Let RUL,, be the time from ¢ until a failure occurs

RUL,, is inverse-Gauss distributed with parameters a,, = (¢ —m)/u and B,, = (¢ — m)?/o?,
where p and o2 are the parameters in the Wiener process, and ¢ is the failure threshold

Thus, F() = F(t; @m; Bm) = and f() = f(t; anm; Bm) are given by equations (5.14) and (5.13)
respectively, and the nominator of C(m) may be obtained by numerical integration

MTBR(m) =m/u+ Ty,

5.6.2 Operational load and relaxing on the use of the item

When we reach the maintenance limit we could relax on production, e.g.,:

¢ Produce less items
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¢ Stop a wind turbine when wind speed > 15m/s

Let x be a measure of how much we relax on production, i.e., a decision variable, and let cgy(x)

be corresponding production loss per unit time. The cost equation to minimize now is:

Clm.x) = cr+ cpF (T |m, x) + ¢cp fOTLf(tlm,x)(TL —dt+ cpe(x) Ty,
= MTBR(7,)

(5.16)

where F() and f() now depends on x as well as the maintenance limit.

Two aspects need to be considered:
e The impact of the relax on the degradation rate
e The impact on direct profit
The relax “decision variable” is denoted x, and we have assumed
o u(x) = po(l—x)
e g(x)=0p(1—x)
o Cpe(x) =0.002cy(x +25x%)

In the example, we “relaxed” on our selves, i.e., the turbine which is approaching a fault state.
In light of “wake effects”, it might be more relevant to consider relaxing on the “front runners”.

Two aspects need still to be considered:
e The impact of the relax on the degradation rate
e The impact on direct profit

The starting point for the wake model is the classical engineering model by Jensen (1983)
who proposed a model for reduced wind speed downstream

UslUs=1-2a(R/(R+a; X)) (5.17)

where R = rotor diameter, and X = distance between two turbines. Often a = 1/3, and a;=0.05
for offshore wind is used. This gives

2 R 2 2 1 2
UlUp=1-=|———| =1-Z | ————— (5.18)
3{R+0.05X 3{1+0.05X/R

For normal spacing of the turbines, the reduction factor U;/ Uy could be between 0.7 and 0.8.
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First of all we should acknowledge that engineering models are not very accurate, and in
particular to consider the situation at the wind farm level, such a model might be too simple.
To optimize production, independent of the impact of degradation, yawing could impact the
loss in inn speed. We do not propose models here, but yawing means reduced swiping area
of the frontrunner turbine, and a reduction factor for the front runner could be something like
cos¢, where ¢ is the yawing angle. However, the total impact on the effect this will have on the
downstream wake profile is not that easy to model, and far beyond the scope of this presentation

From the maintenance perspective, the turbulence is our main concern wrt the wake effect.
In the wake shadow, it is expected to be much turbulence. We could may be use something like
the inverse reduction factor, i.e., Uy/ U as a starting point for an “increase” factor of e.g., fatigue
loads.

Note the difference:

e General increased load due to turbulence, and how we consider this as a part of the overall

objective function for wind farm control

* The explicit modelling of a given situation, where we have observed a critical degradation,
and the aim is to reduce the risk of failure until maintenance could be carried out, i.e., our

example

5.7 Gamma process

A stationary gamma process X(t), t = 0 is defined by:
1. X(0)=0
2. X(1),t=0hasindependent and stationary increments

3. Theincrements in aninterval (s, ¢] is X (#) — X (s) and are assumed to be gamma distributed
with parameters (f — s)a and B. a and B are denoted the shape and scale parameters

respectively.

For the gamma process it is straight forward to obtain the cumulative distribution function for
the first hitting time. Assume degradation degradation of an item follows a stationary gamma
process X(t),t =0 and the item will fail the first time X(¢) exceeds a failure threshold ¢. The
cumulative distribution function for the time-to-failure is:

Ft)=Pr(T<t)=Pr(X(1) =0)=1-G(;at,p) (5.19)

where G(x; a, b) is the cumulative distribution function for the gamma distribution with param-

eters a and b. The results follows from the fact that the increments are gamma distributed
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The expected degradation in a time interval of length s — ¢ is (r — s)a/. Referring to the
example given for the Weibull process, we could be tempted to assume that the expected time
for a new item to reach the maintenance threshold, ¢ is 8/a. This is not the case and it can be
shown that the expected value can be approximated by /3/a + 1/(2a). The extra term 1/(2a) is
often denoted “overshooting” effect. The idea is that the gamma process is a jump process. This
means that it will never exactly hit the value ¢ but rather hit slightly above, and hence it takes
some “extra” time compared to if it was an “exact hit”.

Compared to the Wiener process, it is however easier to find the RUL,,, distribution. Assume

we order a maintenance when the process reaches the value m. We then have

Frut,,(£) =Pr(RUL,, < 1) = Pr(X(T, + 1) = €1 X(T},) < ¢, history up to T,) (5.20)
~Pr(X(Tp+t)-X(Ty) =l —-m) = (5.21)
fg farpWdu=1-Fqp(f —m) (5.22)

—-m

where Ty, is the point of time when the process exceeds the maintenance limit. fu,(-) and
Fq,p(-) are the PDF and CDF of the gamma distribution with parameters at and f respectively.

Note the approximation which is due to the fact that we never exactly reach the maintenance
limit m due to overshooting. If we pursue the maintenance model used in the Wiener process
example, we should also take the “overshooting” into account for the expected time to reach the
maintenance limit which could be approximated by MTBR = mf/a + 1/(2a) + T1.. In the cost
model we also need the PDF for the RUL in addition to the CDF derived above.

5.7.1 Response Time

To demonstrate the use of the Gamma process we present a situation similar to the one in Sec-
tion 5.6. As a starting point we assume continuous condition monitoring where the inspection
interval is not relevant for optimization. The challenge is to look at an optimal response time af-
ter a critical situation has been identified after analysing the data from the continuous condition
monitoring. The model developed below can also be used in conjunction with the optimization

of inspection intervals, but this is not pursued here. We make the following assumptions:

e The degradation process of a component or a system follows a gamma process with pa-

rameters & and f and a failure threshold at ¢

e At the time £ a critical development of the condition is observed. 7, can be the current

time, or some anticipated time in the future.

* We assume that in a rather short time, i.e., at time %, + xo, there will be a reasonable good
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opportunity to execute an improvement activity that brings the system back to a signifi-
cant improved condition

¢ As a simplification, we assume that xg is known

* In some situations, there is no natural “opportunity” to carry out the improvement, and it
may be natural to set a fictitious value for xg, typically a value where cost of the improve-
ment activity does not decrease even if we wait longer than xp to carry out the improve-
ment

e We also assume that it is possible to execute the activity prior to fy + xo but at a higher cost
since “priority” is usually not free of charge

e The cost to perform an improvement, Cr(x) is assumed to dependent on when the im-
provement is carried out, i.e., x time units from ;. The faster it needs to be implemented,

the higher the expected cost. The lowest cost is assumed at the time 7y + xo.

e If the situation develops rapidly, we may experience e failure before the improvement ac-
tivity is scheduled to be carried out. If this happens, we assume that the system is un-
available until the planned time, i.e. at the time #y + xo. During this period, there is an
unavailability cost, cp per unit time. In addition, there is a fixed cost associated with the
failure itself, cp. cp represents both additional costs associated with repairing a failure
compared to the planned repair activity, as well as other costs associated with the failure
itself.

* The longer you wait to fix the critical development of the condition, the more you save in

average renewal costs. Let ¢; denote average renewal costs per unit time.

* Let f(?) denote the probability density function from #; until a failure occurs. f(#) will
typically depend on the current condition, although we do not notationally express this in

f(.

Figure 5.7 illustrates the situation. At time #), degradation has reached a critical level. At
time fy + xo there is an opportunity to carry out the activity at the lowest possible cost. The cost
function, Cr(x), drops from the highest value at x = 0, i.e., at time #y) and drops from here on
until time 7y + xo. Above the failure threshold the probability density function of the time-to-
failure is indicated. Various random trajectory from the critical level to the failure threshold is
indicated.
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Figure 5.7: Optimizing response time x

The decision problem is to find the optimal time for the execution of the improvement ac-
tivity, x, i.e., the optimal response time. A realistic cost function is given by:

C(x) :CR(x)+(xo—x)cr+chf(u)(x—u)du+chf(u)du (5.23)
0 0

where f(u) is the probability density function for RUL, given the knowledge and condition at

time f;. Numerical methods are needed both to calculate C(x), and to minimize wrt x.
X

For the last integral we have [ f(u) du = F(x) where F(-) is the cumulative distribution func-
0
tion for RUL. In some cases it is easier to calculate the CDF than the PDE hence the integral

X

X
J f(w)(x — u) du can be rewritten to xF(x) — [ uf(u) du, and then by partial integration we find
0 0

ff(u)(xu)du—xF(x)(xF(x)[F(u)du) :fF(u)du (5.24)
0

0 0

Thus we may rewrite the cost equation:

Cx)=Crx)+(xo—Xx)cr + chF(u) du + cpF(x) (5.25)
0

Assuming the gamma process is appropriate for describing the degradation, and given we know
the degradation at t, i.e., yo = X(fp), the failure threshold ¢ and the degradation parameters «

and B we have from Equation (5.20):

FruL(?) = 1= Fay (£ = o) (5.26)
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Where Fy; () is the CDF of the gamma distribution with parameters a¢ and § respectively.
Replacing F() in Equation (5.24) by Fryr() from Equation (5.26) gives:

C(x) = Cr(x) + (xo—x)cr+ch [1-Faup—yo)| du+cp[1—Faypl —yo)] (5.27)
0

Problems

5.1 Wind turbine example
We are considering a wind turbine. The wind energy models are presented in Chapter 7, but we
introduce the basic idea. The power of a wind turbine is given by [w=Watt]:

1
P=sec: OffWEpAug

where y is the yaw angle, A = m(D,/2)? is the rotor swept area and 1y is the free-stream wind
velocity. The reduction factor is given by:

Cp(a,y) = 4a(cos(y) - a)®

where a is the axial induction factor. It is easy to show that the maximum of Cp(a, y) is achieved
for a = a* = cos(y)/3 and the maximum theoretical power is C; = 16/27 cos®(y) also known as
the Betz limit when y = 0.

In this problem we assume the following quantities:

uop = 10 # Free wind speed [m/s]

p = 1.225 # Air density at 15 degrees [kg/m?]

r = 60 # Rotor radius [m]

D, =2 r # Rotor diameter [m]

Y = 0 # No yawing

MTTF = 8760 * 5 # Mean time to failure without maintenance [hours] = 5 years

¢ =100 # Failure limit, normalized to 100 (%)

@ = ¢/MTTF # Drift parameter for degradation [hours™}]

e 0 =50 * u # Infinitesimal standard deviation, volatility of degradation [hours™!]
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a)

b)

c)

d)

Ti, = 2 % 7 % 24 # Lead time of maintenance = 2 weeks
cr = 2 500 000 # Cost of renewal [NOKs]
crg =7 500 000 # Cost of failure [NOKs]

Pe = 0.5 # Energy price [NOK/kWh]

Calculate the power, and profit per hour = ¢y = Loss per hour if not producing

Assume mu and sigma are the underlying parameters in the Wiener process. Use u,o and
¢ to calculate the mean time to failure and standard deviation of the time to failure

Find the optimal maintenance level m, i.e., at which degradation level should renewal be
ordered. What is the average total cost per hour (maintenance, failure and production

loss)?

By allowing longer lead times, i.e., 3 weeks, the cost of renewal could be reduced to cg =
2 000 000. Would this give a total cost reduction compared to the original problem?



Chapter 6

Markov State Model - An introduction

6.1 Introduction

Consider a stochastic process {Y (1), t € ©}, where Y (¢) describes the state (deterioration level) of
an item at time ¢. In the following we assume that the state variable only takes a finite number
of states. We first present the model when no maintenance is carried out, i.e., we start at time
t = 0 and observe the system until failure. Let:

Y(0)=yo
Y(T)=y, (6.1)

where T per definition is the time of the first failure. Between yy and y, there are r — 1 inter-
mediate sates. By choosing a large value of r we could obtain a very good approximation to a
continuous process if this is required. Let T;,i=0,...,r—1be sojourn times, i.e., how long the
system stay in state i. Notationally we will typically denote the states by their number rather
than by the value to simplify notation.

For the initial model we assume that the sojourn times are independent and exponentially
distributed with parameter A;. Later on we will investigate how sojourn times may be modelled
by arbitrary distributions. We also assume that the process runs through all states chronologi-
cally from y, to y, without “stepping back” at any time.

Before we present the modelling framework for this simple situation we introduce the main-
tenance model. Figure 6.1 depicts the development of Y (#) as a function of time. On the x-axis
it is indicated that the system is inspected at period of times 7,27,37,.... If the system is found
in state Y (#) = y; at an inspection, the system is renewed to an as good as new state, i.e., }p.

We now go back to the simple situation where maintenance is not considered. Let P;(t)
denote the probability that the system is in state i at time ¢. By standard Markov considerations

65
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Figure 6.1: Markov transition diagram

we obtain the Markov differential equations:
Pi(t+ A1) = Pi(1)(1 = A;At)+ Pi_1 (A1 At (6.2)

where At is a small time interval and and we set A_; = 0 per definition. Further the initial con-
ditions are given by:

Py(0)=1
P;(0)=0fori>0 (6.3)

Equation (6.2) could easily be integrated by a computer program, for example VBA in MS Excel.

It is now easy to find MTTF by another integration, i.e.,

oo (e .e]

MTTF:f R(t)dt:f [1-P.(D]dt (6.4)
0

0
and we should verify that we get MTTF = Z;;é /ll._l. Note that the transition rates, A;’s, are as-
sumed to be known, that is either they are estimated from data, or found by expert judgement

exercises.

6.2 Maintenance model

This section derives a basic maintenance model based on the situation depicted in Figure 6.1.
The state variable Y () evolves as a function of time. On the x-axis it is indicated that the system
is inspected at period of times 7,27,37,.... If the the system state at an inspection is equal to, or
above the maintenance limit #, then a repair is carried out bringing the system back to state 0.
We assume that repair time could be neglected.

The objective function, or cost function to minimize is given by:

C(,0) = c/t+ (cp + ccm) AE(T, £) + crepr(T, £) (6.5)
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where
¢ ¢ = the maintenance limit
* ¢r = the cost of an inspection

* cr = the total expected cost of a failure, i.e., downtime cost and trip cost, and any safety
cost

e ccMm = the cost of repairing a failed item

* crc = the cost of renewing a degraded item, i.e., not failed but above or equal the mainte-

nance limit

e Ag(t,¢) = the effective failure rate for an item inspected at regular intervals of length 7 and

renewed if the maintenance limit is reached at an inspection

e pg(1,¢) = expected number of renewals per unit time for an item inspected at regular

intervals of length 7 and renewed if the maintenance limit is reached at an inspection

In order to specify the model depicted in Figure 6.1 we need to specify the r transition rates

Ao, A1,..., Ar—1. To simplify the specification we make the following assumption:

* Aiy1 = (1+v)A;, ie., the transition rates are increasing as the item is degrading, with a

constant factor 1 + v corresponding to exponential growth

e Itis possible to specify V = 1,_1/Ay, i.e., how much faster the growth is at end of life com-

pared to initially

e It is possible to specify MTTF, i.e., the mean time to failure if no maintenance is carried

out

 There is a fixed probability, g that an inspection will not reveal that the maintenance limit
is reached

It is rather easy to show the following:
e p=yl-D

_ 1-1/v"
* Ao = g7 MTIE

-2 . . . . . . .
e Var(7T) = (EJ}W = variance of time to failure if no maintenance is carried out
- 0

We don’t need Var(T) to proceed, but the expression for the variance could be used to compare

our Markov model with e.g., a Weibull model where the variance is already assessed.
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6.3 A more general transition model

Equation (6.2) may be used in situations where we only allow transitions from state i to state
i + 1. In more general situations there could be transitions in principle from any state i to any
state j. For example there could be two degradation mechanisms, smooth degradation and
shocks. The smooth degradation causes jumps from one state to the next, whereas shocks could
cause larger jumps. In this situation we need to work with matrices. Let Abe an (r +1) x (r + 1)
matrix where element (i, j) represents the constant transition rate from state i to state j. The
indexing here starts at 0, e.g., A(0,1) = ay is the transition from state 0 to state 1.

Further, let P(¢) be the time dependent probability vector for the various states defined in
A. We now let P(t =0) =[1,0,0,...,0] to reflect that the system starts in state 0. From standard
Markov theory we now need the Markov differential equations, i.e., P(¢)-A = P(1), from which it

follows:
P(t+At) =P(1)[AAL+]1] (6.6)

where At is a small time interval. Equation (D.7) is now used repeatedly to find the time depen-
dent solution for the entire system. This corresponds to integrating Equation (6.2).

We now outline the main principle for working with matrices to find the time dependent
solution and other relevant quantities. Assume we have access to a small library of matrix rou-

tines:

Function mMult(A,B) —> Returns a matrix equal to A * B
Function fixA (A) —> Fill diagonal of A such that sumrow=0
Function getIntMatrix (A, DeltaT) —> [A * DeltaT + I]

In the following we assume that the matrix library is defined by standard indexing, i.e., the

first row is denoted row number 1 and so on. A warm up exercise to find MTTF is now:

Function getMTTF (A)
fixA A

MITF = initial guess
DeltaT = MITF / 1000

hlp =0
t=0
P=[1,0,0,....]

IM = getIntMatrix (A, DeltaT)
Do While t < 5«MITF
P = mMult(P, IM)
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hlp = hlp + (1-P(r+1)) = DeltaT
t = t + DeltaT

Loop

getMTTF = hlp

End Function

1

To get higher precision we could increase the integration to e.g., I0OMTTF. Note the motiva-

tion for this approach is given by:
(e9) (e9)
MTTF:f R(t)dt:f [1-P.(0)]dt (6.7)
0 0

where 1 — P, (1) is the probability that we are not in state r at time z.

So far the maintenance regime is not reflected in the approach. Let A [(] 7, [) be the effective
failure rate, i.e., the expected number of failures per unit time if the system is inspected every t
time unit, and renewed whenever Y (f) = y; at an inspection. In the integration of Equation (D.7)
we start with £ = 0 and whenever ¢ coincides with 7, 27 etc., special actions are taken:

Function lambdaEffective (A, tau, 1)
fixA A
MITF = getMTTF(A)
DeltaT = MITF / 1000
hlpF = 0
t=0
localTime=0
P=[1,0,0,....]
IM = getIntMatrix (A, DeltaT)
Do While t < 10+«MTTF
P = mMult(P, IM)

hlpF = hlpF + P(r + 1) Add to effective failure rate

P(1) = P(1) + P(r + 1) If system is failed, it is assumed to be
renewed

P(r + 1) =0 Clear probability

If localTime >= tau Then
sumP = 0

For i = 1+1 To r
SumP = SumP + P(i)
P(i)=0

Next i
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P(1) = P(1) + SumP
localTime = 0
Else
localTime = localTime + DeltaT
End If
t = t + DeltaT
Loop
lambdaEffective = hlpF / t
End Function

Note the indexing, i.e., the failed state is r + 1 and the maintenance limit is / + 1. In Python
indexing starts at =0, so a Python script is even more intuitive.

In the If localTime = tau part of the script above we have used a loop to simulate what
is happening during an inspection. A more efficient way to do this would be to create an “in-
spection matrix”, say M defined by:

0
1
0
M=| (6.8)
100 --0
1 0
1 00 0

where the starting point is an identity matrix, but where we from the row corresponding to state
[ shift the “ones” to the left.

If localTime >= tau Then
P = mMult(P, M)
localTime = 0

Else

Such an inspection matrix could also be used to specify that an inspection is not perfect. For
example if g is the probability that an inspection fails to reveal that the actual state is [ or higher,

the corresponding leftmost “one” is replaced by 1 — g and the diagonal element is replaced by
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q for rows corresponding to states [,/ +1,...,r — 1. An inspection matrix could also be used to
specify that upon an inspection it might be decided to repair to a state which is not as good as
new. For example in 80% of the cases we repair to state 0, in 15% of the cases we repair to sate 1

and in 5% of the cases we repair to state 2.

6.3.1 Significant repair times

So far we have assumed that repair times could be neglected. If we can not neglect repair times
we need to model repair times in the transition matrix A. For example if at an inspection we with
some probability g will decide to repair from state i to state j with constant repair rate u a first
approach would be to modify the A-matrix, i.e., A(i, j) = a;,j = qu. However, this would imply
that a repair starts immediately after the system has reached state j. In reality, a repair can first
start after the coming inspection.

To handle the situation we now introduce “virtual” states. A virtual state is a state in the A-
matrix representing the situation where a maintenance action has been decided and the repair is
actually started. For each pair (i, j) where there could be arepair from physical state i to physical
state j a virtual state k;,; is defined. Then the associated transition rate is set to ay, ; ; = p. The
row and column representing the virtual state k; ; can be any ones larger than those already
“occupied”. The inspection matrix M will also get an additional row and column representing
the virtual state k; j, where M(i, k;, ;) = g, where we in addition need to ensure that the row sum
equals one.

Note that while repairing from state i to state j represented by ay, ;,; = p there might be a
“competing” transition from for example state i to state [, thus we also need to specify ai, ;1 =
Ai,1. Such transitions are not shown in Figure 6.2.

Figure 6.2 illustrates the Markov diagram for a situation with r = 4. Here A;; is the transition
rate from state i to state j representing degradation. Further i, ; ; is the repair rate from virtual
state k; j to state j. When a repair is initiated as a result of a proof-test, virtual states are intro-
duced. For example the state (2.1) represent that after a test it is decided to repair from state 2 to
state 1. The doted lines represent transitions that instantaneously take place after a proof-test.
The probabilities given by the g-values represent maintenance decisions. For example g3 30 =1
represents that if a state 3 is revealed by a proof-test, we always initiate a repair to state 0. g2 2.0
is representing the probability that we after revealing a state 2 on a proof-test we initiate a repair
to state 0. The g-values are entered into the inspection matrix, M.

In Figure 6.2 there are three nodes representing that the system is in a “small degradation”
state, i.e., physical state 2. State 2 in the diagram is a hidden state, we are not aware of any
transition from state 1 to state 2. The states (2.0) and (2.1) are evident states, we know that we
are in main state 2 (small degradation), a maintenance request has been issues (to state 0 and

state 1 respectively).
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Figure 6.2: Markov transition diagram with potential repairs

Note that in Figure 6.2 we use the notation apyom 10 Without indicating the actual row and
column numbers in the transition matrix. The notation Ar,; ;,1 on the other hand, is used to
identify a row and column number in a matrix in the code when we do the programming.

In previous sections we have focused on the effective failure rate, but we might also be inter-

ested in the average portion of time we are in each state. For example we may use:

Do While t < 10+«MITF
P = mMult(P, IM)
Pavg = Pavg + P
If localTime >= tau Then
P = mMult(P, M)
localTime = 0
Else

localTime = localTime + DeltaT

End If
t = t + DeltaT
Loop

Pavg = Pavg = DeltaT / t

Phase type modelling

So far we have assumed that the sojourn times are exponentially distributed. This assumption
could be questioned if there are failure mechanisms like wear, fatigue, corrosion etc. that drives
the degradation of the system. Phase type modelling is an approach where we may approximate
a stochastic variable with a multi state Markov model. The more states we use the better will the
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approximation be. In the following we do not discuss the explicit fitting of model parameters for
the approximation. Several statistical packages exist for this. We will also assume that each ran-
dom variable is approximated by a two-state Markov model in order to reduce the total number

of states. See Laskowska and Vatn (2020) for an example using phase type modelling.

Model

Consider a system having three main states, 1 = new, 2 = degraded, and F = failed. With main
state we here mean what the categorization used by the maintenance department.

We assume that sojourn times in state 1 and state 2 could be approximated by a phase type
distribution, i.e., T} ~ F,(f) and T» ~ F>(t). The sojourn times are assumed to be stochastically
independent.

For T the phase type model comprises two sub states, i.e., 1a and 1b. A acyclic phase type
model is used where:

e The probability that the system starts in sub state 1a is p;, and the probability that the
system starts in sub state 1bis 1 — p;

¢ There is a constant transition rate, 1,, from state lato 1b

* There is a constant transition rate, 1,5, from state 1b to an absorbing state outside the

system

A similar model exist for sojourn time 2.
Note that given F; () and F»(¢) we may in principle find the distribution of the time to failure
for this system by the convolution theorem. This will not be pursued here.

System modelling

The phase type models for the two sojourn time enable easy integration by use of the Markov
equations P(z+ At) = P(£)[AAt + 1] when each sojourn time is treated independently.
In order to have a complete model we need to link the two phase type models.

Proposition: For the phase type distribution approximating the first sojourn time there is a rate
A1p from state 1b to an absorbing state outside the system. This transition is split into two tran-
sitions, one to state 2a and one to state 2b. The corresponding rates are A, 2, = p2A4;, and
Mp 2p = (1 = p2) A1p respectively. Figure 6.3 depicts the situation:

The dashed ellipses represent the physical or main states “new” and “degraded” as observed
by, e.g., maintenance personnel. The states 1a, 1b, 2a and 2b are artificial or sub states used for
modelling, but have no physical interpretation.
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Let Pr(t) be the probability that the system is in state F at time ¢. Pg(f) can easily be ob-
tained by integration the Markov equation for the compound system yielding the cumulative
distribution function for time to system failure.

For the model with the artificial states, the Markov property holds. However, if we consider
the three main states (1=new, 2=degraded, and F=failed), the Markov property does not hold.
Given that we have stayed in main state 2 for some time, the probability of escaping that state
will typically increase as time goes by. The explanation is that given we entered state 2 at time
x, we either went to the artificial state 2a with probability p or to state 2b with probability 1 —
p, which is exactly matching the phase type model we use for the “physical” state 2 when the

“failure rate function” for state 2 is increasing.

6.4 Varying intervals for inspection

The idea of having fixed lengths between inspections may be questioned. Obvious it would be
some administrative advantages if we could stick to the same inspection intervals independent
on the system state. On the other hand it seems reasonable to reduce the inspection intervals
as we approach the maintenance limit. To obtain the total failure rate, number of inspections,
and number of repairs for a general inspection and maintenance strategy is almost impossible.
In the following we present an approach where we make some assumptions which would be
reasonable to handle from an administrative point of view, and which also should not be far
from the optimal solution:

e The time intervals between inspections are either 71, (long), Ty (medium), or g (short).

Further ki, and ky; are integers such that 71, = ky7s and 7 = kmTs.

* 2 isasetof states which require inspection interval 71, £ is a set of states which require
inspection interval 7); and % is a set of states which require inspection interval rg. For
all other states, £, it is required to repair the system to a good as new state.

e If a failure occurs at time ¢ in between inspections the system will be repaired to a good
as new condition immediately, and the first inspection of length 7 will take place at the
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smallest value of k7s where k is an integer and kts > t+ 7.

The mathematical formulation of this problem is rather difficult, and is beyond the scope for the
course HAV6003. However, the main approach is presented for the interested reader.
In the modelling we assume that we at any time, ¢ # ktg, have:

e The current inspection regime is governed by 71, ) Or T3

Let t¢c be the starting point of the current inspection interval, i.e., tc > k7s and ¢ < (k +

1)t for some integer k

If the current inspection regime is governed by 71, the next inspection will take place at

one of the following point of times: /¢ + s, tc + 27s,..., fc + kLTs

If the current inspection regime is governed by 7y, the next inspection will take place at

one of the following point of times: ¢+ 75, tc +27s,..., fc + kmTs

We may now define different P-vectors to hold the time dependent state probabilities as we
integrate the solution. Let Ps(f) be defined such that

P;s(t) =Pr(Y (£) = y; n current regime is 7g) (6.9)

For the medium and long intervals we also need to take into account the “starting point” of
these, and we define:

Py, m(t) =Pr(Y(¢) = y;n current regime is 71, N cycle is m) (6.10)

With “cycle” m we mean that the inspection will take place at point of times 7, + (m—1)7s, 27 +
(m—-1)1s,37L+ (m—1)75,.... We can imagine that these cycles are running in parallel. In reality
it will be only one cycle that could be active, but which one is actually active depends on when

the system is renewed. Similarly we define:
Pimn (1) =Pr(Y (1) = y; N current regime is Ty N cycle is n) (6.11)

In total we have one Ps(f)-vector, kv Py, (2)-vectors and ki, Py, (2)-vectors. As we integrate
the Markov differential equations for ¢ # ITs we update all the P(¢)-vectors according to Equa-
tion (D.7).

Here it should be noted that a more efficient approach would be to use:

P(t+71s) ~ P()[AAr+ 117" (6.12)
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where At = 15/2" and n is sufficient large to get a low value of At. Typically n = 10. This means
that we may calculate [AAf + 12" once, and use this matrix for all integrations. An alternative is
to use matrix exponentials if we have the numerical routine available, i.e., P(f + 15) = P(1) eATs,

Initially we have Py1,;(f = 0), and all other probabilities are equal to zero. We now apply
Equation (6.12) for t =0, 715,275, 37s,... for all the P(¢)-vectors. At each step we investigate each
P(t)-vector with respect to:

e Count the “number” of failures, to update the effective failure rate Ag
e Count the “number” of repairs, i.e., update the renewal rate pg
* Move “probability mass” to reflect repairs and change of inspection regime

For each P(f)-vector we investigate the element corresponding to the failed state. These proba-
bilities are added to a variable holding the accumulated expected number of failures. A failure
could have occurred anywhere in the interval we integrate by Equation (6.12), and we assume an
immediate repair. However, according to our assumptions, the system will not change the point
of times where inspections are possible. Now consider time ¢ = [tg, then there will be a main-
tenance regime, say m with inspection interval 71, which also has an inspection at time ¢ = I7s.
Let p; be all the probabilities representing failures in the set of P(f)-vectors. The probabilities
are now moved according to:

Po,m(t") =PorLm(t)+)_p; (6.13)
J
where we assume that 71, is small. Since the failure could have taken place some time before f,
it is a probability that the system was reset to an as good as new state, and then jumped to the
next deterioration level if 7y, is large. If this is the case we could split }_; p; to state 0 and 1.

We now proceed to handle the change of maintenance regime. As before we identify the
integer value m which is such that the regime 71, with cycle m has due date for an inspection
at time ¢ = Itg. Similarly we identify the integer value n which is such that the regime 7y with
cycle n has due date for an inspection at time ¢ = I7s.

To understand the situation, consider 71, = 6,7y = 3 and 71, = 1. Assume we are considering
an inspection at time ¢t = [tg = 13-1 = 13. m will now be 2 since the second 71, cycle will have
an inspection at times 1,7,13,19.... Further n = 2 because the second 1) cycle will have an
inspection at times 1,4,7,10,13,16....

First consider Py (1), i.e., the vector representing cycle m for the regime 71. For all states
i € &£ there will be no change in the inspection regime. For all states i € £ this will correspond
to shifting from regime 71, to regime 7. The vector Py ,(#) is now representing the cycle which

will “take over”. Further, for all states i € £s this will correspond to shifting from regime 71, to
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regime 7g. Finally for all states i € £y this will correspond to a repair. We thus have:

Pimn(tT) =Pinn(t7) + Pipm(t7),i € Ly
Pis(t") =Pis(t)+ PiLm(t7),i € Ls

PoL,m(t)=Porm( )+ Y. Pirm(t7)
i€eR

Piim(t")=0,i¢ A4 (6.14)

The notation ¢~ and t* is used to denote time just before and just after an inspection respec-
tively.

Referring to the example this means that if there is an inspection at time ¢ = 13 there is a 71,
regime with cycle m = 2 which has an inspection at time ¢ = 13. If it during the inspection is
observed that the system is in #£y, i.e., we find positive probabilities for P; 1, ;,=2(¢7), i € L we
shift to a 71, regime with cycle n = 2, i.e., inspection at time ¢ = 13 and next inspection time at
t=13+3=16.

Next consider Py ,(#). For all states i € £ there will be no change in the inspection regime.
For all states i € Zs this will correspond to shifting from regime 7 to regime 75. The vector

Pg (1) is now representing the regime which will “take over”, i.e.,

Pis(t)=Pis(t7)+Pimn(tT),i€Ls

PoL,m(t)=Porm( )+ Y. Pimn(t)
i€£R

Pimm(tT)=0,i¢ Ly (6.15)

Finally consider Pg(?). For all states i € Zs there will be no change in the inspection regime. For
all states other states this will correspond to a repair to an good as new state. Note that for this
regime there is not possible to be in £ or £4;. The updating of probabilities is defined by:

Poi,m(t") =Porm(t)+ Y Pis(t?)
i€

Pis(th)=0,ie % (6.16)

6.5 Varying intervals for inspection - Alternative approach

In the previous section the Markov differential equations were integrated having all possible
combination of sequences in the various P(z) vectors. Alternatively we could integrate the dif-
ferential equations but when there is a failure or a demand for a renewal we just remove the
corresponding probability mass from the P() vectors. This will reduce the number of P(¢) vec-
tors to consider.
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We still assume that the time intervals between inspections are either 71, 7)1, or 7s. Further
ki, and kyp are integers such that 7y, = k; 75 and 7 = kmTs. The situation now simplifies because
there is only one 71, regime and one 1) regime, i.e., we are not considering the cycles any more.
The time dependent probability vectors for each regime is given by Py (¢), Py (%) and Ps().

In the integration we now define h to be a vector of probabilities of a failure in each period
of length 7. Similarly g is a vector of probabilities of a request of a renewal in each period. Let
j be an index running through all intervals of length 75. The P-vector elements are defined by
Py1.(t =0) =1 and 0 for all other elements in the set of P(#)-vectors. The integration procedure
is now:

For j =1,2,... integrate all P(¢)-vectors according to:

P(t+715) ~P()[AAL+T)7" (6.17)

where At = 75/2", and where we update ¢ = t + 7. In the formulas that follow ¢~ represents the
time just prior to t, and t* represents the time just after t, i.e., when adjusting for the decision
to take at time .

Collect failure probabilities etc.:

h(j)= ). Pri(t) (6.18)
ke{lLLM,S}
g)= ) Pis(t7),if j= kg (6.19)
i€%R

If (j—1) mod ky;=0and j > k; then (“medium” maintenance):

g =g+ Y. Pim(t)) (6.20)
i€£R
Pis(t")=Pis(t7)+Pim(t7),i € Ls 6.21)

End If

If (j —1) mod kz =0 then (“long term” maintenance):

g =g+ Y PiL(t) (6.22)
i€ELR

Pis(t")=P;s(t7)+PiL(t7),i€ Ls
PiM(tT ) =Pim(t7)+Pip(t7),i € Ly (6.23)
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End If
In the procedure listed above we have not explicitly “removed” the probability mass correspond-
ing to a “request” for renewal. This we have to do.

The vectors h and g represent the expected number of failures and the number of requested
renewals for each interval. Let w be the vector of the total expected number of renewals in each
interval. For interval number 1 we have w(1) = g(1), for interval number 2 the expected number
of renewals is w(2) = h(2) + w(1)g(1). To find the number of expected renewals in general we

could use the discrete version of the renewal density for period j:

i1
w(j)=g()) +]Z w(j-1)g() (6.24)
i=1
Since we already have calculated the values in g it is straight forward to obtain w from Equa-
tion (6.24).

Note that w(j—1i)g(i) represents the probability that there was a renewal at (j—i)7g and then
there is another renewal itg later. Here we should also account for the possibility that it was a
failure at (j — i)ts and then there is another renewal i7g time units later, hence more correct
would be:

j-1
w(=gN+) [wG-D+fG-D]g@) (6.25)
i=1

where f() is described below.

Let f be the vector of expected number of failures in each period. A failure will occur in
period j in two disjoint ways, either the initial system fails in interval j, or there was a renewal
or failure in a previous period j — i, and then this system fails after another i periods:

j-1
FH=h()+) [wi-d+f(j—-D]h@) (6.26)
i=1
Equation (6.26) may now be used to find the average effective failure rate over a given time

horizon.

6.6 Basic Markov degradation model

The ISO standard for collection and exchange of reliability and maintenance data for equipment
[SO14224 (2016) proposes three different levels of degradation of a components:

* Incipient (I): The item is able to perform it’s required function. Some degradation is ob-
served, but it is not expected to result in a failure in short time.
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e Degraded (D): The item is able to perform it’s required function, but with possible reduced
performance, and a failure is expected in rather short time if a corrective action is not

carried out.

e (Critical (C): The item is not able to perform it’s required function, i.e., the item is in a fault
state.

Many operating companies in the oil- and gas industry has adopted these levels in both their
reporting systems, i.e., computerized maintenance management systems (CMMS) as well as
when it comes to planning and optimization of the maintenance strategies. In the following we
will there fore adapt these categories. In order to have a complete set of states for our Markov

model we make two adjustments:

1. A main category healthy (H) is introduced to represent a component which is considered

to be as good as new, or almost as good as new

2. For each of the main categories (main states) H, I and D, we introduce two sub-states to
allow a for a refinement for the description. These extra sub-states are labelled + and - to
represent a state slightly better and a state slightly worse than average of the main state.

The use of sub-states serves two purposes. First of all it will allow a more realistic degradation
modelling. Since usually we assume physical degradation of the item under consideration, a
Markov model with only two states between a perfect component and a failed component is
not very realistic. Secondly, it will allow maintenance personnel to bring more evidence of the
situation into the mark, and finally the maintenance department could establish more flexible
maintenance strategies. Typically observing a degraded state, i.e., D, according to the categories
will result in a decision to do a corrective action to bring the item into a good as new state. With
the refined codes, it is possible to trigger a maintenance action in the D+ state for very critical
items, whereas for non-critical items such a maintenance limit could be set to D-.

The states are shown in Figure 6.4. We will later discuss how to estimate the transition rates
between the states.

To model repair we make the following assumptions:
e We assume that the system is inspected every T time unit.

e If the result of the inspection is that the condition (state of the system) is equal or higher

than the maintenance limit, a maintenance request is made.

e Thelead time, i.e.,the time from a maintenance order is placed until it is executed is a ran-

dom quantity with mean value equal to MLD (Mean lead time delay/Mean logistic delay)
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Healthy Incipient degradation Degraded Critical/Fault state

Figure 6.4: Markov transition diagram for the basic situation

Healthy Incipient degradation Degraded  Critical/Fault state
Figure 6.5: Markov transition diagram with lead times

* For simplicity we assume that the active repair time is small compared to MLD, and there-
fore can be ignored.

* To simplify modelling we assume that lead times are Erlang distributed with shape pa-
rameter k. Figure 6.5 depicts the situation when k = 4, where dashed states represent that

a maintenance request has been placed, but is still pending.

* The degradation process continues after a maintenance request has been placed. The
diagram illustrates this by transition rightwards in the dashed states in the diagram.

Note that the transition between state D and D1 is shown by a dotted line. This is because
such a transition only takes place at each inspection. The same apply for the transition between
state D- and D1-.

To solve the model the following steps are required

1. The system starts in state H+

2. The system is integrated for a long time, i.e., such that we can achieve asymptotic results.
Let P(t) be the time dependent probability vector at time¢, and then we apply Let P(¢ +
dr) =P(1)[[+Adt]
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Problems

6.1 Integration of Markov equations. Assume r =5 and A; = 0.01,i = 0,1,.... Integrate the
Markov differential equations and obtain the expected value and variance of the time to failure.
Hint: Use partial integration for the variance similar to MTTF = [ R(f)dt.

6.2 Effective failure rate and renewal rate. Write a program to calculate the effective failure rate
and the renewal rate.

6.3 Wind turbine example with observable degradation. Consider the example in section 4.1.15.
Assume that it is possible to observe the degradation by inspections. Assume that a Markov state
model with r = 8 is a reasonable model in this situation. The inspection cost is assumed to be
c1 = 2 000 NOKs, and the failure probability of an inspection is ¢ = 0.1. The degradation speed
at end of life is considered to be 3 times faster than initially. Find the optimal value of 7 and ¢ =

maintenance limit.

6.4 Write a Python program to implement the mean time to failure (MTTF) indicated in Sec-
tion 6.3.

6.5 Assume r =5and A; =0.01,i =0, 1,... (time unit weeks). Assume the system is inspected
with intervals of length 7 = 26. If the system is found in state Y (k7) = 4 the system will be
renewed. Renewal takes place immediately. The probability that an inspection reveals that the

system is in state 4 is 70% when this is the case. Find the effective failure rate for this situation.

6.6 Assume r =5and A; =0.01,i =0,1,... (time unit weeks). Assume the system is inspected
with intervals of length 7 = 26. If the system is found in state Y (k7) = 4 the system will be
renewed. There is a logistic delay of in average 4 weeks before the repair takes place. Delay
time is assumed to be exponentially distributed. The probability of revealing state 4 is still 70%.
Find the effective failure rate for this situation.

6.7 Numerical precision. Assume r =5 and A; =0.01,7 =0, 1,... (time unit weeks). Assume the
system is inspected with intervals of length 7 = 26, i.e., not varying intervals. Assume that the
system is in state 0 at time ¢ = 0. Find P(7) by using Equation (6.12) when using n = 4,6,8 and
10. What would be a reasonable value of n.

6.8 Implement the model above, where r =5, 1; = 0.01, the maintenance rule is 7, = 52,7 =
26,75 =18, =1{0}, Lm = 11,2}, Zs = {3} and LR = {4}.

6.9 Equinor model. Equinor uses a reporting system with the following values of the health

indicator:
H Healthy

U Unwell
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S Sick
D Dead

The transition vector is given by:
A =[1/15000,1/8000,1/3000]

where the transitions are H — U, U — S and S — D respectively. The time unit is hours.
a) Verify by numerical integration of the Markov equations that MTTF = 15000 + 8000 + 3000

b) Find the effective failure rate and the effective renewal rate if the inspection interval is
7 = 2 months. The maintenance limit is“Sick”, i.e., when an inspection reveals the state S

the item is set back to a good as new state. We assume that the lead time is negligible.

6.10 Varying intervals. In this problem we will investigate the model in section 6.4. We use a
model with r+1 =4+1 = 5 states, where 0 = as good as new, 1 = small defect, 2 = medium defect,

3 =large defect and r = 4 = fault state. The transition vector is given by:
A=A, A1, A2, A3] =[1/48,1/36,1/24,1/12]

where the time unit is months. The maintenance strategy is determined by:
* 41 =10} = Set of states requiring long intervals
e YAu = {1} = Set of states requiring medium intervals
* %5 = {2} = Set of states requiring short intervals
* %r =1{3} = Set of states where renewal is required
¢ 7g =1 = Shortest interval
* ky =6 = Medium interval is every ky; time relatively to 7g
* kr =12 = Long interval is every ki, time relatively to 7g

Obtain the effective failure rate Ag, the renewal rate pg, and the inspection rate ig.

6.11 We consider the situation in Problem 6.10 but will investigate the gain of having intervals
depending on the condition. The following cost elements shall be used:

e ¢ =1 = cost of inspection

¢ cr =10 = cost of renewal
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¢ cg =50 = cost of failure

a) Obtain the optimal inspection interval 7 if system is renewed when an inspection reveals
that the system is in state 3, and the inspection interval is the same for all degradation

levels.
b) Find the total expected cost per time unit in a)
¢) Find the optimal value of s when ky; =6 and ki, = 12

d) Find the expected cost in c) and compare the result with b).



Chapter 7

Offshore Wind Modelling

7.1 Introduction

This chapter presents models applicable for maintenance modelling of offshore wind farms.
First we introduce a simple model for the power that can be extracted from the wind and thus
contribute to the energy production, then we explain the concept of wakes and the negative
effects of wakes. Wind farm control is essentially about understanding how wakes can be con-
trolled to obtain a high total energy production from the wind farm and at the same time reduce

the load from wakes on the turbines.

7.2 Energyin the wind

The rotor blades convert the momentum of a wind field into aerodynamic forces that drive the
rotor. The torque from the rotor is transferred to the generator shaft through the drivetrain. The
generator finally converts rotational kinetic power into electrical power. To control the power
production and forces on the wind turbine the following control variables are typically available

Boersma et al. (2017), see Figure 7.1:

0: Blade pitch angle - The rotor blades can rotate, with their axis of rotation aligned with
the blades, using hydraulic actuators or servo pitch motors. Pitch control can be used to

influence the power capture and the loads to the wind turbine.

Tg: Generator torque - The generator converts mechanical power into electricity. Torque con-

trol is used to control the power capture.

y: Yaw angle - The nacelle can rotate, with the axis of rotation aligned with the tower, using
a yaw motor. The yaw angle is defined as the angle between the axial rotor axis and the

incoming wind direction.

85
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nacelle
gearbox
generator torque (Tg)

hilm

generator

blade

Figure 7.1: Horizontal-axis wind turbine with labelled main components and control variables
(Boersma et al., 2017).

Figure 7.2 depicts the free-stream wind with velocity uy approaching the wind turbine with rotor
diameter D, yielding a reduced wind speed u;.

—
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-
. -
—> Uy Dyl e — uy
. —
. -
—
— —

Figure 7.2: Wind energy captured by the turbine

The power that can be extracted from the wind is typically measured in megawatt (MW), and is
given by (Boersma et al., 2017):

1
P= Cp(B,A,)/)EpAug (7.1)

where 6 is the blade pitch angle, 1 is tip-speed ratio, v is the yaw angle, A = (D, /2)? is the rotor
swept area and uy is the free-stream wind velocity.

The reduction factor Cp(0, A,y) depends on quantities we can control by the pitch angle, the
yaw angle and the generator torque. To implement a control strategy a mathematical model for
Cp(0,1,7) is required, but for our purpose it is sufficient to introduced a simplified reduction
factor, i.e.,(Boersma et al., 2017):

Cp(a,y) = 4a(cos(y) — a)? (7.2)
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where a is the axial induction factor given by:

g= 2ot (7.3)
Uo

For a given yaw angle y it is easy to show that the maximum of Cp(a, y) is achieved for a = a* =
cos(y)/3 and the maximum theoretical power is CJ = 16/27 cos®(y) also known as the Betz limit
when y =0.

We emphasize again that how to use the control variables (6,7 and y) is the challenge of
wind farm control, but for our purpose it is sufficient to know that this is possible, i.e., to ob-
tain a* = cos(y)/3 yielding the maximum power C; = 16/27 cos3(y) for a given y. Intuitively we
should let y = 0, meaning that the wind is perpendicular to the turbine swept area, but this will
then give wake effects downstream reducing the wind velocity and yielding turbulence to the

downstream turbines. Therefore we also need to discuss the concept of wind turbine wakes.

7.3 Wind turbine wakes

Wind turbine wakes are important in offshore wind maintenance because they decrease the
power production and increase the loading of downstream wind turbines. Much research has
been conducted to understand wind turbine wakes. There exist simple models and more com-
plicated models. In this presentation we only consider a simple model, i.e., the Jensen wake
model, Jensen (1983). It will do for our purpose. The motivation for the model is the control

volume downstream of the turbine shown in Figure 7.3.

R R R R R

X

Figure 7.3: The control volume of the Jensen wake model, (Jensen, 1983)

In the model it is assumed that the wake expands linearly downstream the turbine, and at a
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distance x downstream the turbine the diameter of the wake is given by
Dy =D:+2ax (7.4)

The decay constant a determines how quickly the wake expands with distance x from the
wind turbine. There is some theoretical and experimental research to determine the numerical
value of the decay constant which is beyond the scope of this presentation. But it is common
to distinguish between onshore and offshore wind, and for offshore it is often recommended to
use a = 0.04 (Shakoor et al., 2016).

Using a mass balance between the rotor plane and the downstream flow in Figure 7.3 we
may write:

p7 (Dy/2)? Uy + p7 [(Dw/2)* — (Dy/2)*| ug = p7t (D /2)? thry (7.5)

assuming air density p is constant.
According to Betz theory the value of u; is given by (Shakoor et al., 2016):

ur=(1-2a)ug (7.6)

where a still is the axial flow induction coefficient.
The general Jensen formula for the wake velocity at distance x for a single wind turbine is
found by combining equations (7.4), (7.6) and (7.5):

(x) (1 2 ( Dx )2) (7.7)
Uy = Uy(X) =Up |1 -2a| ——— .
W W 0 D;+2ax
Assuming ideal axially symmetric flow, no rotation, no turbulence and conic shape wake profile,
the axial induction factor can also be written as (Go¢men et al., 2016):

1-4/1-Cr(a,y)

a= 2 (7.8)

where the thrust coefficient is given by Katic et al. (1986):
Cr(a,y) =4a(cos(y) — a) (7.9)

and substituted into Equation (7.7) gives:

D, 2
e — (7.10)
D +2ax

Uy = Uyw(X) = U (1 - (1 - 1- CT(a,y))

Assuming that the reduction factor Cp(0,A,y) is maximized, i.e., the axial induction factor is
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a = a”* = cos(y)/3 for a given yawing angle y, we may use:

8
Cr(ax,1)=Cr(y) = 5 cos?(y) (7.11)

yielding the following expression for the downstream wind speed at distance x:

Uy (Y, x) = up |1 - 1—\/1—§cosz() (L)z (7.12)
wil» ) = to 9 ¥ D.+2ax '

Note that in a design phase the objective is to optimize the layout in terms of determine the
distance between the turbines, i.e., x, whereas in the operation and maintenance phase x is

fixed, and we optimize wrt. the yawing angle y.

7.4 Direction of wind turbine wakes

The aim of yawing is to direct the wake away from the column of turbines downstream the yawed
turbine. Jimenez et al. (2009) have provided an analytical formula for the centre of the down-
stream wake given by:

dy cos?(y) sin(y)

- 1 2 1
dx Cr(a,y) (1+5x) (7.13)

P(x,y) =
where ¢ is the wake skew angle, f = 2a is the wake expansion factor. Howland et al. (2016)
integrate Equation (7.13) in x to obtain the centre point of the wake in the y-direction at the
downstream distance x from the wind turbine and obtain:

2 .
cos?(y) sin(y)Cr(a,) (1 Dy ) (7.14)

2  Bx+D;

Howland et al. (2016) also present various studies conducted to assess the centre of wake de-

yc(x,y) = Dy

flections. Compared to Equation (7.14) most studies show a higher deflection, up to 35% in the

extreme case. Therefore it is pragmatically proposed to adjust Equation (7.14) by 25%, i.e.,

ye(x,y) =1.25D;

2 .
cos”(y) sin(y)Cr(a,y) (1 Dy (7.15)

2  Bx+Dy

Figure 7.4 depicts the centre of wake deflections for a yaw angle of y = 30°, x/ D, = 6.

No explicit formulas are given for the diameter of the wake at downstream distance x, and
therefore we assume that the diameter is given by Equation (7.4) as a starting point. It should
be recognized that wind speed across the wake vertically is not uniform. Howland et al. (2016)

present results from experimental studies. Figure 7.5 shows the time averaged streamwise ve-
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Figure 7.4: Centre of wake deflections for a yaw angle of y =30°,x/D; =6

locity, uw(x) for different downstream distances x and distance y from the parallel line following

the wind direction from the turbine.

Figure 7.5: Time averaged streamwise velocity, u = u, (x), contour plot at hub height, taken with
a hot-wire probe. The mean velocity is normalized by free-stream velocity U = up = 12 m/s. The
dark black line represents the yawed turbine. The XY centre of the wake yc(x,y = 30°) is shown
in filled magenta circles (Howland et al., 2016). Note that the definition of the yawing angle is
opposite as compared to Figure 7.4.

7.4.1 Wind velocity contours

Figure 7.5 clearly indicates that the velocity reduction is highest at the wake centreline. From
Equation (7.12) we may obtain the average speed at distance x downstream the turbine. The
diameter of the wake at distance x is given by Equation (7.4), i.e., Dy = D; +2ax. Let y = y(x)
be the horizontal distance from the centreline of the wake. When y = +D,,/2 the velocity is per
definition uy. Let uy, = un (x) be the minimum velocity, i.e., at the centreline of the wake. Finally
let u = u(y) be the velocity at distance y from the centreline of the wake, where ©(0) = u;, and
u(+Dy/2) = up. An infinite number of functional forms for u(y) exist and a reasonable form
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could be:

u(y) = tm + (U — Um) 2lyl/ Dy)¢ (7.16)

where |x| is the absolute value of x and c is a constant. Assuming a circular wake downstream

the turbine a mass balance argument requires:

Dy /2
puwit(Dy/2)? =p f u(y)2nydy (7.17)
0

and inserting Equation (7.16) yields:

Dy /2
U (Dy/2)? = f (umy + (o — um)2°" y**1/DE) dy (7.18)
0
1 1
= umZD§v+ (10 = tm) 5 DS (7.19)
simplifying:
2
U = U + (g — um)mDﬁv (7.20)

and solving wrt. up, gives:

2
Uw = U0 T
1- (c+2)

(7.21)

Assuming ¢ = 1, i.e., velocity is increasing linearly from the centreline to the end of the wake, the

minimum wake velocity at distance x is given by:
Um = 3Uw — 2Uy (7.22)

It should be noted that Howland et al. (2016) show that the the velocity contours at a given
distance downstream the turbine are not perfect circular, so the arguments leading to Equations

(7.21) and (7.22) have some limitations.

Example 7.1

We will obtain relevant velocities given the following parameters:
e y= 30°
e D:=100 (m)

e uy=10 (m/s)
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e x=8D;

The following Python script implements the relevant functions required for our calculations:

220

alpha = Expansion factor = 0.04

gamma = Yaw angle

X = Distance downstream the Yawed turbine

u_0 = Free-stream wind velocity

u_w = Average wind velocity at distance x

D_r = Diameter of the turbine

u_m = Minimum speed of the wake at distance x, i.e., at the wake
centreline

c = Shape factor of the wind velocity profile in the y-direction at
distance x

y = Distance from the wake centreline

)20

import math
alpha = 0.04
def C_T(gamma): # Trust factor
return 8+ ((math.cos(gamma)) **2)/9

def u_w(x, u_0, gamma, D_r):
return u_0 * (1-(l-math.sqrt(1-C_T(gamma))) *(D_r/(D_r+2*alpha*x)) **2)

def u_m(u_w, u_0, c = 1):
f = 2/(2+c)
return (u_w-f*u_0)/(1-f)

def u_y(x, y, u.0, gamma, D_r, c = 1):
y_min = u_m(u_w(x, u_0, gamma, D_r), u_0, c)
y = abs(y)
if y > (D_r/2 + alpha * x): # Outside the wake
return u_0
else:

return y_min + (u_0 - y_min) * (y/(D_r/2 + alpha * x))**c

def y_C(x, gamma, D_r):
beta = 2*alpha
return 1.25*%D_r*math.cos (gamma)*math.cos (gamma) *math.sin(gamma)*C_T (
gamma) * (1-D_r/(beta*x+D_r))/(2%*

beta)
D_r = 100 # Turbine diameter = hundred metres
x = 8*D_r # Turbine spacing downstream is 8 times the turbine diameter

u_0 = 10 # Free wind velocity = 10 m/2
gamma = 30*math.pi / 180 # Yaw angle = 30 degrees
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The centreline of the wake at x = 8D; is found to be y¢c = 76 metres. The velocity at the centreline
is found to be y, = 5.3 (m/s). The average wake velocity in the y — z plane is found to be y,, = 8.4
(m/s). Relative to the wake centreline the downstream turbine is positioned a distance yc = 76
below this line, hence to find the velocity at the turbine hub we calculate uy = uy(y = —yc) = 9.7
(m/s). This means that with a yaw angle of y = 30° we have almost avoided the wake effect
for the downstream turbine. If we repeat the calculation for y = 15° we obtain a velocity of
uy = uy(y = —yc) = 8.4 (m/s) which is a significant reduction compared to uy =10 (m/s). O

7.4.2 Turbulence intensity

In addition to the reduced velocity caused by the wake there is also a significant negative turbu-
lence impact of the wake. The turbulence intensity is usually measured in terms of the variation
of the velocity, or more precisely as the Root-Mean-Square (RMS)of the turbulent velocity fluc-
tuations at a particular location over a specified period of time.

Experimental studies by Howland et al. (2016) indicate that the turbulence intensity con-
tours in the y — z plane are similar to the velocity contours. Although these are not circular, to
simplify we propose to model the contours as circles. The standardised turbulence intensity, TI
shows a maximum intensity around TI,x = 12 at distance x = 8D; in the study by Howland et al.
(2016). Again we propose an intuitive function for the turbulence intensity relative to the wake
centreline:

TI(y) = Tlnx

a
- (M) (7.23)
D

w

where Dy, = D;+2ax. d is a shape parameter to be chosen. The simplest form of the turbulence
intensity function is achieved for d = 1 which is the recommended default value.

Note that Tl in Equation (7.23) has not been specified. If we can measure the turbulence
intensity under various operational conditions in the centerline of the wake, these measure-
ments can be used in Equation (7.23). If such information is not available it is reasonable to be-
lieve that the turbulence intensity is proportional to the time average centreline velocity given
by Equation (7.21). This will usually be sufficient for our modelling. The reason for such an
argument is that to explicit consider the negative impact of turbulence, we would link the tur-
bulence intensity to the degradation rate of the system or item analysed. For example if we
represent degradation by a Wiener process with drift, i.e., {X; = ut + oW, £ > 0}, the objective is

to link the drift parameter pu to the turbulence intensity. Assuming a linear relationship we could
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then define the following function for the drift parameter:

(Umx — o) T1
(1= (T = pg + -mx— Hol 22 (7.24)
TInx
where g is the drift parameter (degradation speed) without negative turbulence impact, and

Umy is the drift parameter if the turbine is placed in the centreline of the wake.

Example 7.2

We consider two turbines as shown in Figure 7.4. The turbine to the left is denoted turbine 1 and
the downstream turbine to the right is denoted turbine 2. To simplify we assume a constant free
wind velocity uy, and the wind direction is parallel to the line connecting turbine 1 and turbine
2. The challenge is to optimize the yawing angle. To simplify we assume that degradation of
Turbine 1 is not affected by the yawing angle, hence we do not include maintenance and failure
cost related to turbine 1. For turbine 2 we consider maintenance cost and we apply the cost

model in Section 5.6.1. The following Python script shows the model parameters:

u_0 = 10 # Free wind velocity [m/s]

rho = 1.225 # Air density at 15 degrees [kg/m~3]
r = 60 # Rotor radius [m]

D_r = 2xr # Rotor diameter [m]

alpha = 0.04 # lWake decay constant

X = T*2xr # Distance between the turbines

MTTF = 8760*5 # Mean time to failure without maintenance = 5 years
1 = 100 # Failure limit, normalized to 100}

mu_0 = 1/MTTF # Drift parameter, no wake effect

mu_x = 5*mu_0 # Higher degradation at wake centreline

sigma = 50*mu_O # Infinitesimal standard deviation, volatility

T_1 = 2x7%24 # Lead time of renewal/maintenance = 2 weeks

c_R = 2500000 # Cost of renewal

c_F = 7500000 # Cost of failure

p_e = 0.5 # Energy price (NOK/kWh)

To optimize the yaw angle we essentially calculate the following:
 Profit per unit time for turbine 1
* Profit per unit time for turbine 2, assuming no failures
e C(m) whisisrenewal, failure and downtime cost per unit time according to Equation (5.15)

These cost per unit time can be calculated for each value of the yawing angle y, where C(m)
also is minimized wrt the maintenance limit m. As the yawing angle increases the reduction

factor Cp(y) decreases and hence the profit. Further an increased yawing angle moves the wake
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away from turbine 2. This means that the wind velocity increases yielding higher profit, and the
turbulence intensity decreases giving less degradation on turbine 2.

Figure 7.6 shows the result from the calculations. The optimal yawing is found to be 24°.
Note as the yawing angle approaches 30° the distance to the centre of the wake is starting to

decline, hence there is no reason to increase the yawing angle any more.

=== Maint. cost
30004 - Profit, turbine 1
—-= Profit, turbine 2
—— Total profit
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Figure 7.6: Profit for turbine 1 and 2, maint. and downtime cost for turbine 2, and total profit

O

Problems

7.1 Consider Example 7.1. Calculate uy, for y =5,10,...,30 for x = 5D, and x = 8D, respectively.

7.2 Consider Example 7.2. Implement the required Python code to produce the results shown

in Figure 7.6.



Chapter 8

Grouping and opportunity maintenance

8.1 Introduction

In classical maintenance optimization the objective is to find the optimum frequency of main-
tenance of one component at a time. However, in the multi-component situation there exist
dependencies between the components, e.g., they may share a common set-up cost (economy
of scope), the costs may be reduced if the contract to a maintenance contractor is huge (econ-
omy of scale), etc.

In this presentation we will introduce some rather simple approaches for maintenance group-

ing and opportunity maintenance. We basically consider the following cost elements:
* Man-hour costs and material costs related to preventive maintenance of each component

» Set-up costs to get access to the components to be maintained, and by paying the set-up
costs access to several components is obtained. We limit the scope to consider a one level
structure of set-up costs, meaning that the set-up cost is the same for all components. In a
multi level structure the set-up cost could be split into a general set-up cost for accessing
e.g., alocation/cite, and further into set-up cost for a group of components related to e.g.,

preparing of the work for these components.

* Costs of taking a component out of service. These costs are included in the set-up costs

from a modelling point of view.

* Man-hour costs and material costs related to corrective maintenance. Typically set-up
costs can not be shared by other components unless preventive maintenance is advanced
(opportunity maintenance).

* Costs related to the effect of a failure, i.e., punctuality, unavailability, safety and material

damage costs

96
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We often distinguish between the static and the dynamic planning regimes. In the static regime
the grouping is fixed during the entire system lifetime, whereas in the dynamic regime the
groups are re-established over and over again. The static grouping situation may be easier to
implement than the dynamic, and the maintenance effort is constant, or at least predictable.
The advantage of the dynamic grouping is that new information, unforeseen events, etc., may
require a new grouping and changing of plans.

The presentation here discusses how we can formalize the optimization of maintenance
grouping. lL.e., we seek to group maintenance tasks so that total costs are minimized. To sum-

marize the difference between static and dynamic grouping we have:

e Static grouping where the groups are fixed

- Itis always the same maintenance task that are included in the same group, and each
maintenance group is performed at a fixed interval.
- In the work order system one group is specified as one work order repeating every 7;

unit of time.

e Dynamic grouping where we create the groups “on the fly”

The time of next maintenance is recalculated in principle continuously

The set of maintenance tasks going into a group is varying form time to time

In principle we can plan for several groups ahead, but often we only consider the first

group of tasks

We can update the plan if we get new information, or there are additional opportu-

nities to carry out maintenance

The downside is significantly more administrative work and challenges in relation to
staff planning.

For an introduction to maintenance grouping we refer to Wildeman (1996) who discusses
these different regimes in detail.

Maintenance tasks are here preventive tasks where the base interval is calendar controlled
or controlled by runtime. At the end of the presentation we also discuss condition-based main-
tenance.

The costs of disassembling and re-assembling are here included in the set-up cost. In the
model presented we also assume that the set-up costs are the same for all activities. It is further
assumed that there is one and only one maintenance activity related to each component. This
simplifies notation because we then may alternate between failure of component i and execut-

ing maintenance activity i where there is a unique relation between component and activity.
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The basic notation to be used is below. The terms maintenance task and maintenance activity

are used interchangeably. Table 8.1 shows the notation used. Note that ¢ is used to represent

calendar/global time or accumulated mileage for a car or a train. x is used to represent local

time, i.e., time since last maintenance.

~ g

-

AE,i (X)
M; (x)

Ci(x, k)

Table 8.1: Notation used in grouping
Planned maintenance cost, exclusive set-up cost for activity i. Typically the costs of
replacing one unit periodically
Unplanned costs upon a failure of component i. These costs include the correc-
tive maintenance costs, safety costs, punctuality costs, unavailability costs and costs
due to material damage.
Set-up cost, i.e., costs for preparations, access etc which can be “shared" by several
PM activities
Effective failure rate for component i. Here the argument x represents local time
since last maintenance
= xclUAE, i(x) = Accumulated expected costs due to failures in a period [0, x) for com-
ponent { maintained at time 0, exclusive planned maintenance cost
= [c}) + S/k+ M;(x)]/x = Expected total costs per unit of time for component i for a
maintenance cycle of length x if setup costs are shared by k activities
Maintenance interval that minimizes ®; (x, k) if setup costs are shared by k activities
Minimum cost for a component i maintained at optimal interval
Average number of components sharing the set-up costs for the i’th component, i.e.,
the i-th component is in average maintained together with k; —1 other components
Average minimum costs per unit time over all k-values
Optimum value of x; over all k-values. x; is measured since last maintenance on
component i
Point of time when we are planning the next group of activities. Initially #y = 0. #j is
measured in running time since ¢ = 0.
Age of componenti at time £, i.e., time since last preventive maintenance activity
tZ =1+ xlf“ — x; = optimum time for execution in the average situation
Candidate group, i.e., the set of the first g components to be maintained according
to individual schedule with t; v as the basis for due time
How often a component is utilizing the maintenance opportunity in static indirect
grouping
Number of activities/components
For dynamic grouping T is the end of planning horizon, i.e., we are planning from
fo =0 to T. For indirect static grouping T is used as the lowest interval.
Interval for group j in static direct grouping.

8.2 Static grouping

For static grouping, we distinguish between indirect and direct grouping:
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* Indirect grouping means that the groups are not established by a direct rule, but that the
groups are established based on a principle. This principle is that an activity can be exe-
cuted on each maintenance opportunity, every second opportunity and so on. How often

to be executed is then the optimization challenge.

e Direct grouping means that the groups are established by investigating the intervals one

by one and form groups of activities activities having approximately the same interval.

8.2.1 Indirect static grouping

The indirect grouping principle is that the time of each activity is determined indirectly by spec-
ifying how often the task is performed relative to a fixed repetitive time of maintenance. The
situation now is as follows:

* There is a possibility to do preventive maintenance at point of times 7,27, 37T, ...

* For component i this opportunity is utilized every /;’th time, i.e., the interval between
maintenance for this componentis [; T

* The challenge is to determine T and /;,i =1,2,...

For a given value of T and I3, [, ... the expected cost per unit time is:

n
C(T,h,b,..)=SIT+Y [} +Mi(; D] 1 T)
i=1

n
=SIT+ Y (e} 1 T)+ ¢ Ag,i(1; )] 8.1)
i=1

where M;(x) is the total failure related cost in a period of length x since last maintenance.

8.2.2 Heuristic for indirect static grouping

Minimizing Equation (8.1) is a mixed-integer optimization problem. Generally such problems
need to be solved by heuristics when N becomes large. The following heuristic is suggested to
find a reasonably good solution:

1. For each activity i we find the value of 7; which minimizes C(7;) = (S+¢}) /7;+ ¢} Ag,i(7;)
2. Aninitial value of T is set equal to the lowest value of the 7;-values
3. Chose [; = 7;/ T (nearest integer)

4. Keep the [;’s fixed, and minimize C(T, [y, l»,...) with respect to T
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5. GoTo 3 and change the [/;’s 1 one by one to search for better solutions

6. An approximate optimal solution is found when the iteration scheme does not improve

the solution, i.e., we do not find a solution with a lower expected cost

8.2.3 Direct static grouping

By direct grouping, the groups are selected directly by inspecting individual intervals. Tasks are
now split into m non-overlapping groups, Gi, G, . ... Activities in a group are maintained at the
same time. The groups are established so that activities in a group have approximately equal
intervals. For group j, we let T; denote the interval for this group. Total expected costs per unit

time is given by

m
C(T1, T2, T30y Tm) = Y| SITj+ Y. [ 1Tj+ ¢ Api(T))] 8.2)
j=1

i€G;
Heuristic for direct static grouping
The following heuristic is proposed for obtaining a reasonable good solution:
1. For each activity find the value 7; which minimizes C(7;) = (S+ Cf)/ T+ c?/lE,i (1)
2. Sortinincreasing order, i.e., 7)< T < ...
3. Look for natural clusters in the intervals, and let these forms groups Gi, G, ...

4. Given a split into groups, i.e., Gj,j = 1,2,...,m, minimize the cost Equation (8.2) with

respectto T, Ts,..., T,

5. GoTo 3 and varying the groups to look for better solutions, for example moving one activity

from one group to another group, merge two groups, or split one group into two groups

6. An approximate optimal solution is found when the iteration scheme does not improve

the solution.

8.3 Dynamic grouping

In dynamic grouping there are no fixed group. At a given point of time, 7, we start forming the
next group based on “individual” due dates. Figure 8.1 illustrates the situation for four compo-
nents maintained at 11, #, #3 and #4 in the past, where the due dates 77, ¢;, £; and 7, are based on

the individual optimal intervals x}, x;, x; and x; .
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Figure 8.1: Grouping - Due dates. The #;’s are the point of time of last maintenance, the x;’s are
the individual optimal intervals, and the ¢;"’s are the corresponding due dates.

In the optimization we consider the time from now on, fj, up to the end of planning horizon,
T. Given the information we have at time 7y, we can form the next group and when to execute
the corresponding maintenance activities. We can also form the second group, the third group
etc. But then we should realize that we might get new information later on, and hence have to
reschedule some future groups.

In this situation there is no single cost equation to optimize. We will structure the cost ele-
ments and then propose a heuristic for forming groups.

For each component i there is an expected time dependent cost which is a function of the
time since the last preventive maintenance activity, i.e., M;(x). In order to establish M;(x) we
need (i) to establish the accumulated expected number of failures in the period [0, x), (ii) we
need to specify the expected corrective maintenance costs for the repair of each failure, and (iii)
we have to specify the impact of the failure on safety, production, etc., and quantify these into
cost figures. In the model presented here we assume that the effective failure rate, Agj);(x) may
be established for the different failure characteristic, and maintenance strategies (e.g., periodic
replacement and condition monitoring). Next the costs associated with a failure of component i
may in principle be found by risk modelling, reliability modelling. The result of such modelling

is one figure for the expected unplanned cost of failure, i.e., c?. We have
M;(x) = x¢ Ag,i (%) (8.3)

The planned costs comprise the costs of executing the maintenance on component i (Cf) and
set-up costs (S) of getting access to the component. The set-up costs may in general be shared
with k —1 other activities. The average contribution to the total costs for component i per unit

time is given by:

Ci(x, k) = [} +S/k+ M;(x)] /x (8.4)
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Figure 8.2: Marginal cost consideration

If the grouping was fixed, i.e. static grouping, the optimization problem would just be to mini-
mize C;(x, k) wrt x for all kK components maintained at the same time. For dynamic grouping the
mathematical challenge is now to establish the grouping either in a finite or infinite time hori-
zon. In addition to the grouping, we also have to schedule the execution time for each group
(maintenance package). The grouping and the scheduling can not be done separately. Gener-
ally, such optimization problems are NP hard (see Garey and Johnson, 1977, for a definition),
and heuristics are required. Before we propose our heuristic we present some motivating re-
sults.

Let C; ;. be the minimum average costs when one component is considered individually, and
let x; . be the corresponding optimum x value. It is rather easy to prove that

m;(x; )= M;(x; ) =C}, (8.5)

meaning that when the instantaneous expected unplanned costs per unit time, m;(x), exceeds
the average costs per unit time, maintenance should be carried out. The way to use the result
is now the following. Assume we are going to determine the first point of time to execute the
maintenance, i.e., to find tz ki starting at ¢ = 0. Further, assume that we know the average costs
per unit time, C; ki but that we have for some reason “lost” or “forgotten” the value of the optimal
interval, x; k- What we then can do is to find ¢ such that m;(z) = M;(t) = ¢/ ki yielding the
first point of time for maintenance, see Figure 8.2 for an illustration. Then from time ¢ and
the remaining planning horizon we can pay C; . as the minimum average costs per unit time.
This is the traditional marginal costs approach to the problem, and brings the same result as
minimizing Equation (8.4).
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The advantage of the marginal thinking is that we now are able to cope with the dynamic
grouping. Assume that the current time is fy, and x; is the age (time since last maintenance)
for component i in the group we are considering for the next execution of maintenance. Fur-
ther assume that the planning horizon is [#y, 7). The problem now is to determine the point
of time #(= fy) when the next maintenance is to be executed. The total costs of executing the

maintenance activities in a group is
P
Cr=S+) ¢ (8.6)
i
which we pay at time ¢. Further, the expected unplanned costs in the period [#y, T) is

Cu=)_[M;(t—to+x;) — Mi(x;)] (8.7)
i

where x; is the (local) age of component i at time 5. Note that M;(t — t, + x;) is the expected
cost from the last maintenance of component i until it will be preventively maintained at time
t. From this value we subtract the expected cost M;(x;) already “paid” at time f,. Note that
at time 7o we know the “history” of component i since the last maintenance, i.e., x; time units
ago. We might use this information to get a more correct expression for the expected cost in the
interval [ty, £). It is not always easy to obtain such an expression, hence we often approximate
with Equation (8.7).

For the remaining time of the planning horizon the total costs are
Coo=(T=0) Cip. (8.8)
i

provided that each component i can be maintained at “perfect match” with k; — 1 activities the
rest of the period. Since Cl?" . depends on how many components that share the set-up cost,
which we do not know at this time, we use some average value ®:. We assume that we know
this average value at the first planning. To determine the point of time for maintaining a given

group of components, say G(g) with the g first activities we thus minimize:

abg =S+ Y [F+M(t—to+x)— M;i(x)+(T—1)C*] (8.9)

i€G(g)
The costs in Equation (8.9) depend on which components to include in the group of activities
to be executed next. The more activities we include, the higher the costs will be. For some
activities it might thus be cheaper to include them in groups to be executed later. For activities

we do not include in this first group we assume that they will be maintained at their “optimum”
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time tlf", > t. The total contribution to the costs related to these activities in [y, T) is:

AGTIEEY [clP +S/ki+ M;i(x}) — M;i(x;) + (T - t7)C; | (8.10)

itG(g)
provided they can be maintained at “perfect match” with other activities, i.e., the set-up costs
are shared with k; —1 activities, and executed at time ;. The total optimization problem related

to the next group of activities is therefore to minimize:

c(t8)=S+ Y. [cf +M;(t—to+x;)— M;(x)) + (T - 0C;]
ieG(g)

+ Y (e + Stk + Mi(xF) — M;(x;) + (T — 1)@ | (8.11)
i¢G(g)
The idea is simple, we first determine the best group to execute next, and the best time to ex-
ecute it. Further we assume that subsequent activities can be executed at their individual op-
timum. It is expected to do better by taking the second grouping into account when planning
the first group, and not only treat the activities individually. See e.g., Buday et al (2005) for more
advanced heuristics in similar situations to those presented here. The heuristic is as follows:

Step 0 - Initialization

This means to find initial values of the k;’s and use these k-values as basis for minimization of
Equation (8.11). This will give initial values for the x;’s and the corresponding C;’s. Finally the
time horizon for the scheduling is specified, i.e., we set ty = 0 and choose an appropriate end of

the planning horizon (7).

Step 1 - Prepare for defining the group of activities to execute next

Calculate tentative due dates tlf“ = (x;.k — Xx;i) + ty for all activities, and sort in increasing order. See
Figure 8.1 for an illustration.

Step 2 - Establish the candidate groups

For g=1,2,..., N we use the ordered ;s to find a candidate group G(g) of size g to be executed
next. If £; > min; <4 (#; + x;) this means that at least one activity in the candidate group needs
to be executed twice before activity g is scheduled which does not make sense. Hence, in this
situation the last candidate group, G(g) is dropped and we are not searching for more candidate

groups at the time being.
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Step 3 - Find optimum execution time for each candidate group

For each candidate group G(g),g = 1,2,..., minimize c(t, g) in Equation (8.11) with respect to
execution time ¢. Next choose the candidate group G(g) that gives the minimum cost. This

group should then be executed at the corresponding optimum time ¢.

Step 4 - Prepare for subsequent groups

We assume that all activities in the chosen candidate group are executed at time ¢. This corre-
sponds to setting x; = 0 for i € G(g), x; = x; + t — fp for i ¢ G(g) and then update the current time,
i.e, fp=t.If to < T GoTo Step 1, else we are done.

There are several ways to improve the algorithm. One intuitive improvement is to improve the
estimates of k; and corresponding x; and @ to be specified in Step 0. This is easy, since we in
Step 4 get a new value of k for those activities included in the candidate group, and when the
algorithm terminates we simply set k; as the average for each activity i in the period [0, T). We

may then start over again at Step 0 with these new values of k;.

8.4 Opportunity based maintenance

The dynamic scheduling regime presented above is a good basis for opportunity based mainte-
nance. The scheduling we have proposed may be used to set up an explicit maintenance plan
for the time horizon [0, T). But even though the plan exists, we may consider changing it as new
information becomes available, either in terms of new reliability parameter estimates, or if un-
foreseen failures occur. In operation, for any time f, we may update the scheduling of preventive
maintenance.

Now assume that the due date ¢ for the next scheduled maintenance of group G(g) is larger
than the current time #. Assume that a failure has occurred or there is another event occurring
at time fj giving an opportunity to save the setup-cost S if we execute some preventive main-
tenance activities. Some, or all of the activities in G(g) should now be considered for execution
given the opportunity at time #. If ¢ < #y, i < g this means that these activities have individual
due dates in the past, hence it is obvious that these activities should be executed at this given
opportunity.

Activities not scheduled in G(g) should not be executed since they were not even included in
a group to be executed later than #y. The basic question is thus which of the remaining activities
in G(g) should be executed. Assume that we have found that it is favourable to execute the first
i—1 < g activities on this opportunity. The procedure to test whether or not activity i also should

be executed is as follows:
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Figure 8.3: Opportunity maintenance. There is an opportunity at time #,, where group G(3) was
scheduled for execution at time .

 First we assume that all activities up to i are executed on this opportunity , i.e., we set
xj =0, j <1, and for activities above activity i, i.e., j > i, we set x; = fo—;, and will evaluate

the next group to be executed at some time t' > :

e Let Cy = cf.’ +min g c(t',g"), i.e., the best we can do if we decide to execute activity i at

time 1

* Next, we assume that only activities up to i — 1 are executed at time #y, i.e., x; =0, j < i—1,

and x; = to — tj, j = i, where we also evaluate the next group:

* Let C; = miny g c(t',g"), i.e., the best we can do if we decide not to execute activity i at

time 1
e If C; > Cy is it not beneficial to do activity i.

If it was beneficial to do activity i at £y we should test for i =i + 1 and repeat aslongasi < g.
Figure 8.3 illustrates the situation. Assume that at the time of the opportunity we had already

scheduled G(3) for execution at time ¢. The individual due date for activity 2 has been passed,

hence activity 2 will be executed. Then we consider if it pays off to execute also activity 1. If so,

typically activity 3 and 4 will be a new group, say G(2) to be executed at some time ¢’ > t.

Problems

8.1 Consider a situation where we have 4 components. We will establish a standard indirect
static grouping strategy. The following data is provided: S =2, cf =2, cé) =1, cf =3, cf = l.c{] =
5,¢f =50,cY = sY =10.MTTF; =4, MTTF, = 3, MTTF3 =3,MTTF, =5,a; = a = a3 = ay = 3.
Find tentative optimal intervals for each component if they are maintained individually and
where we assume that we do not have to pay the set-up cost. Use this to find tentative values for

l; and T. Then try some iterations to see if a better solution can be found. Note, in the heuristic
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we proposed to find the individual solutions assuming we pay the entire set-up cost. In this
exercise a slightly different approach was proposed, i.e., that we do not have to pay the set-up

cost. The two approaches should converge to the same result.

8.2 Consider the situation in Problem 8.1. Repeat the analysis if you in the initiation assume

that we have to pay the set-up cost.

8.3 Consider the situation in Problem 8.2. Apply the method of direct static grouping to the

same data.



Chapter 9

Spare part optimization

9.1 Introduction

When optimizing models for individual components in relation to the interval 7, it may be ap-
propriate to consider whether it pays to have a spare part in stock allowing us to reduce down-
time. In the analysis, we can then compare the situation with and without spare part in stock,
and find out if the cost of inventory can be justified.

In many situations there are several components that “fight” for the same spare part, and it
becomes a question of how many spare parts we need. We can compare this with the situation
at home where the question is how many light bulbs (of a given type) we will normally have in
stock to avoid not running out of light bulbs. In this lesson, we’ll look at two different ways to

model this:

e An analytical model where we can set up equations to calculate the expected share of the

time we lack one, two or more spare parts

¢ A Markov model where we can find the same answer, but where we have more flexibility
to give in different assumptions

9.2 An analytical model

Constant failure rate (i.e., the total failure rate for many components that need a new spare

part in the event of failure) = A

Number of spare parts = s

* The spare parts are stored in a stock and are retrieved from there if necessary

Failed components are repaired in a workshop

108
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* The number of components under repair in the workshop = X
* Repair rate for each component repaired = u

* We have endless number of repairmen, i.e., a repairman can always start repairing a com-

ponent that comes to the workshop

Note that we have assumed that components that fail will be repaired. If we instead have to buy
new components in the event of a failure, the model will be identical if we allow the expected
time it takes to obtain a new component = 1/u.

9.2.1 Mathematical model

* According to Palm’s theorem, X ~ Po(A/p)

k
e From the Poisson distribution it follows by introducing p(k) = Pr(X = k) = %e‘“ K
- p(O) = e_)l//J
Alp

- pls+1)=57p0)

The probability of missing spare parts is: R(s) = Pr(X > s) = ¥X77 ., p(k), which gives:

- R(0)=1-p(0)

- Rs+D)=332,,pk)=X% pk)—p(s+1)=R(s)—p(s+1)

The number of units we may lack is referred to as BO (Backorders):

— EBO(s) = E(BO) = E(max(0,X —5s)) = 2o=s+1(k_ s)p(k)
- EBO(s+1) = ]"C":Hz(k—s—l)p(k): 2"=S+l(k—s—1)p(k)
— EBO(s+1) =EBO(s) +Y.° 1(—l)p(k) =EBO(s) — R(s)

k=s+

The following recursive regime can then be used

p0) = e MK

R(0)=1-p(0)

EBO(0) =E(X) = A/ u

ps+1) = %p(s)

R(s+1)=R(s)—p(s+1)

EBO(s+1) = EBO(s) — R(s)
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9.2.2 Simple cost model
e Cost elements

- ¢y = Unavailability cost per unit of time

— cg = Capital cost per unit of time to keep a unit in stock
* Cost equation, i.e., the objective function:
— C(s) =css+ cyEBO(s)

To minimize the cost equation, C(s) is calculated for different values of s. We must then use the
recursive formulas to find EBO(s)

9.3 Markov modelling

Markov modelling is a special way to model transitions between system states. Here we will
investigate Markov models where we have a limited number of states. Each state is given a
number (identifier). It turns out appropriate to let the identifier of a state be the number of
spare parts in stock. If the stock is empty and no one is requesting a component, we give the
state number 0, while negative state numbers correspond to the number of spare parts we have
shortages, i.e., a stock-out situation.

Markov models can in some cases be solved analytically, but we usually need a computer
program to calculate the Markov models.

The following assumptions and limitations apply:

Failures and repair times are exponentially distributed
* We can introduce different strategies, e.g., vary how many repair men we want

* For non-exponential repair times, we can use so-called phase type distributions. This is
a little more to elaborate, but can provide reasonably good solutions with not too much

extra modelling work
e Disadvantages

- In principle, we may have infinite number of backorders, while in the model we must
limit the number of states in the transition matrix, limiting the number of backorders
the model can hold

— We must manually specify the transition matrix, which can be tedious when testing
different strategies, with programming this is not that difficult

— For very large systems, there may be challenges with computational speed
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9.3.1 Model specification

* Constant failure rate = A, i.e., demand rate of spare parts

Number of spare parts = s

The spare parts are stored in a stock and are retrieved from there if necessary

Failed components are repaired in a workshop

The number of components under repair in the workshop = X

* Repair rate for each component being repaired =

We have a limited number of repair men, and the number = m

Graphical representation

The following are transitions between states. We assume in the first place that we have a large

number of repairmen.

Number of spares in stock Shortage of spares
A /7\. /Xf A A
S .
m Wsp (s+1)u” W~(s+2)u~ W(s+3)u”

Figure 9.1: Markov transition diagram
From the Markov model we find the steady state solution, and unavailability (or expected
backorder) is given by
U(s) =EBO(s)=P_1 +2P_»+3P_3+... 9.1)

where P_; is the element in the solution vector representing shortage of exactly one item, P_,

shortage of exactly two items etc.

9.3.2 m-Repairmen

In the model so far, we have assumed that we have an infinite number of repair men. That means

that the more devices that are for repair, the greater the repair rate will be. In general, we have
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Figure 9.2: Step 1

assumed that the repair rate is Xy, where X is the number of units for repair in the workshop,
while p is the repair rate (completion rate) each repairman has.

If we only have m repairmen, the transition rate is min(X, m)u , where X is most easily
determined by assessing how many units are for repair for the current state. For example, if
s =5, and we consider state -1, X will be 5+ 1 = 6, and if we have only m = 4 repairers, the rate
from state -1 to state 0 will be equal to 4p.

The cost equation is given by:
C(s,m)=css+ cyEBO(s) + cpyym (9.2)

where Cc), is the cost per unit time of having one repairman available. Note that a repair

man is doing other tasks, so Cj; is not necessarily very large.

9.3.3 Areorder policy model

The following model is similar to the lot size, reorder point policy, (r,Q), used in inventory man-
agement. The model assumptions are:

Constant rate of failure A

Mean lead time when ordering new spares = MLT

Lead times are Gamma (Erlang) distributed with parameters a =4, and p = a/MLT

Totally m new spares are ordered when stock level equals n

Note that a = 4 may be changed to account for general value of SD(LT) = a'/?/

Figure 9.2 illustrates the situation for taking components out of the stock. Initially we have
m + n components in stock. Then when the level reaches n, i.e., the re-order point, an order is
placed for replenishment of the stock.

To model the lead time, we introduce intermediate states representing the gamma distribu-
tion, i.e., a transition from state n to state n; to state ny to state ns and finally to state m + n.
Figure 9.3 illustrates this.
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Figure 9.3: Step 2
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Figure 9.4: Step 3

During the lead time, there might be a new demand for a spare (i.e., a failure). This means
that stock level is reduced by one. Figure 9.4 illustrates this by the transitions from n; to (n—1);
and so on.

Figure 9.5 illustrates the complete picture.

Optimization
To optimize the model, we need to specify

 cr = Fixed cost per order

e ¢y = Holding cost per item per unit time
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Figure 9.5: Step 4

From the Markov calculations we can obtain both expected holding cost, and expected number

of orders per unit time, together with the expected number of backorders per unit time.

Problems

9.1 Consider the following situation:

Constant failure rate (i.e., the total demand rate of spare parts) = A =0.01
Number of spare parts = s = decision variable

The spare parts are stored in a stock and retrieved from there upon a demand
Failed components are repaired in the workshop

Repair rate for each components repaired = u = 0.1

We have endless number of repair men, i.e., a repairman can always start repairing a com-

ponent that comes to the workshop
cy =10 000 = Unavailability cost per unit of time

cs = 2 = Capital cost per unit of time to keep a unit in stock

Find the optimal value of s.

9.2 Consider the situation in Problem 9.1. Solve the problem by Markov theory. Hint: Set m = co.

9.3 Consider the situation in Problem 9.1. We now also introduce cy; = 0.25 equal the cost per

unit time per repairman available. Use Markov theory to find the optimal value of s and m.



Chapter 10

Life cycle cost and life cycle profit

10.1 Introduction

In this chapter we will give a short introduction to life cycle cost (LCC) modelling and anaylysis
in connection with prioritization of renewal projects. The term LCC is defined in IEC 60300:
“LCC is the cumulative cost of a product over its life cycle”. The LCC concept was first intro-
duced in the US Army and the idea was to establish the cost of development, production and
use (operation and maintenance) of military equipment. In the original use the revenues was
not included in the modelling. However, in order to get a complete picture we will usually also
include the possible profit of a new system or product. Hence the term ‘Life Cycle Profit’ has
been introduced. Kawacuchi and Rausand Kawauchi and Rausand (1999) suggest a process for

LCC analysis comprising the following steps:
1. Problem definition
2. Cost element definition
3. System modelling
4. Data collection
5. Cost profile development
6. Evaluation
7. Reporting

In this presentation we will focus on the cost modelling aspects, i.e. mainly step 3 in the above

procedure.
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(now)

X1 X0 X3 Xy X5 Xr_1 X
01 2 3 4 5 T—-1T

> time

Figure 10.1: Visualisation of the cach flow, X;

10.2 Net present value calculation

The formulas for LCC calculation are based on standard formulas used in net present value

(NPV) calculations. In the following we will summarise the most frequent used formulas. The

basic idea in NPV calculation is that money received in the future will be less valued than the

same amount of money today. To treat this formally all future amounts are discounted to the

present time, i.e. present values. We will only consider discrete time, i.e. all amounts will occur

at the end of each year, or now (beginning of year one). The cash flow is illustrated in Figure 10.1.
The net present value of an amount X; that occurs at the end of year ¢ is:

NPV=X;(1+r)"" (10.1)

where r is the discount rate. Similarly, we find the net present value of a cash flow Xy, Xj...., X7:

NPV = ixt(nr)‘t (10.2)
t=0
where X, represents in or outgoing cash now, and T is the number of years to consider.
Sometimes we want to establish the net present value of a constant yearly (nominal) amount
Xy, i.e. the same amount each year. By utilising the formula for the sum of a geometric series,
Y, q"=q(1-q"/(1-q) we obtain:

NPV =

[1—(1+r)_T
— X4 (10.3)

Note that NPV approaches X,/r as T approaches infinity.

Now, consider a situation with a fixed increasing yearly value, were the first in or outgoing
amountis X, , (at the end of the first year), and where the amount is increasing by a factor (1+v)
each year. The net present value for 7 years is then found to be:

NPV = Xao (10.4)

IF r = v in Equation (10.4) we use NPV = X4 , T/(1 + r) obtained by 'Hopitals rule.
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The expression in Equation (10.3) assumes that the amount X, , occurs every year. In some
situations we want to consider an amount X, , which occurs every k year, where k > 1. The net
present value is now given by (assuming first amount now (¢ = 0)):

Xa

w .
NPV=Y X (1+pr)ki=— 24 (10.5)
i;) A 1-(L+r)k

If the first amount occurs at the end of year [ we obtain:

_Xa+n)!

NPV=———
1-(1+r)7Fk

(10.6)
The value in Equation (10.6) assumes that we have an infinite time horizon. If we have a finite
time horizon and m is the first year the yearly amount X, vanishes, then we just subtract the

contribution of those terms that vanish:

_Xal+n™h Xu4n)7m
C1-0+n7kF 1-Q+n)k

NPV (10.7)

10.2.1 Trend modelling

When modelling trend it is important to find a simple mathematical expression for the time
development. Further note that the change in the yearly amount is due to at least the following

factors:
* The monetary value increases due to general conditions, such as inflation.

* The monetary value increases due to increased operating costs, e.g. physical deterioration

and hence more maintenance is required.

Increased operating costs due to deterioration could usually be reset by a renewal of the system
we are considering, whereas external conditions like inflation is not affected by e.g. a system
renewal. In the modelling we will assume a fixed inflation rate, even if we in a more advanced
model also could let the inflation rate vary. This inflation rate will be denoted v, and we could
use Equation (10.4) to calculate the net present value of a amount that changes due to inflation.
When we want to model increased operating cost due to deterioration, we need to introduce a
local age parameter. We will let a denote the age of the system, or the age of the system since
the last system renewal. When we consider degradation, we introduce the degradation rate d
where we assume that the yearly increase due to deterioration equals (1 + d). This corresponds
to an exponential growth which very often is found realistic if we have degradation mechanisms

that drive the costs. Now, let ¢y be the yearly cost of operation, maintenance etc now (i.e. at time
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t = 0). We then have the yearly cost in year ¢ (occurring at the end of year 1):
cr=col+d)’ (10.8)

In order to obtain the degradation rate d we usually need data about the costs as a function of
time. A very simple approach if we know that c(¢) has increased by a growth factor (GF) during
a period of T years. We then have:

d=emCH/T_q (10.9)

10.2.2 Example areas of LCC calculations

In the following we give examples of areas where LCC analysis and calculation could be used.
We differentiate between situations were decisions are related to project execution, and the pro-
gression of one project, or a portfolio of projects, and the situation where we consider which
project are profitable, or how the profitability could be maximised. Examples related to project

execution:
* Invest in equipment to increase efficiency in project execution, e.g., a new excavator.
* Choice between construction method A and B.
e QOutsourcing of truck-maintenance.
* Lease equipment rather than own by our selves.
Examples related to project profitability:

* Development of one or more oil fields.

Construction of a new passing loop.

Renewal of ballast in a railway track.

* Point wise refill of ballast in order to postpone the need for a full renewal (ballast cleaning).

Grinding of rails.

Invest in a new production line.
There are several aspects to consider when conducting an LCC analysis, for example:

e Visualise the cost picture, enabling the possibility to work actively with eliminating the
main cost drivers, or the effect of these.
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¢ Use the LCC model as a decision support when making decision about the profitability of
projects or measures, and when to conduct or implement these.

e Use the LCC model as a basis for contractual follow-up, e.g. LCC contracts.

Example 10.1

We will consider a railway system where the quality of the ballast has deteriorated during the last
years, and in order to compensate for this it is proposed to do a point wise replacement of the
ballast on the line. The age of the ballast is 35 years, and without this point wise refill of ballast
it is expected that a full renewal (ballast cleaning) is necessary within five years. If we conduct
the project we could postpone the ballast cleaning with another five year. The length of the line

we are considering is 10 km. The quantities to include in the LCC model is as follows:
RC = 2.5 million Euro = Renewal cost = 250 Euro per meter for ballast cleaning.
IC =400,000 Euro= Improvement cost, e.g. cost of point wise ballast refill.
LT =40 years = Life length of ballast = period between ballast cleaning.

a = ballast age, i.e. effective age relative to the implemented measures. Without point wise
refill of ballast a = 35 years, and with point wise refill of ballast a = 30 year. For a track that
has just being renewed a = 0.

co = 25,000 Euro = yearly cost of maintenance and operation of the track, for a new track, i.e.
just being renewed.

cso =250,000 Euro =yearly cost of maintenance and operation of the track, for a track that has
reached it’s service life, e.g. 40 years.

d — eln(250000/25000)/40 —1=0.05925

c; = co(1+d)'™* = 25000(1 + 0.05925)!*“ = total maintenance and operation cost in year ¢

(from now), and a is the effective age of the track.
r =6% = interest rent.

We start by calculating the various LCC-terms (in million Euros) if the improvement project
(point wise refill of ballast) is not executed. The total renewal cost if found by Equation (10.6):
RCA+7)™

LCCre = ————— =2.069
- a-n
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The variable cost the next five years (up to the next renewal) is found from Equation (10.4)

5
1+d
1- ()

LCCyc,1 = — co(1+d)*° =0.883

After the renewal in five year the variable costs will be reset to vy, and then start increasing again.
The net present value in one cycle is:

LCCyco= | ———2—| ¢o(1 +d) = 0.986
r—d
The amount LCCy, will then be repeated every 40 year, and the first time will be in five years:

LCCyco(1+71)™
1-(1+7r)™40

LCCyc,00 = =0.816

Finally we have the total contribution from variable costs:
LCCyc = LCCVC,l + LCCVC,oo =1.699

If we execute the improvement project, the calculations are similar. We start with the total re-
newal cost (first renewal after 10 years):
LCCre= REUFN g
Cm1—a+sn &
The variable cost the next ten years (up to the next renewal) noting that the effective age after

the improvement project is a = 30:

1- u)10
LCCveq = | — | o1+ d)® = 1.322
VC,1 = 4 co(l+d)” =1.

After the renewal in ten year the variable costs will be reset to vy, and then start increasing again.
The net present value in one cycle, LCCyc,o, is the same as without the improvement project, but

the first cycle will start in ten years:

LCCyco(1+7r)710

gy = 0610

LCCvcye0 =
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Finally we have the total contribution from variable costs:
LCCyc = LCCyc,1 + LCCyc00 = 1.932
In this last situation we also need to include the investment cost:
LCCic=04

Summing up all LCC contributions we find that implementing the improvement project gives a
total LCC of 3.878 million versus not implementing the project gives a total cost of 3.768. Thus

the improvement project is not profitable. O

Problems

10.1 Write code for implementing Equations (10.1), (10.3), (10.4) and (10.7).

10.2 Consider Example 10.1. Find the value of the discount rate r that makes the two alterna-
tives equal from a LCC point of view. Why is this value of r higher than the initial one?

10.3 Consider Example 10.1 and investigate if ballast cleaning after 40 years is optimal. If not,
find the optimal period for ballast cleaning, i.e., the optimal renewal period.

10.4 We will review the yaw motor example introduced in previous chapters. The basic model
parameters are (All cost figures in KNOKs):

* cpym = 15 = cost of preventive replacement/renewal of yaw motor

* cy =66 = total cost of failure, i.e., corrective maintenance cost and unavailability cost
e ;=2 = inspection cost (in case of predictive maintenance)

e MTTF =5 = mean time to failure if no maintenance is carried out

* a =3 = ageing parameter

e ¢ = 8 = failure limit (Markov model, note that we use ¢ since r is used as the discount

factor later on)
e V =3 =increase in degradation rate (Markov model)
* ¢ =0.10 = probability that an inspection will not reveal the actual degradation

a) Find the optimal maintenance interval 7 if a calendar based maintenance strategy is ap-
plied. Also find the average cost per year for this strategy.
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b) Find the optimal inspection interval 7 and the optimal maintenance limit m if a predictive
maintenance strategy is applied (assuming the Markov model). Also find the average cost
per year and compare with the calendar based strategy.

Predictive maintenance requires condition monitoring (CM) equipment to be installed. Fur-
ther, the CM equipment needs upgrade every six years. This makes the predictive maintenance
strategy less favourable compared to the calendar based strategy. On the other hand, the cal-
endar based strategy will result in a larger portion of time where the yaw motor is run “close to
the failure limit”. Therefore bearings and other related equipment are exposed to more wear,
which will result in extra cost, i.e., overhaul cost of the entire yawing system every five years.

The following cost figures and parameters are to be considered in an LCC analysis

* ccmr = 50 = Initial investment cost of condition monitoring system
* ccmu = 10 = Upgrade cost of CM system every 6 year

* ¢o =25 = Overhaul cost of entire yawing system every 5 years

e T =30 =time horizon to consider (years)

e r =5% = discounting factor

¢) Carry out an LCC analysis to determine if predictive maintenance pays off.
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Reliability Data Analysis

11.1 Introduction

Methods and models introduced in previous chapters require numbers for the reliability pa-
rameters such as the failure rates, repair rates, ageing parameters and so on. A parameter in this
context is a quantity in a reliability model for which we assign numerical values. To obtain such
numeric values several principle for parameter estimation exist.

11.2 Checking for trends in the data

11.2.1 Objective

In a counting process model failures are assumed to occur along the time axis, and no assump-
tion is made regarding the status of the unit after the repair is completed. The main objective of
the analysis is to reveal any trend in time, and the Nelson Aalen plot is an efficient tool.

11.2.2 Conceptual framework for counting process models

Consider one unit installed at time ¢ = 0, observed over a period of time from t =a to t = b. The
recorded failure times (global or calendar time) are denoted T3, 1>, ..., T,,. By definition #y = a.
The unit is repaired after each failure, but no assumption is made about the quality of the repair.

Repair times are considered neglectable. Two extremes are often considered:

* Perfect repair in which case the unit is considered “as good as new” after each repair. In
this situation it is reasonable to believe in a Renewal Process (RP), and the theory of life
data analysis applies. In Figure 11.1, the X;’s can be considered as the data set.
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* Minimal repair in which case the unit is considered “as bad as old”, i.e., the status of the
component immediately before the failure occurred. In this situation it is reasonable to

believe in a Non-Homogeneous Poison Process (NHPP).

t=0 T, T, T T, T, T,
Figure 11.1: Conceptual model for a counting process

The times between each pair of failures, X; = T; — T;—; are denoted the inter-arrival times. If
the inter-arrival times tend to become shorter, the system is deteriorating. On the other hand,
the system is improving if the inter-arrival times tend to become longer (reliability growth). Note
that any trend may be caused to both internal and external circumstances. Typical causes for

improving systems are:
¢ Latent failures are revealed, and fixed

* Improved “organisational environment” due to gained experience of the maintenance and

operational personnel
* Improved external environmental conditions
* Failed parts are replaced with new parts with higher reliability
Causes for deteriorating systems are:
e Wear-out mechanisms (of the parts)
e Aggravated external environmental conditions (e.g. more sand in the oil)

e Less resources to maintenance

11.2.3 Nelson Aalen plot

To reveal trends, the Nelson-Aalen plot is constructed. The Nelson-Aalen plot shows the cu-
mulative number of failures on the Y-axis, and the X-axis represents the time. A convex plot
indicates a deteriorating system, whereas a concave plot indicates an improving system. The
idea behind the Nelson-Aalen plot is to plot the cumulative number of failures against time. We
recall that the ROCOE w(1), is the failure intensity, and W (¢) is the expected cumulative num-

bers of failures in a time interval:

t
W(t) :f (v)du = E [# of failures in [0, )] (11.1D)
0
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When estimating W (¢) we need failure data from one or more processes (systems). Each process
(system) is observed in a time interval (a;, b;] and #;; denotes failure time j in process i (global
or calendar time). The information could be systematized as in Table xx

In order to construct Nelson Aalen plot the following algorithm could be used:
1. Group all the ¢;; in Table 24, sort them, and denote the result 7, k = 1,2,.....

2. For each k, let Oy denote the number of processes that are under observation just before
time fy,

3. Let Wy =0
4. Let We = Wi_1+1/0r=1,2,...
5. Plot tk,Wk

Note that Oy is the number of processes that are under observation just prior to time tk,
which means that the “jumps” in the estimated cumulative intensity is “adjusted” for the num-
ber of processes under observation. The points will follow a straight line if the intensity is con-
stant. If the intensity is increasing, the t;’s will occur more and more frequent, and the cumu-
lative plot will bend upwards (convex). If the intensity is decreasing the #;’s will occur less and
less frequent, and the cumulative plot will bend downwards (concave). Figure 66 shows the
Nelson-Aalen plot for the example data in Table 24.

In this presentation only the principle of maximum likelihood estimation will be addressed.

11.3 The MLE principle

The basic idea behind the Maximum Likelihood Estimation (MLE) principle is to choose the nu-
merical values of the parameters that are the most likely ones in light of the data. The procedure
goes as follows:

* Assume that we know the probability density function of the observations for which we
have data. Let this distribution be denoted f(¢;0).

* The involved parameters, are unknown, and are generally denoted ©.

e We have n independent observations (data points) that we denote Ty, Ts, ..., T,,. When
we refer to the actual numerical values observed, we use the (lowercase) notation t;, to,

..,tn.
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The MLE principle now tells us to estimate © by the value which is most likely given the ob-
served data. To define “likelihood” we use the probability density function. The simultaneous
probability density for Ty, 1>, ..., T, is given by:

f(101;0)f(12;0) ... f(£;0) =[] f(2:;0) (11.2)
i=1

This density express how likely a given combination of the ¢-values are, given the value of 0.
However, in our situation the ¢-values are given, whereas 0 is unknown. We therefore inter-

change the arguments, and consider the expression as a function of ©:
n
L®;t, f.. ty) = [ ] f(1:56) (11.3)
i=1

where L(0; 1, 11 ... t;) in Equation (11.3) denotes the likelihood function. The MLE principle will
now be formulated as to choose the 0-value that maximizes the likelihood function. To denote

the MLE estimator we write a “hat” over 0, 0. Generally, © will be a function of the observations:
0=0(T\,T>,...,T)) (11.4)

When we insert numerical values for the ¢-values we denote the result as the parameter estimate.

11.3.1 Estimation in the exponential distribution

We consider the situation where we have observed n failure times, and we will estimate the
failure rate, A, under the assumption of exponentially distributed failure times.The observed
failure times are denoted #,, f, ..., t;. Equation (11.3) gives:

Lt by .n t) = [[ 1o Ae (11.5)

Note that the parameter is denoted A, whereas we generally use 0. Further we denote the ob-
servations with ¢ because we here have failure times. The probability density function in the
exponential distribution is given by f(¢) = Ae~*'. A common “trick” when maximising the like-
lihood function is to take the logarithm. Because the logarithm (In) function is monotonically
increasing, In L will also be maximised for the same value as for which L is maximised. We could
then find:

IA; 1, by 1) =INL(A; 11, B, .., ) = RIDA =Y 0 AL (11.6)
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By taking the derivative wrt A and equate to zero, we easily obtain:

A=n/Y " i (11.7)

11.4 How to obtain the data?

In some situations we are able to conduct experiments to get access to reliability data. We can
imagine that we put n identical lightbulbs in 7 sockets and observe the failure times. A challenge
might be that we do not have time to wait for all light bulbs to fail. This means that we will have
some “real” life times and some “censored” life times. The censored life times are then the period
they have survived. The fact that some light bulbs might have survived the time period of our
experiment is also an information we will utilize. In the text book different types of censoring is
discussed.

In most cases we do not have access to data in such a controlled manner. But very often
we will have access to data from computerized maintenance management systems (CMMS) in
terms of failure reports and reports from preventive maintenance.

From the CMMS it is to some extent possible to extract life time data. Several challenges are

encountered in such an attempt to get life time data to use in our parameter estimation:

* Data is not reported on the appropriate level, for example we are seeking the failure rate
of a pump bearing, but failures are only reported on the pump level

* There are several failure modes reported for an item, and we do not have any information
regarding if the item is “as good as new” with respect to all failure modes after a corrective

repair action
* Preventive maintenance is carried out, and hence we have very few “real” life times

e We have data for several items, but they are not operated under “identical” conditions,
hence merging the data to get a sufficient number of data points is not easy

11.5 Failures vs censoring life times

In experiments as well as in real life there are situations where we are not able to observe the
time of failure of an item. The reasons for this could be that the experiment is terminated before
all items have failed, or for a real life item, the item is replaced preventively before a failure
occurs. In this situations we will usually know that the item has survived a certain time period.
The point of time representing this survival period is denoted a censoring life time. It is obvious
that a censoring life time has less informative value than a real life time in order to assess the
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underlying reliability parameters. However, the censoring life time represent some information
we will not discard in the parameter estimation. We often put a star (*) on the censoring life
times to distinguish them from the real life times. In the following we also use an indicator
variable to distinguish censoring and real life times, where the value 1 means a real life time and

the value 0 means a censoring life time.

11.5.1 Estimation when life times-to-failure are Weibull distributed

Now assume that we have been able to extract life time data from either controlled experiments
or from our CMMS.

Let 1, tp, ... t, denote the observed times-to-failure including censored life times. Further
let I, I», ... I, be indicator variables equal to one if the corresponding life time is a real life time,
and equal to zero if it is a censored life time.

The censored life times are assumed to be “right censored” life times in the meaning that we
know the “birth” of the item, but not the “death”. The only thing we know is thus the fact that the
item has survived the censored life time. To get “something” to put into the likelihood function,
we then use the survivor function, R(z). R(¢) is the likelihood that an item survives ¢, and this is
what we need, i.e., what is “the likelihood of observing what we observed”?

Recall that the pdf of the Weibull distribution is given by f(t;a, 1) = aA(AH)* te~ M and
the survivor function is given by R(t;a, 1) = e-9%, Thus the likelihood function is given by:

L@ t1, . Ty, oy ) = [ (L@dn ™ e 0" + (1= e ") (11.8)

1

taking logarithm we obtain:

la,\;4,0,...,11,1,...)=InL(a,A; 14, t2,..., 1, I, ...)
(11.9)

n
=) (Iillna+alnd+ (@ - Dng;] — (Ar)%)
i=1
Numerical methods are required for maximizing equation (11.9)

Example 11.1
Assume we have observed the following life times: 8,9,7,6,12,18,14,18%,6,9,11, 24,30* and 28*.
Here a star (*) indicates that the life time is a censored life time. The MLE estimates are given by:

a=1.61
A~ 0.0555

obtained by the “Solver” in Excel.
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11.6 Estimation in the Markov degradation model

This section presents ideas for estimation of model parameters, i.e., the degradation rates in the
Markov model. Assuming the perfect state is 0 and the system runs through the states 0, 1,...,r,
the objective is to find estimates for Ag, A1,...,A,-1 where A; is the transition rate from state j to
state j + 1.

Data has to be retrieved from the computerized maintenance management system. It is
required that the state of the item (at the appropriate level) is reported after each inspection of
the system. For system where the Markov model apply usually off-line inspections would be the
information source, and these inspections take place in discrete point of times.

In the data retrieval process we need to find pair of observations/inspections where we cre-
ate one data point. That is for each of the created data point i,i = 1,2,...,n we have the triplet
< u;,81,i,S2,; >, where u; is the number of days between two subsequent observations, and
s1,i€1{0,1,...,r =1} and sp; € {0,1,...,r — 1} are the states for the first and second observation

respectively.

11.6.1 Simple estimation procedure

A simple estimation procedure is as follows:
1. Repeat for all states j €{0,1,...,r -1}
2. Set f=0and t=0
3. Process all data points i,i =1,2,...,n

(@) Ifs;;#syithenlet f=f+1

(b) Let t=t+ u;/ [d (81, S2,i + 1], where d() is a distance measure between the first and
second observation, i.e., the number of states between the first and second observa-

tion. For example d(1,4) = 3.
4. The transition rate from state j to state j + 1 is estimated by A i=flt

If we assume that transition times out of state j are exponentially distributed, we only need to
collect the number of transitions out of state j, i.e., f and the exposure time . Since a transition
out of state j for data point i could have occurred anywhere in the interval of length u;, we
divide by the number of jumps +1, since the exposure time for that observation being in state j
isu;l/ [d(sl, irS2,i) + 1] . This last argument only holds if all transition rates are equal, but it will do
for the simple estimation procedure.
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11.6.2 The maximum likelihood approach

A weakness of the simple approach is that it only holds for equal transition rates. Further we
do not utilize the information contain in a data point with larger jumps. The maximum likeli-
hood approach (MLE) approach is rather simple, and it should be noted that, e.g., estimation by
utilizing Markov Chain Monte Carlo simulation has been proposed and used by e.g., Bladt and
Serensen (2009) and Laskowska et al. (2023) in a similar situation.

Figure 6.1 depicts the physical states with the corresponding transition rates. The transition
rates, i.e., the A’s in Figure 6.1 are above diagonal elements in the transition matrix A, for ex-
ample ap,; = Ag. The below diagonal elements are vanishing since we do not have data points
representing improvements. The objective of the estimation is to obtain numerical values for
Ao, A1,...,Ar—1 as for the simple approach.

The main idea in an MLE approach is to compare the actual transitions taking place be-
tween subsequent observations with the probability of that transition should occur, given the
parameters in the model, i.e, the A-vector.

Assume that the system is in state s at time ¢ and we consider a later point of time ¢+ u where
no maintenance has been conducted in the period between. Since we know the system state at
time ¢ the P(f)-vector is given by

Ps(1)=1
Pj(t)=0for j#s (11.10)
For a given A-vector in A we have:
P(t+u) =P(t)- M (11.11)

To calculate the exponential of a matrix, i.e., A is numerically time consuming, and requires
efficient library functions. The calculation in Eq. (11.11) must be carried out for each data point,
and for each evaluation of the log-likelihood function, and in Section 11.6.3 below we propose
an efficient approach to speed up the calculation.

To calculate Eq. (11.11) we let £ = 0 and let u = u; for data point i. Further s;; defines the
starting point, i.e., when setting up P(0). Equation (11.12) shows the log-likelihood function:

(Ao, A1,...) =Y _InPy,, (u;) (11.12)
i=1

Table 11.1 shows the structure of the data needed for the ML estimation:
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Table 11.1: Typical data for ML estimation

Iui  Si1 Sip
1 140 O 0
2 200 1 0

11.6.3 Approximating matrix exponentials

In our MLE approach we need to calculate P() = P(0)e?’ for each observation each time we have
to evaluate the likelihood function. Since calculating the exponential of a matrix is numerically
time consuming an approximation is proposed. Recall that P(#) = P(0)e?’ was obtained from

the Kolmogorov Markov equations:
P(1)-A=P(1) (11.13)
But rather than solving the exponential, we realize that for At being small, we have:
P(t)-A= [P(t+Af)-P(1)] /At (11.14)
which leads to an iterative procedure where we repeatedly use:
P(t+At) = P(1) [AAL +1] (11.15)

and where I is the identity matrix. Calculating Eq. (11.15) is numerically fast. However, if we
need to calculate for e.g., one year, i.e., £ = 365 this will be time consuming. Now let My =
[AAt +1], and calculate subsequently:

M;=M;_1-M;_; (11.16)
aslong as 27! < #,.x. Now it follows that for £ = 1,2,4,8..., we use
P(t) = P(0)-M; (11.17)

where 271 = ¢. If t ¢ {1,2,4,8} let b be a vector for the binary representation of ¢, for example
b=10,1,0,1,0,0,0,...] corresponds to t = 0-20+1-21 +0-22+1-23+0-2%+... = 0+2+0+8+0... = 10.
In a similar way we calculate P(z = 10) = P(0) - M; - M3.

Note that if the longest observation period is 2048 days, i.e., five and a half year, we only
need 11 matrix multiplication to generate all the M; matrices. This is done only once for each
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evaluation of the likelihood function. For each observation we typically need in average five or
six matrix multiplications to calculate P().

11.6.4 Including explanatory variables in the model

The elements in the A-vector, i.e., A3_op, Aop—24... are assumed to be dependent on so-called
explanatory variables also denoted stressors. If we have knowledge about the values of the ex-
planatory variables at each defect it is possible to estimate the effect of these, i.e., the regression
coefficients. If this is the case, the data in Table 11.1 is extended as indicated in Table 11.2 The

Table 11.2: Typical data for ML estimation with explanatory variables

I Uu; Si1 Si2 Zil %2
1 140 O 0 153 86
2 200 O 1 137 92

vector of explanatory variables (z; = [z}, 22,...]) then represents the average value in the time
interval between the two subsequent observations of each defect. Explanatory variables could
be tonnage passing each year, curvature, age and type of rails and so on.

Motivated by Cox regression, see Cox (1972), we assume that each transition rate in the
Markov matrix could be written on the form

A = ePothraitfzze.. (11.18)

The impact of the regression variables may in principle vary between the various transitions,
e.g., that the effect of extra load is larger as the defect grows. To simplify, we will assume that the
effect are the same for all transition rates, i.e., A3_.op, A2p_2a.... This means that for transition
rate k, k € {3,2b, 2a, 1,0} we have:

Ap = Azeﬁlzﬁﬁzz&-- (11.19)

where /12 is a baseline transition rate. The log-likelihood function contribution from observa-

tion i now reads:

IAQAY,..., b1, B2,..) = Y In Py, (u;) (11.20)
i=1

Note that neither the A’s nor the f’s are explicitly expressed in the right hand side of the log-
likelihood function, but are implicitly specified first by Equation (11.19) and then by Equa-
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tion (11.11)

11.7 Graphical techniques

Several graphical techniques may be used to analyse life time data, see e.g., Rausand et al. (2021).
In the following we only present the total time on test (TTT) plot and the Kaplan-Meier plot.
The TTT-plot gives a direct impression of the ageing parameter of time-to-failures, whereas the
Kaplan-Meier plot presents the estimate for the survivor function. The Kaplan-Meier estimate
can handle both real life times and censoring life times, whereas the TTT-plot can only handle
complete data sets, i.e., censoring life times could not be treated.

11.8 TTT-plot

Assume we have n independent and identically distributed time-to-failure observations. The
data could be obtained from items that have been operated under approximately the same con-
ditions, and they are as good as new after a repair if we observe several failures for one item.
The observed time-to-failures are denoted 11, fp, f3, ..., t;. It may be shown that we always
may sort our life time data since the ordering of collected data will in any case be arbitrary given
that data are independent and identically distributed. Letz), t2), £3),---, {(n) be the sorted time-
to-failure observations, thatis #1) < f2) < f3) < ... < (. The so-called TTT observator is defined

for each point of time t as the total observed time (Total Time on Test) up to time ¢:

i
TW=) t;+n-it (11.21)
Jj=1

where i is such that ;) < 1 < £ 41
The TTT plot is given by plotting the normalized TTT observator againts a normalized index,

i.e.,
(iM) (11.22)
n 9 (tm)
11.9 Kaplan-Meier plot
Let the sorted data be denoted #y), t«), ..., fn where also censored life times are included.

Further let n; be the number of items “under risk” at time {;), i.e., the number of items still
operating just prior to f;). Now at time ;) there might be no failure if this was a censoring time,
it might be one failure, or it might even be more than one failure if two failures occurred at the
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same time. Theoretically it is not possible to have two failures exactly at the same time, but due
to limitation in “number of digits” to represent the failure times, we may have more than one
failure at the same time. Let s; be the number of life times observed at time ;).

To obtain the Kaplan-Meier estimate we use more or less the same type of arguments as
given by Rausand et al. (2021). First consider a small time interval around time #;,. In the be-
ginning of this interval it will be n; items at risk. Let p; be the probability that one arbitrary of
these items will survive this small interval. A natural estimator for p; is given by

pi= 00 (11.23)

ng)
since n(; — s(;) of the items we had survived this interval. Now, assume that we have an estimate,
l?l._ for the probability that an item has survived up fo the interval we are considering, then it
follows that an estimate for the probability that an item will survive from # = 0 to the end of the

interval is given by
R =R; p; (11.24)

Following such arguments we obtain the Kaplan-Meier estimate for the survivor function at time
r

n oy — S .
@) — 20 (11.25)
L)<t n(l)

Example 11.2

Assume we have observed the following life times: 8,9,7,6,12,18,14,18%,6,9,11, 24,30* and 28*.
Here a star (*) indicates that the life time is a censored life time. Table 11.3 shows tje tableau for
the Kaplan-Meier plot:

The following link shows the Excel file: http://folk.ntnu.no/jvatn/eLearning/TPK4120/
Excel/MLE_Kaplan_Meier.xlsx.

11.10 Bayesian Reliability Analysis

11.10.1 Introduction

In classical estimation approaches the main idea is that we believe in “true” reliability parame-
ters. The objective of the statistician is to “reveal” these true parameters in an “objective” man-
ner. The statistician makes assumption regarding the observed data in terms of for example
independent and identical distributed life times from some distribution class, for example the
Weibull distribution. The more data available, the better will be the result.


http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx
http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx
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Table 11.3: Kaplan Meier plot
ti Ii n; s (ni—siin; R(L)

6 1 14 2 12/14=0.86 0.86
6 1 13 0 13/13=1 0.86
7 1 12 1 11/12=0.92 0.79
8 1 11 1 10/11=0.91 0.71
9 1 10 2 8/10=0.8 0.57
9 1 9 O 9/9=1 0.57
1 1 8 1 7/8=0.88 0.5
12 1 7 1 6/7=0.86  0.43
14 1 6 1 5/6=0.83 0.36
18 1 5 1 4/5=0.8 0.29
18 0 4 O 4/4=1 0.29
24 1 3 1 2/3=0.67  0.19
28 0 3 O 3/3=1 0.19
30 0 3 O 3/3=1 0.19

Bayesian methods takes another starting point. The Bayesian statistician treats the parame-
ters as stochastic variables. Before he or she looks into the data, a subjective judgement is made
about the parameters. This judgement is denoted the prior distribution, i.e., prior to observ-
ing the data. The prior distribution for each of the relevant parameters are described by some
distribution class, for example the normal distribution, the gamma distribution and so on.

There are various ways to establish the prior distribution. The statistician may utilize state-
ments from experts having domain knowledge relevant for the problem at hand, he or she might
utilize data from similar components or systems and so forth. In this presentation we will not
elaborate on how to establish the prior distribution. To find out more the key words “expert
judgement” would be a starting point.

When the prior distribution is established, the statistician consider the data, t as evidence.
This means that he or she will update the prior distribution to what is called the posterior distri-

bution which also takes the evidence into account.

11.10.2 Procedure
The procedure for Bayesian estimation could briefly be described as follows:
1. Specify a prior uncertainty distribution of the reliability parameter, 7(0).

2. Structure reliability data information into a likelihood function, L(0;t) (The likelihood

function was discussed in Chapter 14 in the textbook).
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3. Calculate the posterior uncertainty distribution of the reliability parameter vector, 7 (0|t).
The posterior distribution is found by 7(0[t) x L(0;t)7(0), and the proportionality con-

stant is found by requiring the posterior to integrate to one.

4. The Bayes estimate for the reliability parameter is given by the posterior mean, which in
principle could be found by integration.

Note that the relation 7 (0|t) o< L(0;t)7(0) follows from Bayes’ theorem and the law of total prob-
ability: If By, By, ..., B, (corresponding to the ©-vector) represent a division of the sample space,
and A is an arbitrary event (corresponding to t = the data vector), then:

Pr(A|Bj)-Pr(Bj)  Pr(AlB;)-Pr(B))

Pr(Bj|A) = i)

" Pr(B;)-Pr(AlB;)
=1

1

Since we in the denominator sum over all possible B; values (corresponding to the ©-vector) it
will not contain 0, hence it may be regarded as a constant wrt ©. Further Pr(B;) corresponds to
the prior distribution, and Pr(A|B;) corresponds to the likelihood function (in terms of the the
product of the pdf’s for each data point).

It is not obvious that we in step 4. should use the posterior mean. But if we aim for a single
parameter estimate, and we have a posterior uncertainty distribution, it is reasonable to choose
the mean value in this distribution. It might be proven that the posterior mean is the optimal

value under “quadratic loss”.

Example 11.3 Exponential distribution

In the following we give an example showing the main elements of the procedure. In the exam-
ple we will estimate the failure rate in the constant failure rate situation. Assume that we express
our prior believe! about the failure rate A of a certain component (gas detector used on an oil
and gas platform), in terms of the mean value u = 0.7- 1076 (failures / hour), and the standard
deviation o = 0.3-107%. For mathematical convenience, it is common to choose a gamma distri-
bution? with parameters a and ¢ for the prior distribution. The expected value and the variance
in the gamma distribution are given by u = a/¢ and o2 = a/é? respectively, and we obtain the

following expressions for a and ¢:

E=plo?=(0.7-10"°/(0.3-107%)2 =7.78-10°
a=Ep~=(7.78-10°-(0.7-107% = 5.44

IThis could be based on statements from experts, see Qien et.al (1998), or by analysis of similar components
(empirical Bayesian analysis).
21(A) x A% Le~¢4 for the gamma distribution.
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To establish the likelihood function, we look at the data. In this example we assume that we have
observed identical units for a total time in service, t, equal to 525 600 hours (e.g., 60 detector
years). In this period we have observed n = 1 failure. If we assume exponentially distributed
time-to-failures, we know that the number of failures in a period of length ¢, N(#), is Poisson

distributed with parameter A - ¢. The probability of observing n failures is thus given by:
LA;n, 1) =Pr(N(H) = n) < A"e !

and we have an expression for the likelihood function L(A; n, 1).
The posterior distribution is found by multiplying the prior distribution with the likelihood

function:
TAn) oc LA;n, 1) - m(A) ox AMe M )@ le=th o platm-1g=(E+DA

and we recognize the posterior distribution as a gamma distribution with new parameters a’ =

a+n, and ¢’ = ¢ + t. The Bayes estimate is given by the mean in this distribution:

a+n 5.44+1

~ ~0.78-107°
E+t  7.78-10°+ 525600

A=

We note that the maximum likelihood estimate gives a much higher failure rate estimate
(t/n=1.9-107%), but the “weighing procedure” favours the prior distribution in our example.
Generally we could interpret a and ¢ here as “number of failures” and “time in service” respec-
tively for the “prior information”. Note that as more and more data becomes available, the data
will dominate, and the effect of the prior distribution will be wiped out.

In Bayesian probability theory, if the posterior distribution 7(0]t) is in the same probability
distribution family as the prior probability distribution 7(0), the prior and posterior are then
called conjugate distributions, and the prior is called a conjugate prior for the likelihood func-
tion L(0;t).

A conjugate prior is an algebraic convenience, giving a closed-form expression for the pos-
terior. If we cannot establish a conjugate prior we usually need numerical integration to solve
the denominator in Bayes’ theorem. The conjugate priors may also give some intuition because

it shows how the data updates the prior distribution. In the example we had a’ = a + n, and

=&+t

Problems

11.1 Assume we have 4 systems each with with states 0,1,2,...,r where ;41 = (1+ v)A;4+;. The

systems are proof-tested every 7 time units.
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Numerical values are given by r = 5,1y = 0.001, v = 0.2, and 7 = 730. The maintenance limit
is I = r—1. Upon a proof test (inspection to reveal state) nothing is done for states 1,2,...,/—1. If
a system is in a state = [ at a proof-test, an instantaneous repair takes place bringing the system
back to state 1.

Use Monte Carlo simulation to simulate the observation set. Assume you simulate over 60
months (5 years).

11.2 In this exercise we will use the data from the previous exercise. There are only two param-
eters to estimate, i.e., A; and v. To get an initial guess for 1, we may do the following:

1. Count the number of situations in the data set where there is a transition from state 1 to
another state, and let this number be denoted n;

2. Count the number of occurrences where one system remains in state 1 from one inspec-
tion to the next inspection, or jumps from state 1 to another state from one inspection to
the next inspection. Let this number be denoted £,

3. Aninitial guess for 1; is now given by /11 =mlh

We can repeat for A,, A3,...,1;-1. Note that we cannot estimate the transition rate into the fault
state, i.e., A; by this procedure because there are no observed jumps from state [ to state r due
to our maintenance strategy.

We may now get an initial guess for v by 7 = A2/A1 —1. We could also use # = A3/A, —1 and
so forth, so an average of these v-values could be a reasonable approach to obtain an initial

estimate, 0.
a) Calculate initial estimates for 1; and v as indicated above for your simulated dataset

b) Keep v fixed, find the LS-estimate for A; according to the procedure described. Use any

numerical routine for minimizing a univariate function.
c) Keep A, fixed, i.e., the estimate from b), and find the LS-estimate for v

d) Keep v fixed, i.e., from c), and find the LS-estimate for 1; according to the procedure
described.

e) Keep A, fixed, i.e., the estimate from d), and find the LS-estimate for v

f) Compare the result with using a minimization routine that allows for several variables.



Chapter 12

Machine learning

12.1 Introduction

Machine learning (ML) is a field of computer science that gives computers the ability to learn
without being explicitly programmed. The classical textbook still used in many courses is Ma-
chine Learning by Tom M. Mitchell, Mitchell (1997). In this chapter we give a very short intro-
duction to ML and some few examples.

== Learning: A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E, Mitchell (1997).

Example 12.1 - Classification

Objects with (x,y)-coordinates are either of type A or type B. A limited training set, E, of objects
is available where the correct type is known. The task, T, is to determine the type of new objects
if only the (x,y) coordinates are known. As the training set increases we expect to be better in
determining the type. Figure 12.2 shows an example of such data.

12.2 Type of data

The dataset essentially contain the following two types of data
* x = Feature vector, for example weight and height
* y=label data, for example slim or fat

A dataset of n data points is said to be labelled if both x and y are known, and is said to unlabelled
if only x is known. All x-vectors is denoted the feature set, and all y-values is denoted the label

set for a dataset of n data points.

139
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Height as a function of weight
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Figure 12.1: Example data - Labelling problem

In machine learning, an unknown universal dataset is assumed to exist, which contains all
the possible data points, but this dataset is not known to us. What is available is a training set
(training data) which is used to learn the properties and knowledge of the universal dataset

12.3 Categorization of Machine Learning

In machine learning we essentially deals with three types of learning:
* Supervised learning
* Unsupervised learning

e Reinforcement learning

12.3.1 Supervised Learning

The training set given for supervised learning is a labelled dataset . The aim of the learing is
to find the relationships between the feature set and the label set, which is the knowledge and

properties we can learn from labelled dataset

e If each feature vector x corresponds to y = categorical data the learning problem is de-

noted as classification
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e If each feature vector x corresponds to y = a real value the learning problem is defined as

regression problem

12.3.2 Unsupervised Learning

The training set given for unsupervised leaning is the unlabelled dataset. The aim of could be
clustering, probability density estimation, finding association among features, and dimension-

ality reduction. Unsupervised learning can later be input to supervised learning.

12.3.3 Reinforcement learning

Reinforcement learning is about how a computer program interacts with the environment, i.e.,
a real world situation like driving a car or deciding when to ask for maintenance. The computer
program shall then make decisions or at least give decision support. As the time goes by the
result of actions will be successful to some degree. This successfulness is then translated to a

“reward” measure which the computer program tries to maximize.

12.4 Hypothesis set

Learning is about confirming hypotheses. A hypothesis, &, among other hypothesis in the hy-
pothesis set H is a mapping function that uniquely assigns a feature vector to a label value. The
objective of supervised learning is to find the best / within the set H.

It is assumed that there exist an ideal mapping function, f, which we most likely never find,

but the best one found, say g, is used for future predictions

12,5 Learning algorithm
Alearning algorithm, A, is required to obtain the best hypothesis within the set H. A comprises:
* An objective function, i.e., the function to be optimized for searching g

e Optimization methods used to optimize the objective function

Example 12.2 Labelling problem
Figure 12.2 shows the labelled data with three hypotheses:

* h; - Non-linear mapping function that assigns the label “slim” to observations above the

curve, and “fat” to those below the curve
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* hy, - Linear mapping function that assigns the label “slim” to observations above the curve,
and “fat” to those below the curve

* h3 - Flat mapping function that assigns the label “slim” to observations above the curve,
and “fat” to those below the curve

From the data it appears almost impossible to have a flat mapping function that uniquely sep-
arate the “slim” from the “fat”, making h3 not feasible. h, performs better, but having the “body
mass index” (BMI) in mind, a linear classifier may not be very efficient, and therefore a non-
linear mapping functions as given by hypothesis i; seems more efficient. To find the “best”
classifier, i.e., some hypothesis g we need to define a objective function, for example based on
least squares, and then fit the classifier function minimizing the square distance from the points

to this function.

Alternative hypothesis

250

200
h,

150

100

50

h; = not feasible

40 50 60 70 80 90 100 110 120

® Height fat Height slim

Figure 12.2: Hypothesis in the labelling problem

12.6 Support vector machines

Support vector machines (SVM) are supervised learning models with associated learning algo-
rithms that analyse data used for classification and regression analysis. SVM training algorithm
builds a model that assigns new observations to one category or the other, making it a non-

probabilistic binary linear classifier.
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Figure 12.3 shows three classifiers. The line in the middle separates “slim” and “fat” with the
maximal margin. The upper line will classify new observations to “fat” if they do not follow the

pattern, whereas the lower line will tend to classify them as “slim”.

Height as a function of weight

40 50 60 70 80 90 100 110 120

® Height fat Height slim = e====SVM  em===SVM_Fat === SVM_Slim

Figure 12.3: Hypothesis in the labelling problem

In addition to performing linear classification, SVMs can efficiently perform a non-linear

classification using what is called the “kernel trick” which is not pursued here.

Example 12.3 Practical maintenance example

Assume that we measure the condition of a machine by the vector x (vibration, temperature,
noise etc). Assume further that we have observed x-values each day for one or more machines
until they reach the alarm limit where we have to stop the machine.

By easy data manipulation we can then for each observation, i, calculate the number of days
until the alarm/maintenance limit is reached, say d;. In order to plan maintenance we need say
D days in advance. Often D is denoted the lead time. To label the data, we now calculate y; for
each observation according to:

-lifd; <D
yi = (12.1)

lifd; > D

The feature vector x; and the calculated value y; for all observations constitute the training set.
This training set is then used to obtain a classification rule. For a new observation, say Xy we can
predict the corresponding yy. If yo = —1 the model advocates starting maintenance.

It should be noted that if we train the model by this rather simple approach we will hopefully

be quite good classifying whether whether we have sufficient time for planning maintenance if
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we use the result as decision support. A weakness is obviously that we in average have a good
hit, but the decision support is not very valuable since the cost of being too late is much higher
than being too early. A first approach to overcome this bias, we could establish another rule for
labelling the data, e.g.,

-lifd;<D-5
yi= (12.2)

lifdi>D—5

where “5” is some contingency. But it will be hard to argue for such a number. Such a classifica-

tion regime is

12.7 Other learning algorithms

There are many other learning algorithms, for example

Artificial Neural Networks (ANN)

Deep Learning - multiple hidden layers in an artificial neural network

Bayesian Networks
¢ Decision trees

e ... and many more

12.8 Artificial neural networks

Artificial neural networks (ANNs) are computing systems inspired by the biological neural net-
works that constitute animal brains. Compared to Support vector machines where the label is
scalar, we can now have a vector of labels, i.e., the output vector. Figure 12.4 shows an ANN with
one so-called hidden layer.

An artificial neural network is a network of simple elements called neurons. These are the
nodes in the network. To the left we have a set of input nodes corresponding to the feature
vector X. To the right we have the output nodes corresponding to a vector of labelled data, i.e.,
a y-vector. In the middle we have a set of hidden nodes. Figure 12.4 shows only one hidden
layer, but there could be several such hidden layers which is used in so-called “deep learning”
methods.

A neuron may receive input, change their internal state (= activation) according to the input
and an activation function and produce some output

The network connects the output of certain neurons to the input of other neurons forming
a directed and weighted graph:
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Hidden

/Q\W
//
e

Figure 12.4: Artificial neural network (source: Wikipedia)

Input

* Neurons = nodes item The connection between the neurons are weighted directed edges

Both the weights and the activation functions used contain parameters. Training the model
means to estimate these parameters. In the estimation process an objective function is required
to measure the performance of each parameter set.

12,9 Hybrid approaches

Machine learning do not require all cause-and-effects to be known (black-box), whereas prob-
abilistic models and first principle model require an explicit model specification (grey-box and
white-box). This means that ML in many cases are attractive because we do not need to work
out realistic models explicitly. If we have sufficient data and we have a huge number models
to be established, we can imagine that automated processes to come up with reasonable ML in
short time would be possible.

However, machine learning is greedy with respect to data. Probabilistic and first principle

models requires less data , and hybrid approaches could be an alternative:

e We may combine machine learning with e.g., probabilistic models
e Machine learning to search for good “health indicators”

* Use probabilistic models to assign RUL predictions (Remaining Useful Lifetime)

Example 12.4 Silicon furnace
The silicon furnaces have for many years been equipped with sensors that collect information
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about various factors such as temperatures, water flow, pressure and so on. The information
from these measurements are used for process control and optimization but has so far only to a
small extent been used to inform maintenance decisions of the furnace equipment.

An example of furnace equipment that are monitored by sensors today are the water-cooled
flexible power cables which go out to the electrode, i.e., the flexibles. The flexibles are consid-
ered as a good candidate to test the potential of using available sensor data as input to mainte-
nance. This is because this is simple equipment with a limited number of failure modes

Assume that we on an hourly basis measure the following variables:
* p=pressure

e v ={flowrate

e T =Temperature

The variables are expected to be related to each other by various physical laws, e.g., Bernoulli’s

equation

V212 + gz+ pl/p = constant (12.3)

Under normal operation the relation between the variables are expected to be rather consistent.
After some time it is expected that some chipping takes place. The initial damage could occur
according to a shock process having the PF-model in mind.

We will use simple linear regression as our ML method where we simplify and assume:
v=Po+ 1T+ P2p+ error term (12.4)

MS Excel is a natural choice for estimating o, f1 and .. We can easily calculate the residuals
and the standard deviation of the residuals.
The anomaly detection rule is as follows:

e 3 subsequent predictions outside +/- one standard deviation

After a potential failure, we can estimate drift every day, i.e., the slope of the deviation between

the predicted and the observed value.

12.1 The datafile for this exercise is found at folk.ntnu.no/jvatn/eLearning/MLdata/. The tasks
are as follows

a) Discuss first principle models for linking the three variables, and set up a regime for early

warning, i.e., anomaly detection.


https://folk.ntnu.no/jvatn/eLearning/MLdata/
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b) Repeat the approach with machine learning approaches

¢) Discuss what type of data you will need to train the models
Use the data under “NormalOperation” in the Excel data file to set up your model

12.2 Given that an initial damage, i.e., chipping has started, assume that the deviation between
the predicted pressure and the actual pressure follows a Wiener process with constant drift.

Further, assume that chipping has been observed for several flexible power cables and “fail-
ure times” for these have been observed.

a) Discuss how you can use the result from the first principle model also for prognostics.

b) Propose a regime for estimating the RUL in this situation, given a known and fixed failure
threshold

¢) Use the “RunToFailure data” in the Excel file to (i) estimate the point of time when there is
an anomaly, then (ii) estimate the model parameters in the Wiener process, as well as the

failure threshold, assuming that there is a failure for the last observation point

d) Assume that the parameters in c) are the correct one, use the observation in RunToFailure
to make RUL predictions with 90% uncertainty bands for each time steps. Compare with
the “true” value.

12.10 The LS principle

The least squares (LS) principle for estimation is used when we have observations that do not
come from the same distribution, but we know the expectation of each variable as a function of
aset of parameters 0, and a set of explanatory variables. Previously we denoted the observations
by the letter ‘X, but we will now change the notation to let ‘Y’ denote the observations, whereas
we reserve the letter ‘X’ for explanatory variables. We now let ¢;(0) denote the expectation
of Y; (the i’th observation), where the functions ¢; are all known, but the parameter vector ©
is unknown and shall be estimated. The LS principle now states that we may estimate 0 by
the value that minimises the square sum of the deviations between the observed and expected

values, i.e.:
Q©) =) [yi—¢:i(0) (12.5)
i=1

Equation (12.5) is the starting point for estimating the parameters in so-called regression mod-

els. The most simple formula is given by:

E[Y;] = o + B1x; (12.6)
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In this model x is denoted the independent variable, whereas Y is denoted the dependent vari-
able because it depends on the independent variable, x.

The model in equation (12.6) could be extended to cover more independent variables. These
are denoted regression variables , or explanatory variables. To extend the model we introduce
an extra index for each x. We write x; ;, where index i denotes the i’th data point, whereas index
j denotes the j’th explanatory variable. The model then reads:

E[Y;] = Bo+ P1xi1+ PoXio+ -+ PrXir (12.7)

To obtain the LS estimators in this situation, we introduce matrix notation. Lety = [y1,)», ...,
yx]! be a column vector containing the dependent variables, and let X be the design matrix

given by:
1 X11  eeeees X1r
1 x X
X = 21 1r (128)
. x,-j
1 xll ....... xnr

It could be shown that the LS estimator for 3 = [Bo, B1, B2, -+, B,]" is given as the solution of the

following matrix equation:
X'y =X"Xp (12.9)
If the design matrix has full rank, X'X will be non-singular, and the solution is given by:
B=x"x"'X"y (12.10)

If one has access to a tool for matrix calculus, we easily obtain the LS estimates. We could also

use commercial available statistical programs, or the “analysis” module of MS Excel.

Example 12.5 Estimation of the effects of regression variables
This example is not explicit relevant for maintenance, but given in another course. Will be
updated later....

We will consider a situation where we have observed the duration of construction the foun-
dation wall of houses. The different values are shown in the Y-column below. The variable x;
denotes the base in square meters, whereas x; is an indicator of ground frost. A value is given as
1 if there is ground frost, 0 otherwise. We have also introduced the variable x3 that denotes the

walking distance from the workmen’s hut to the building site:



CHAPTER 12. MACHINE LEARNING 149

Y X1 X2 X3
84 100 1 100
78 150 1 50
114 250 1 50
6.1 8 0 75
6.1 100 0 200
83 90 1 30
75 180 0 25
7.2 200 0 50
6.0 110 0 75

From MS Excel we obtain the following parameters: ﬁo =4.211, ,31 = 0.0167, ,32 = 2.196, and
B3 =0.0011
Note that we in equation (12.7) have written the expected value of Y;. Generally we write:

Yi=Bo+Pixig+ PaXio+ -+ PrXir+E; (12.11)

where ¢; is an error-term. Very often we assume €; to be normally distributed, but we might
also assume that ¢; is PERT distributed. To estimate the parameters in an underlying PERT

distribution we calculate the predicted values:
)71' :,60+ﬁ1xi,l+ﬁ2xi,2+"'+:6rxi,r (12.12)
then we estimate the error-terms by the residuals:

Ei=Yyi—Yi (12.13)
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Reliabilty centred maintenance

13.1 Introduction

Reliability centred maintenance (RCM) is a method for maintenance planning developed within
the aircraft industry and later adapted to several other industries and military branches. The
first comprehensive documentation of RCM was given by Nowlan and Heap (1978).A major ad-
vantage of the RCM methodology is a structured, and traceable approach to determine type of
preventive maintenance. This is achieved through an explicit consideration of failure modes
and failure causes. A major challenge in an RCM analysis is to limit the scope of the analysis so
that it is possible to carry out the analysis within the limits of time and budget. Most implemen-
tations of RCM put main focus on the identification of maintenance tasks, but do not carry out
explicit optimisation of maintenance intervals. We will, however, present an approach to RCM
that also enables optimisation of maintenance intervals. In order to do so, we need to structure
the analysis much more than what is common in most RCM approaches.

Structuring take place at several steps in the RCM analysis. Because the failure mode and
effect analysis (FMECA) is very time consuming, and because the basis for maintenance opti-
misation also is established through the FMECA we will introduce several means to simplify and

structure this part of the analysis:

* Introduction of so-called TOP-events in the analysis. Such a TOP event could be “derail-
ment”, “fire”, “collision train-train” for safety, and “Slow speed -40 km/h” and “Full stop”
etc for punctuality. For these identified TOP events a general assessment is carried out
where the total risk or cost for each such TOP event is “calculated”. The “consequence”
analysis is thus reduced to totally 10-15 items, which is a very low number compared to

the number of “rows” in the FMECA, which could be thousands or more.

e Introduction of generic RCM templates. A generic RCM template is the result of a general

analysis of an equipment such as a turnout (mechanical part), a switch motor (electrical

150
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part), the traction system of a train etc. In such a generic analysis we make an “average”
assessment of important reliability parameters. Experience has shown that the number of
“generic” RCM templates is in the order of 50, where each generic template comprise 5 to

10 “components”.

* When the maintenance program is established for a specific line, or a specific train set, the

generic RCM template is taken as a starting point. For this general template we make local
adjustment in terms of adjustment factors. When the local adjustment factors have been
defined, it is straight forward to “update” the generic template to a local analysis, where
the optimisation of maintenance intervals also could be automated.

e When we know that we have several hundred or thousand physical components to treat

The
step

1

2

3.

4.

10.

11.

12.

13.

when the maintenance program is defined, we can imagine the value of such a “generic”

and “local adjustment” approach.

RCM analysis may be carried out as a sequence of activities. Some of these activities, or

s, are overlapping in time. The RCM process comprises the following steps:
. Study preparation

. System selection and definition

Functional failure analysis (FFA)

Critical item selection

. Data collection and analysis

. Failure modes, effects and criticality analysis (FMECA)
Selection of maintenance actions

Determination of maintenance intervals

Preventive maintenance comparison analysis
Treatment of non-critical items

Implementation

In-service data collection and updating

Local adjustments
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The various steps are discussed in the following sections with a focus on Steps 1-8. Note that the
basis for step 1-12 would be the “generic approach”. That is, we typically carry out these steps for
“generic” systems or components, and then in step 13 we make explicit assessments reflecting
the conditions related to each physical unit.

Step 1: Study preparation
The main objectives of an RCM analysis are:

1. to identify effective maintenance tasks,
2. to evaluate these tasks by some cost-benefit analysis, and
3. to prepare a plan for carrying out the identified maintenance tasks at optimal intervals.

If a maintenance program already exists, the result of an RCM analysis will often be to eliminate
inefficient maintenance tasks.

Before an actual RCM analysis is initiated, an RCM project group should be established. The
RCM project group should include at least one person from the maintenance function and one
from the operations function, in addition to an RCM specialist.

In Step 1 “Study preparation” the RCM project group should define and clarify the objectives
and the scope of the analysis. Requirements, policies, and acceptance criteria with respect to
safety and environmental protection should be made visible as boundary conditions for the
RCM analysis.

The part of the plant to be analysed is selected in Step 2. The type of consequences to be
considered should, however, be discussed and settled on a general basis in Step 1. Possible

consequences to be evaluated may comprise:

(i) risk to humans,

(ii) environmental damages,

(iii) delays and cancellation of travels,

(iv) material losses or equipment damage,

(v) loss of marked shares, etc.

The possible consequence classes can not be measured in one common unit. It is therefore
necessary to prioritise between means affecting the various consequence classes. Such a priori-
tisation is not an easy task and will not be discussed in this presentation. The trade-off problems
can to some extent be solved within a decision theoretical framework (Vatn 1995 and Vatn ez al.
1996).
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RCM analyses have traditionally concentrated on PM strategies. It is, however, possible to
extend the scope of the analysis to cover topics like corrective maintenance strategies, spare part
inventories, logistic support problems, etc. The RCM project group must decide what should be
part of the scope and what should be outside. The resources that are available for the analysis
are usually limited. The RCM group should therefore be sober with respect to what to look into,
realizing that analysis cost should not dominate potential benefits.

In many RCM applications the plant already has effective maintenance programs. The RCM
project will therefore be an upgrade project to identify and select the most effective PM tasks, to
recommend new tasks or revisions, and to eliminate ineffective tasks. Then apply those changes
within the existing programs in a way that will allow the most efficient allocation of resources.

When applying RCM to an existing PM program, it is best to utilise, to the greatest extent pos-
sible, established plant administrative and control procedures in order to maintain the structure

and format of the current program. This approach provides at least three additional benefits:

(i) It preserves the effectiveness and successfulness of the current program.

(ii) Itfacilitatesacceptance and implementation of the project”s recommendations when they

are processed.

(iii) It allows incorporation of improvements as soon as they are discovered, without the ne-

cessity of waiting for major changes to the PM program or analysis of every system.

Since we are heading for a sound basis for interval optimisation, we will need an explicit quan-
tification of the risk associated with each “TOP event”. On a general basis, we therefore need
to establish the relevant risk models, both with respect to safety and punctuality. See Chapter
11 for a preliminary assessment of these risks. It is not the maintenance department that is
responsible for establishing these “generic” risk models. Usually risk analyses, or safety cases
exists, and these could be used as a basis for the appropriate structuring of the risk picture.

Step 2: System selection and definition
Before a decision to perform an RCM analysis is taken, two questions should be considered:

* To which systems are an RCM analysis beneficial compared with more traditional main-

tenance planning?

* Atwhat level of assembly (plant, system, subsystem ...) should the analysis be conducted?

Regarding the first question, all systems may in principle benefit from an RCM analysis. With
limited resources, we must, however, usually make priorities, at least when introducing the RCM
approach for the first time. We should start with the systems that we assume will benefit most

from the analysis. The following criteria may be used to prioritise systems for an RCM analysis:
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(i) The failure effects of potential system failures must be significant in terms of safety, envi-

ronmental consequences, production loss, or maintenance costs.
(ii) The system complexity must be above average.

(iii) Reliability data or operating experience from the actual system, or similar systems, should

be available.

Most operating plants have developed an assembly hierarchy, i.e., an organization of the system
hardware elements into a structure that looks like the root system of a tree. In the offshore
oil and gas industry this hierarchy is usually referred to as the tag number system. In railway
infrastructure maintenance it is common to use the disciplinary areas as the highest level in the
plant register, typically we have:

e Superstructure

Substructure

Signalling

Telecommunications

* Power supply (overhead line with supporting systems)

Low voltage systems
For the rolling stock we similarly have a system breakdown:
* The breaking system including automatic train protection (ATP)
e The traction system
e The door system with interlocking connections to traction system
* The pantograph with supporting system
* The bogie system
e The coupler system
* The wagon

e The locomotive
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The following terms will be used for the levels of the assembly hierarchy:

Plant: A logical grouping of systems that function together to provide an output or product by
processing and manipulating various input raw materials and feed stock. An offshore gas pro-
duction platform may e.g. be considered as a plant. For railway application a plant might be a
maintenance area, where the main function of that “plant” is to ensure satisfactiory infrastruc-

ture functionality in that area.

System: A logical grouping of subsystems that will perform a series of key functions, which often
can be summarized as one main function, that are required of a plant (e.g. feed water, steam
supply, and water injection). The compression system on an offshore gas production platform
may e.g. be considered as a system. Note that the compression system may consist of several
compressors with a high degree of redundancy. Redundant units performing the same main
function should be included in the same system. It is usually easy to identify the systems in a
plant, since they are used as logical building blocks in the design process.

The system level is usually recommended as the starting point for the RCM process. This
means that on an offshore oil/gas platform the starting point of the analysis should be for ex-
ample the compression system, the water injection system or the fire water system, and not the
whole platform. In railway application the systems were defined above as the highest level in
the plant hierarchy.

The systems may be further broken down in subsystems, and subsubsystems, etc. For the
purpose of the RCM-process the lowest level of the hierarchy should be what we will call an RCM

analysis item:

RCM analysis item: A grouping or collection of components which together form some iden-
tifiable package that will perform at least one significant function as a stand-alone item (e.g.
pumps, valves, and electric motors). For brevity, an RCM analysis item will in the following
be called an analysis item. By this definition a shutdown valve, for example, is classified as an
analysis item, while the valve actuator is not. The actuator is a supporting equipment to the
shutdown valve, and only has a function as a part of the valve. The importance of distinguish-
ing the analysis items from their supporting equipment is clearly seen in the FMECA in Step
6. If an analysis item is found to have no significant failure modes, then none of the failure
modes or causes of the supporting equipment are important, and therefore do not need to be
addressed. Similarly if an analysis item has only one significant failure mode then the support-
ing equipment only needs to be analyzed to determine if there are failure causes that can affect
that particular failure mode. Therefore only the failure modes and effects of the analysis items
need to be analysed in the FMECA in Step 6. An analysis item is usually repairable, meaning that
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it can be repaired without replacing the whole item. In the offshore reliability database (OREDA)
the analysis item is called an equipment unit. The various analysis items of a system may be at
different levels of assembly. On an offshore platform, for example, a huge pump may be defined
as an analysis item in the same way as a small gas detector. If we have redundant items, e.g. two
parallel pumps, each of them should be classified as analysis items. When we in Step 6 of the
RCM process identify causes of analysis item failures, we will often find it suitable to attribute
these failure causes to failures of items on an even lower level of indenture. The lowest level is

normally referred to as components.

Component: The lowest level at which equipment can be disassembled without damage or de-
struction to the items involved. Some authors refers to this lowest level as Least Replaceable
Assembly (LRA), while OREDA uses the term maintainable item. It is very important that the
analysis items are selected and defined in a clear and unambiguous way in this initial phase
of the RCM-process, since the following analysis will be based on these analysis items. If the
OREDA database is to be used in later phases of the RCM process, it is recommended as far as
possible to define the analysis items in compliance with the “equipment units” in OREDA.

Step 3: Functional failure analysis (FFA)

The objectives of this step are:
(i) toidentify and describe the systems required functions,
(ii) to describe input interfaces required for the system to operate, and

(iii) to identify the ways in which the system might fail to function.

Step 3(i): Identification of system functions

The objective of this step is to identify and describe all the required functions of the system. In
is often recommended that the various functions are expressed in the same way, as a statement
comprising a verb plus a noun - for example, “close flow”, “contain fluid”, “transmit signal”.

A complex system will usually have a high number of different functions. It is often difficult
to identify all these functions without a checklist. The checklist or classification scheme of the
various functions presented below may help the analyst in identifying the functions. The same
scheme will be used in Step 6 to identify functions of analysis items. The term item is therefore

used in the classification scheme to denote either a system or an analysis item.

* Essential functions: These are the functions required to fulfil the intended purpose of the

item. The essential functions are simply the reasons for installing the item. Often an es-
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sential function is reflected in the name of the item. An essential function of a pump is for
example to pump a fluid.

* Auxiliary functions: These are the functions that are required to support the essential
functions. The auxiliary functions are usually less obvious than the essential functions,
but may in many cases be as important as the essential functions. Failure of an auxiliary
function may in many cases be more critical than a failure of an essential function. An

auxiliary function of a pump is for example containment of the fluid.

* Protective functions: The functions intended to protect people, equipment and the envi-
ronment from damage and injury. The protective functions may be classified according
to what they protect, as:

* safety functions
¢ environment functions
* hygiene functions

An example of a protective function is the protection provided by a rupture disk on a pressure
vessel, e.g., a separator.

1. Information functions: These functions comprise condition monitoring, various gauges
and alarms etc.

2. Interface functions:These functions apply to the interfaces between the item in question
and other items. The interfaces may be active or passive. A passive interface is for example
present when an item is a support or a base for another item.

3. Superfluous functions: According to Moubray (1991) “Items or components are sometimes
encountered which are completely superfluous. This usually happens when equipment
has been modified frequently over a period of years, or when new equipment has been
over specified”. Superfluous functions are sometimes present when the item has been
designed for an operational context that is different from the actual operational context.
In some cases failures of a superfluous function may cause failure of other functions.

For analysis purposes the various functions of an item may also be classified as:

(@) On-line functions:These are functions operated either continuously or so often that the
user has current knowledge about their state. The termination of an on-line function is
called an evident failure.
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(b) Off-line functions:These are functions that are used intermittently or so infrequently that
their availability is not known by the user without some special check or test. The protec-
tive functions are very often off-line functions. An example of an off-line function is the
essential function of an emergency shutdown (ESD) system on an oil platform. Many of
the protective functions are off-line functions. The termination of an off-line function is
called a hidden failure.

Note that this classification of functions should only be used as a checklist to ensure that all
relevant functions are revealed. Discussions about whether a function should be classified as
“essential” or “auxiliary” etc. should be avoided. Also note that the classification of functions
here is used at the system level. Later the same classification of functions is used in the failure
modes, effects and criticality analysis (FMECA) in Step 6 at the analysis item level. The system
may in general have several operational modes (e.g., running, and standby), and several func-
tions for each operating state.

The essential functions are often obvious and easy to establish, while the other functions

may be rather difficult to reveal.

Step 3(ii): Functional block diagrams

The various system functions identified in Step 3(i) may be represented by functional diagrams
of various types. A popular approach is the structured analysis and design technique (SADT).

The SADT uses the concept of a function block with five main elements:

e Function: Definition of the function to be performed

Input: The energy, materials, and information that are necessary to perform the function

Control: The controls and other elements that constrain or govern how the function will
be carried out

Mechanism: The people,system, facilities or equipment necessary to carry out the func-

tion

Output: The result of the function

Figure 13.1 illustrates this in relation to the traction system of a bike:

The necessary inputs to a function are illustrated in the functional block diagram together
with the necessary control signals and the various environmental stressors that may influence
the function.

Itis generally not required to establish functional block diagrams for all the system functions.

The diagrams are, however, often considered as efficient tools to illustrate the input interfaces
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Gear system
Control

Rider force on Rotation of
the pedals rear wheel

Convert rider force to
Input rotation of wheel Output

Mechanism

Mechanical
conversion

Figure 13.1: SADT for the bike example

to a function. In some cases we may want to split system functions into subfunctions on an in-
creasing level of detail, down to functions of analysis items. The functional block diagrams may
be used to establish this functional hierarchy in a pictorial manner, illustrating series-parallel

relationships, possible feedbacks, and functional interfaces.

Step 3(iii): System failure modes

The next step of the FFA is to identify and describe how the various system functions may fail.
In Section 4.1.5 a failure mode is defined as “The manner in which a failure occurs, independent
of the cause of the failure”. It is important to realize that a failure mode is a manifestation of the
failure as seen from the outside, i.e. the termination of one or more functions.

In most of the RCM references the system failure modes are denoted “functional failures”.
Failure modes / functional failures may be classified in three main groups related to the function

of the item (component, system etc):

* Total loss of function: In this case a function is not achieved at all, or the quality of the

function is far beyond what is considered as acceptable.

* Partial loss of function: This group may be very wide, and may range from the nuisance

category almost to the total loss of function.

* Erroneous function: This means that the item performs an action that was not intended,

often the opposite of the intended function.

The system failure modes (functional failures) may be recorded on a specially designed FFA-
form, that is rather similar to a standard FMECA form. Figure 13.2 shows an example of an FFA

form.
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System: Traction system Performed by: Jorn Vatn
Ref. drawing no.:#123 Date: 2023-10-18 Page: 1 of: 9
Opera- Function Function Functional | Frequency | Criticality
tional requirements failure
mode S|E| Al C
Running | Convert Possibility to have No torque LL -|-|H M
rider force | different exchange, on back
to rotation i.e., use of gears wheel
of wheel
Cannot L -1-({ML
change
gear

Figure 13.2: Part of the FFA form for the bike example

In the first column of Figure 13.2 the various operational modes of the system are recorded.
For each operational mode, all the relevant functions of the system are recorded in column 2.
The performance requirements to the functions, like target values and acceptable deviations
are listed in column 3. For each system function (in column 2) all the relevant system failure
modes are listed in column 4. In column 5 a criticality ranking of each system failure mode
(functional failure) in that particular operational mode is given. The reason for including the
criticality ranking is to be able to limit the extent of the further analysis by disregarding insignif-
icant system failure modes. For complex systems such a screening is often very important in
order not to waste time and money.

The criticality ranking depends on both the frequency/probability of the occurrence of the
system failure mode, and the severity of the failure. The severity must be judged at the plant
level.

The severity ranking should be given in the four consequence classes; (S) safety of personnel,
(E) environmental impact, (A) production availability, and (C) economic losses. For each of
these consequence classes the severity should be ranked as for example (H) high, (M) medium,
or (L) low. How we should define the borderlines between these classes, will depend on the
specific application.

If at least one of the four entries are (M) medium or (H) high, the severity of the system
failure mode should be classified as significant, and the system failure mode should be subject
to further analysis.

The frequency of the system failure mode may also be classified in the same three classes.
(H) high may for example be defined as more than once per 5 years, and (L) low less than once
per 50 years. As above the specific borderlines will depend on the application. The frequency
classes may be used to prioritise between the significant system failure modes.
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If all the four severity entries of a system failure mode are (L) low, and the frequency is also
(L) low, the criticality is classified as insignificant, and the system failure mode is disregarded
in the further analysis. If, however, the frequency is (M) medium or (H) high the system failure
mode should be included in the further analysis even if all the severity ranks are (L) low, but with

a lower priority than the significant system failure modes.

Step 4: Critical item selection

The objective of this step is to identify the analysis items that are potentially critical with respect
to the system failure modes (functional failures) identified in Step 3(iii). These analysis items
are denoted functional significant items (FSI). Note that some of the less critical system failure
modes have been disregarded at this stage of the analysis. Further, the two failure modes “total
loss of function” and “partial loss of function” will often be affected by the same items (FSIs).

For simple systems the FSIs may be identified without any formal analysis. In many cases it is
obvious which analysis items that have influence on the system functions. For complex systems
with an ample degree of redundancy or with buffers, we may need a formal approach to identify
the functional significant items. If failure rates and other necessary input data are available for
the various analysis items, it is usually a straightforward task to calculate the relative importance
of the various analysis items based on a fault tree model or a reliability block diagram. A number
of importance metrics are discussed in Appendix 22.

The main reason for performing this task is to screen out items that are more or less irrele-
vant for the main system functions, i.e., in order not to waste time and money analysing irrele-
vant items.

In addition to the FSIs, we should also identify items with high failure rate, high repair costs,
low maintainability, long lead time for spare parts, or items requiring external maintenance per-
sonnel. These analysis items are denoted maintenance cost significant items (MCSI). The sum
of the functional significant items and the maintenance cost significant items are denoted main-
tenance significant items (MSI).

In some cases it may be beneficial to focus on critical items, in other cases we should analyse
all items.

In the RCM project for the Norwegian Railway Administration the use of generic RCM anal-
yses made it possible to analyse all identified MSIs. Thus this step tend to be less critical if a
generic approach is taken.

In the FMECA analysis of Step 6, each of the MSIs will be analysed to identify their possible
impact upon failure on the four consequence classes: (S) safety of personnel, (E) environmental
impact, (A) production availability (punctuality), and (C) economic losses. This analysis is partly
inductive and will focus on both local and system level effects.
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Step 5: Data collection and analysis

The purpose of this step is to establish a basis for both the qualitative analysis (relevant failure
modes and failure causes), and the quantitative analysis (reliability parameters such as MTTE

PF intervals and so on).

Step 6: Failure modes, effects and criticality analysis

The objective of this step is to identify the dominant failure modes of the MSIs identified during
Step 4. The FMECA methodology is discussed in Appendix C.

Step 7: Selection of Maintenance Actions

This phase is the most novel compared to other maintenance planning techniques. A decision
logic is used to guide the analyst through a question-and-answer process. The input to the RCM
decision logic is the dominant failure modes from the FMECA in Step 6. The main idea is for
each dominant failure mode to decide whether a preventive maintenance task is suitable, or
it will be best to let the item deliberately run to failure and afterwards carry out a corrective

maintenance task. There are generally three reasons for doing a preventive maintenance task:
1. to prevent a failure
2. to detect the onset of a failure
3. to discover a hidden failure

Only the dominant failure modes are subjected to preventive maintenance. To obtain appropri-
ate maintenance tasks, the failure causes or failure mechanisms should be considered. The idea
of performing a maintenance task is to prevent a failure mechanism to cause a failure. Hence,
the failure mechanisms behind each of the dominant failure modes should be entered into the

RCM decision logic to decide which of the following basic maintenance tasks that is applicable:
1. Continuous on-condition task (CCT)
2. Scheduled on-condition task (SCT)
3. Scheduled overhaul (SOH)
4. Scheduled replacement (SRP)
5. Scheduled function test (SFT)

6. Run to failure (RTF)



CHAPTER 13. RELIABILTY CENTRED MAINTENANCE 163

Continuous on-condition task (CCT) is a continuous monitoring of an item to find any poten-
tial failures. An on-condition task is applicable only if it is possible to detect reduced failure

resistance for a specific failure mode from the measurement of some quantity.

Example:

A distance gauge on the turnout might be used to measure the distance between the switch
point and stock rail to detect that the 3mm limit will be reached. At a predefined level (i.e. 2.7
mm), the system alerts the maintenance crew, which carry out an appropriate maintenance ac-

tion. O

Scheduled on-condition task (SCT) is a scheduled inspection of an item at regular intervals
to find any potential failures. There are three criteria that must be met for an on-condition task
to be applicable:

1. It must be possible to detect reduced failure resistance for a specific failure mode.

2. It must be possible to define a potential failure condition that can be detected by an ex-
plicit task.

3. There must be a reasonable consistent age interval between the time of potential failure

and the time of failure.

Examples:

A manual inspection every second month will reveal whether the “3 mm limit” is soon being
reached. Appropriate maintenance action can be issued. Ultrasonic inspection of rails every
year to detect cracks in the rails. O

There are two disadvantage of a scheduled versus a continuous on-condition task:

e The man-hour cost of inspection is often larger than the cost of installing the sensor

* Since the scheduled inspection is carried out at fixed points of time, one might “miss”
situations where the degradation is faster than anticipated.

An advantage of a scheduled on-condition task is that the human operator is then able to “sense”
information that a physical sensor will not be able to detect. This means that traditional “Walk
around checks” should not be totally skipped even if sensors are installed.

Scheduled overhaul (SOH) is a scheduled overhaul of an item at or before some specified
age limit, and is often called “hard time maintenance”. An overhaul task can be considered

applicable to an item only if the following criteria are met (Nowlan Heap 1978):
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1. There must be an identifiable age at which the item shows a rapid increase in the item’s
failure rate function.
2. Alarge proportion of the units must survive to that age.

3. It must be possible to restore the original failure resistance of the item by reworking it.

Examples:
Rehabilitation of wooden sleepers borings every three year. Lubrication of the char/slideplate

every three day. Cleaning every month. O

Scheduled replacement (SRP)is scheduled discard of an item (or one of its parts) at or before
some specified age limit. A scheduled replacement task is applicable only under the following
circumstances (Nowlan Heap 1978):

1. The item must be subject to a critical failure.
2. Test data must show that no failures are expected to occur below the specified life limit.

3. The item must be subject to a failure that has major economic (but not safety) conse-

quences.

4. There must be an identifiable age at which the item shows a rapid increase in the failure

rate function.

5. Alarge proportion of the units must survive to that age.

Example:
Replacement of the motor every one year The motor is then either overhauled to “a god as new”

condition, or replaced in the maintenance depot. O

Scheduled function test (SFT)is a scheduled inspection of a hidden function to identify any
failure. A scheduled function test task is applicable to an item under the following conditions
(Nowlan Heap 1978):

1. The item must be subject to a functional failure that is not evident to the operating crew
during the performance of normal duties.

2. The item must be one for which no other type of task is applicable and effective.
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Figure 13.3: Maintenance Task Assignment/Decision logic

Example:

Sighting or hammer blow every year to detect loose lockspikes fastening chars/baseplates on
wooden sleepers. O

Run to failure (RTF)is a deliberate decision to run to failure because the other tasks are not
possible or the economics are less favourable. In many situations one maintenance task may
prevent several failure mechanisms. Hence in some situations it is better to put failure modes
rather than failure mechanisms into the RCM decision logic.

Note also that if a failure cause for a dominant failure mode corresponds to a supporting
equipment, the supporting equipment should be defined as the “item” to be entered into the
RCM decision logic.

The criteria given for using the various tasks should only be considered as guidelines for
selecting an appropriate task. A task might be found appropriate even if some of the criteria are
not fulfilled.

Figure 13.3 shows the RCM decision logic. Note that this logic is much simpler than those
found in standard RCM references, e.g., Moubray (1991). It should be emphasized that such
a logic can never cover all situations. For example in the situation of a hidden function with

ageing failures, a combination of scheduled replacements and function tests is required.
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1.8 Step 8: Determination of Maintenance Intervals

Usually formalised methods for optimisation of maintenance interval is not a part of the RCM
analysis. In order to optimise maintenance intervals we need to structure the analysis in such
a way that it fits into the maintenance optimisation models that exists. See Chapter 11 for a

discussion of determination of maintenance intervals using optimisation models.

Step 9: Preventive maintenance comparison analysis

Two overriding criteria for selecting maintenance tasks are used in RCM. Each task selected

must meet two requirements:
It must be applicable
It must be effective

Applicability: meaning that the task is applicable in relation to our reliability knowledge and
in relation to the consequences of failure. If a task is found based on the preceding analysis, it
should satisfy the Applicability criterion.

A PM task will be applicable if it can eliminate a failure, or at least reduce the probability of
occurrence to an acceptable level - or reduce the impact of failures!

Cost-effectiveness: meaning that the task does not cost more than the failure(s) it is going to
prevent. The PM task’s effectiveness is a measure of how well it accomplishes that purpose and
if it is worth doing. Clearly, when evaluating the effectiveness of a task, we are balancing the
“cost” of “performing the maintenance with the cost of not performing it. In this context, we

may refer to the cost as follows:
1. The “cost” of a PM task may include:

* the risk of maintenance personnel error, e.g. “maintenance introduced failures”

* therisk of increasing the effect of a failure of another component while the one is out

of service
* the use and cost of physical resources
* the unavailability of physical resources elsewhere while in use on this task
* production unavailability during maintenance
* unavailability of protective functions during maintenance of these
¢ “The more maintenance you do the more risk you will expose your maintenance per-

sonnel to”

2. On the other hand, the “cost” of a failure may include:
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¢ the consequences of the failure should it occur (i.e., loss of production, possible vi-
olation of laws or regulations, reduction in plant or personnel safety, or damage to

other equipment)

* the consequences of not performing the PM task even if a failure does not occur (i.e.,

loss of warranty)

* increased premiums for emergency repairs (such as overtime, expediting costs, or

high replacement power cost).

Step 10: Treatment of non-MSlIs

In Step 4 critical items (MSIs) were selected for further analysis. A remaining question is what
to do with the items which are not analysed. For plants already having a maintenance program
it is reasonable to continue this program for the non-MSIs. If a maintenance program is not in
effect, maintenance should be carried out according to vendor specifications if they exist, else

no maintenance should be performed.

Step 11: Implementation

A necessary basis for implementing the result of the RCM analysis is that the organizational
and technical maintenance support functions are available. A major issue is therefore to ensure
the availability of the maintenance support functions. The maintenance actions are typically
grouped into maintenance packages, each package describing what to do, and when to do it.
Many accidents are related to maintenance work. When implementing a maintenance pro-
gram it is therefore of vital importance to consider the risk associated with the execution of the
maintenance work. Checklists could be used to identify potential risk involved with mainte-

nance work:

e Can maintenance people be injured during the maintenance work?

Is work permit required for execution of the maintenance work?

* Are means taken to avoid problems related to re-routing, by-passing etc.?

Can failures be introduced during maintenance work?

Task analysis, see e.g., Kirwan and Ainsworth (1997), may be used to reveal the risk involved

with each maintenance job.



CHAPTER 13. RELIABILTY CENTRED MAINTENANCE 168

Step 12: In-service data collection and updating

As mentioned earlier, the reliability data we have access to at the outset of the analysis may be
scarce, or even second to none. In our opinion, one of the most significant advantages of RCM
is that we systematically analyze and document the basis for our initial decisions, and, hence,
can better utilize operating experience to adjust that decision as operating experience data is
collected. The full benefit of RCM is therefore only achieved when operation and maintenance
experience is fed back into the analysis process.

The process of updating the analysis results is also important due to the fact that nothing

remain constant, best seen considering the following arguments:
* The system analysis process is not perfect and requires periodic adjustments.

e The plant itself is not a constant since design, equipment and operating procedures may
change over time.

e Knowledge grows, both in terms of understanding how the plant equipment behaves and
how technology can increase availability and reduce costs.

Reliability trends are often measured in terms of a non-constant ROCOF (rate of occurrence of
failures). The ROCOF measures the probability of failure as a function of calendar time, or global
time since the plant was put into operation. The ROCOF may change over time, but within one
cycle the ROCOF is assumed to be constant. This means that analysis updates should be so
frequent that the ROCOF is fairly constant within one period. Opposite to the ROCOE the failure
rate fimctopm is measuring the probability of failure as a function of local time, i.e., the time
elapsed since last repair/replacement. However, the failure rate function can not be considered
constant, if so there is no rationale for performing scheduled replacement/repair. The updating

process should be concentrated on three major time perspectives:
e Short term interval adjustments
* Medium term task evaluation
* Long term revision of the initial strategy

The short term update can be considered as a revision of previous analysis results. The input to
such an analysis is updated reliability figures either due to more data, or updated data because
of reliability trends. This analysis should not require much resources, as the framework for the
analysis is already established. Only Step 5 and Step 8 in the RCM process will be affected by
short term updates.
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The medium term update will also review the basis for the selection of maintenance actions
in Step 7. Analysis of maintenance experience may identify significant failure causes not consid-
ered in the initial analysis, requiring an updated FMECA analysis in Step 6. The medium term
update therefore affects Step 5 to 8.

The long term revision will consider all steps in the analysis. It is not sufficient to consider
only the system being analysed, it is required to consider the entire plant with it’s relations to the
outside world, e.g., contractual considerations, new laws regulating environmental protection
etc.

Generic and local RCM analysis

In principle, the RCM analysis should be conducted for physical units in an explicit operational
context. This means that we for example conduct an RCM analysis for a given turnout at loca-
tion X at line Y. For this turnout we identify all functions, failure modes etc. Then we propose
a set of maintenance tasks, and finally chose the maintenance intervals based on the reliabil-
ity performance parameters for that turnout, and the personnel and punctuality risk for that
turnout. Now, there might be several hundreds of similar turnouts, but where both the reliability
performance and the risk profile might vary, which again should ask for different maintenance
intervals. The question is whether we need to repeat the entire RCM analysis for all the (similar)
turnouts? The proposed answer to this question is to first conduct a generic RCM analysis, and

then perform local adjustment to risk parameters. The following steps would then be required:

1. Conduct a generic RCM analysis for selected components. In this analysis we use generic, or
average values of reliability parameters, and consequences parameters describing safety,
punctuality, availability, environmental risk.

2. Generic RCM database. The results from the generic RCM analysis is stored in a generic
RCM database, i.e., generic analyses for selected equipment types. These types could be
e.g. a turnout, a main signal, traction system, break system etc. In the first place we might
restrict ourselves to consider a broad class of e.g., turnouts (different manufactures). In
a later phase we might want to refine our analysis to also consider qualitative different
turnouts (with different failure modes).

3. Selection of local analysis objects. In the local analysis we work with a subset of the railway
system. This could be for example one specific line, turnouts in the main track of one
specific line, one specific train set, one specific train set operating on one specific line etc.

4. Find an appropriate generic RCM template. For a local analysis object, we now recall
the corresponding generic RCM analysis from the RCM database. We first verify that the
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generic RCM analysis object (template) is appropriate in terms of qualitative properties,
i.e. the different functions, failure modes etc that are considered. At this point it might be
necessary to add more failure modes, regard some failure modes etc. If this is the case, we
add the “new” RCM object to the generic RCM database in order to make the generic RCM

database more and more comprehensive.

5. Adjust parameters. At the local level we identify differences from the generic parame-
ters used in the generic RCM database. For example a specific line might have very old
turnouts, and hence the MTTF is shorter than the average MTTE At this step of the proce-
dure we have to consider all parameters that are involved in the optimisation model.

6. Re-run the optimisation procedure. Based on the new “local” parameters we will re-run
the optimisation procedure to adjust maintenance intervals taking local differences into

account. To carry out this process we need a computerised tool to streamline the work.

7. Document the results. The results from the local analysis is stored in a local RCM database.
This is a database where only the adjustment factors are documented, for example for
turnouts A, B, C and D on line Y the MTTF is 30% higher than the average. Hence the

maintenance interval is also reduced accordingly.

13.2 Risk based inspection

Risk based inspection (RBI) is an approach to establish an inspection strategy for a plant. The
methodology is in many aspects similar to the RCM approach. Some main differences between
RCM and RBI are:

* RCM is a general method that could be applied a wide range of applications, whereas RBI
is a tailor-made method which only applies typically for structural elements where the

degradation could be measured, i.e. by means of inspection.

e RBI manuals usually cover a wide range of inspection methods and a discussion of the

applicability of the various methods in different situations.

e The RBI method is much more integrated with the risk management system than usually
is the case for RCM. This means that the safety implication of failures are more explicitly
treated, and risk is often quantified on a detailed level, and compared with the overall risk

acceptance criteria for the plant.

DNV-RP-G101 (2021) is a reference to RBI for mehanical equipment. Wintle et al. (2001) propose
the following steps in a process diagram for plant integrity management by RBI:
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1.

2.

9a.

9b.

Assess the requirements for integrity management and risk based inspection

Define the systems, the boundaries of systems, and the equipment requiring integrity

management
Specify the integrity management team and responsibilities
Assemble plant database

Analyse accident scenarios, deterioration mechanisms, and assess and rank risks and un-

certainties
Develop inspection plan within integrity management strategy

Achieve effective and reliable examination and results

. Assess examination results and fitness-for-service

Update plant database and risk analysis, review inspection plan and set maximum inter-

vals to next examination

Repair, modify, change operating conditions

10 Audit and review integrity management process
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Acronyms and Greek letters

A.1 Acronyms

Al Artificial intelligence

ANN Artificial neural networks

ARP Age replacement policy

BIM Buildiing information management systems
BRP Block replacement policy

CCT Continuous on-condition task

CDF Cumulative distribution function

CM Corrective maintenance

CMMS Computerized maintenance management system
CMS Condition monitoring system

DT Digital twin

EBO Expected backorder

ETA Event tree analysis

FFA Functional failure analysis

FMECA Failure mode, effect and criticality analysis

FRACAS Failure reporting, analysis, and corrective action system
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FTA Fault tree analysis

HPP Homogeneous Poison process
LCC Life cycle cost

LCP Life cycle profit

LS Least squares

LT Lead time

MDT Mean down time

ML Machine learning

MLD Mean logistic delay

MLE Maximum likelihood estimation
MOCUS Method of obtaining cut sets
MRT Mean active repair time

MSI Maintenance significant item
MTBR Mean time between renewals
MTTF Mean time to failure

NHPP Non-homogeneous Poison process
NPV Net present value

PDF Probability density function
PFD Probability of failure on demand

PM Preventive maintenance

RAMS Reliability, availability, maintainability, and safety

RBD Reliability block diagram
RCM Reliability centred maintenance

RP Renewal process
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RTF Run to failure

RUL Remaining useful lifetime

SADT Structured analysis and design technique

SCADA Supervisory control and data acquisition systems
SCT Scheduled on-condition task

SD Standard deviation

SFT Scheduled function test

SOH Scheduled overhaul

SRP Scheduled replacement

SVM Support vector machines

TTT Total time on test

VBA Visual basic for applications, i.e., programming language in Excel

A.2 Greek letters
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Table A.1: Greek letters and interpretation

Letter Name Explanation
a alpha Ageing parameter, and wake decay factor in offshore wind
B beta Used for common cause factor and regression parameter vector
A lambda Failure rate in the exponential distribution,
intensity parameter in the Weibull distribution,
and effective failure rate as function of maintenance interval
T tau Maintenance interval
¢ phi Structure function
A Delta Used together with # to express a small time interval, i.e., At
U mu Used for repair rate, and mean drift in the Wiener process
o sigma Volatility in the Wiener process
r Gamma Gamma function
Y gamma Yaw angle in offshore wind
0 theta Used for the parameter vector in estimation
() Phi Used for CDF in the standard normal distribution

175



Appendix B

Probability theory

B.1 Basic probability notation

In this chapter basic elements of probability theory are reviewed. Readers familiar with proba-
bility theory can skip this chapter. Readers which are very unfamiliar with this topic are advised
to read an introductory textbook in probability theory.

B.1.1 Event

In order to define probability, we need to work with events. Let as an example A be the event
that there is an operator error in a control room. This is written:

A = {operator error}

An event may occur, or not. We do not know the outcome in advance prior to the experiment
or a situation in the “real life”. We also use the word event to denote a set of distinct events. For

example the event that we get an even number when throwing a die.

B.1.2 Probability

When events are defined, the probability that the event occurs is of interest. Probability is de-
noted by Pr(+), i.e.,

Pr(A) = Probability that A occur

The numeric value of Pr(A) may be found by:

¢ Studying the sample space.
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* Analysing collected data.
e Look up the value in data hand books.
* “Expert judgement” Qien et al. (1998).

The sample space defines all possible events. As an example let A = {It is Sunday}, B = {It is
Monday}, .., G = {It is Saturday}. The sample space is then given by S = {A, B,C, D, E, F, G}.
So-called Venn diagrams are useful when we want to analyse a subset of the sample space
S. A rectangle represents the entire sample space, and closed curves such as a circle are used
to represent subsets of the sample space as illustrated in Figure B.1. In the following we will

Figure B.1: Venn diagram
illustrate frequently used combinations of events:

Union. We write AU B to denote the union of A and B, i.e., the occurrence of A or B or (A and
B). Let A be the event that tossing a die results in a “six”, and B be the event that we get an odd
number of eyes. We then have Au B ={1,3,5,6}.

Intersection. We write AN B to denote the intersection of A and B, i.e. the occurrence of both
A and B. As an example, let A be the event that a project is not completed in due time, and let
B be the event that the budget limits are exceeded. An B then represent the situation that the

project is not completed in due time and the budget limits are exceeded.

Disjoint events. A and B are said to be disjoint if they can not occur simultaneously, i.e. AnB =
0 = the empty set. Let A be the event that tossing a die results in a “six”, and B be the event that
we get an odd number of eyes. A and B are disjoint since they cannot occur simultaneously, and
we have AnNB=0.

Complementary events. The complement of an event A is all events in the sample space S
except for A. The complement of an event is denoted by A®. Let A be the event that tossing a
die results in an odd number of eyes. AC is then the event that we get an even number of eyes.
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B.1.3 Probability and Kolmogorov’s axioms

Probability is a set function Pr() which maps events A;, A,... in the sample space S to real
numbers. The function Pr(:) can only take values in the interval from 0 to 1, i.e. probabilities are

greater or equal than 0, and less or equal than 1. Kolmogorov established the following axioms

Figure B.2: Mapping of events on the interval [0,1]

which all probability rules could be derived from:
1. 0 <Pr(4)
2. Pr(§) =1

3. If Ay, Ay, As,... is a sequence of disjoint events we shall then have:
PI‘(Al @] A2 U...)= PI‘(Al) + PI‘(AZ) +...

The axioms are the basis for establishing calculation rules when dealing with probabilities, but
they do not help us in establishing numerical values for the basic probabilities Pr(A;), Pr(A),
etc. Historically two lines of thoughts have been established, the classical (frequentiest) and the
Bayesian approach. In the classical thinking we introduce the concept of a random experiment,
where Pr(4;) is the relative frequency with which the event A; occurs. The probability could
then be interpreted as a property of the experiment, or a property of the world. By letting na-
ture reveal itself by doing experiments, we could in principle establish all probabilities that are
of interest. Within the Bayesian framework probabilities are interpreted as subjective believe
about whether A; will occur or not. Probabilities is then not a property of the world, but rather
a measure of the knowledge and understanding we have about a phenomenon.

Before we set up the basic rules for probability theory that we will need, we introduce the

concepts of conditional probability and independent events.

Conditional probability. Pr(A|B) denotes the conditional probability that A will occur given
that B has occurred.
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Independent events. A and B are said to be independent if information about whether B has
occurred does not influence the probability that A will occur, i.e., Pr(A|B) = Pr(A).

Basic rules for probability. The following calculation rules for probability apply:

Pr(AuB) =Pr(A) +Pr(B) —Pr(An B) (B.1)
Pr(An B) =Pr(A) -Pr(B) if A and B are independent (B.2)
Pr(A%) = Pr(A does not occur) = 1 - Pr(A) (B.3)
Pr(An B)
Pr(A|B) = ——— (B.4)
Pr(B)

Example
Let the two events A and B be defined by A = {It is Sunday} and B = {It is between 6 and 8 pm).
First we note that A and B are independent but not disjoint. We will find Pr(An B), Pr(Au B)
and Pr(A|B)

Pr(AnB) =Pr(A)-Pr(B) =

1 2 1 9

Pr(AUB) = Pr(A) + Pr(B) —Pr(ANB) = =+ — — — = —
7 24 84 42

Pr(AnB) 1/84 1

Pr(A|B) = = ==

Pr(B)  2/24 7

B.1.4 The law of total probability

In many situations it is easier to assess the probability of an event B conditionally on some other
events, say Aj, Ay, ..., Ay, than unconditionally. The law of total probability could then be used
to assess the unconditional probability. Now, we say that A, A,, ..., A, is a division of the sample
space if the union of all A;’s covers the entire sample space, i.e. AjU AU ... UA, =S and the A;’s
are pair wise disjoint, i.e. A;n A; =@ for i # j. An example is shown in Figure B.3.

Let A;, Ay, ..., Ar represent a division of the sample space S, and let B be an arbitrary eventin S.

The law of total probability now states:

,
Pr(B) = ) Pr(A;)-Pr(B|A)) (B.5)
i=1

Example
A special component type is ordered from two suppliers A; and A,. Experience has shown that
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Ay
Ay

As

Aq
S

Figure B.3: Divition of the sample space

components from supplier A; has a defect probability of 1%, whereas components from sup-
plier A, has a defect probability of 2%. In average 70% of the components are provided by sup-
plier A;. Assume that all components are put on a common stock, and we are not able to trace
the supplier for a component in the stock. A component is now fetched from the stock, and we

will calculate the defect probability, Pr(B):

.
Pr(B) = Y Pr(A;)-Pr(B|A;) = Pr(A;) - Pr(B|A}) + Pr(Ay) - Pr(B| Ap) =

i=1
0.7-0.01+0.3-0.02 = 1.3%

B.1.5 Bayes theorem

Now consider the example above, and assume that we have got a defect component from the
stock (event B). We will derive the probability that the component originates from supplier A;.
We then use Bayes formula that states if A;, As,..., A, represent a division of the sample space,

and B is an arbitrary event then:

Pr(BIA;)-Pr(A))

Pr(A;|B) = (B.6)

r

Pr(A;) -Pr(B|A;)
=1

1

Example
We have

Pr(B|A;)-Pr(A;)  0.01-0.7

:
Pr(A;)-Pr(BlAy 0013
=1

Pr(A;|B) = =0.54

1
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Thus, the probability of A; is reduced from 0.7 to 0.54 when we know that the component is
defect. The reason for this is that components from supplier A; are the best ones, and hence

when we know that the component was defect, it is less likely that it was from supplier A;. O

B.1.6 Stochastic variables

Stochastic variables are used to describe quantities which can not be predicted exactly. Note
that the term ‘random quantity’ is often used to denote a stochastic variable.

X is stochastic & Cannot say precisely the value X has or will take

To be more precise, a stochastic variable X is a real valued function that assigns a quantitative
measure to each event e; in the sample space S, i.e., X = X(e;). Often the underlying events,
e; are of little interest. We are only interested in the stochastic variable X measured by some
means.

Examples of stochastic variables are given below:

e X = Life time of a component (continuous)
* R =Repair time after a failure (continuous)

e T =Duration of a construction project (continuous)

C = Total cost of a renewal project (continuous)

M = Number of delayed trains next month (discrete)
e N = Number of customers arriving today (discrete)
e S =Service time for the first customer arriving today (continuous)

e W =Maintenance and operational cost next year (continuous)

Remark: We distinguish between continuous and discrete stochastic variables. Continuous
stochastic variables can take any value among the real numbers, whereas discrete variables can

take only a finite (or countable finite) number of values. O

Cumulative distribution function (CDF). A stochastic variable X is characterized by it’s cumu-

lative distribution function:

Fx(x) =Pr(X = x) (B.7)
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We use subscript X to emphasise the relation to the cumulative distribution function of the
quantity X. The argument (lowercase x) states which values the stochastic variable X could
take, or is of our interest. From the expression we observe that Fx (x) states the probability that
the random quantity X is less or equal than (the numeric value of) x. A typical distribution
function is shown in Figure B.4. Note that the distribution function is strictly increasing, and
0 < Fx(x) < 1. From Fx(x) we can obtain the probability that X will be within a specified interval,
[a,b):

Pr(a< X < b) = Fx(b) — Fx(a) (B.8)

>
Figure B.4: Cumulative distribution function, Fx (x)

Note that the index X representing the stochastic variable X often is dropped if it is obvious
which stochastic variable we are working with. Note also the distinction between lowercase and
uppercase letters. The uppercase X is used to denote a stochastic variable, for example number
of customers arriving next day. The lowercase x is just a representation of possible values X can
take. For example X = 3.

Example
Assume that the probability distribution function of X is given by Fx(x) = 1 — e~ ©01%° and we
will find the probability that X is in the interval (100,200]. From Equation (B.8) we have:

Pr(100 < X <200) = Fx(200) — Fx(100) =
1— e—(0.01-200)2] _ [1 _ o (001100 | _ -1 _ =4 _ 35

Probability density function (PDF). For a continuous stochastic variable, the probability den-
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sity function is given by

d
fx(x) = an(x) (B.9)

The probability density function expresses how likely the various x-values are.

fx(x)
A

el
>

Figure B.5: Probability density function, fx(x)

Note that for continuous random variables the probability that X will take a specific value van-
ishes. However, the probability that X will fall into a small interval around a specific value is
positive. For each x-value given in Figure B.5 fx(x) could be interpreted as the probability that
X will fall within a small interval around x divided by the length of this interval. Especially we

have:
x
Fx(x) = f fx(wdu (B.10)
and
b
Prla<X<b) = ffx(x)dx (B.11)
a

The last expression is illustrated in Figure B.6.

fx(z)
A

Figure B.6: The shadded area equals Pr(a < X < b)

Random quantities that take discrete values are said to be discretely distributed. For such
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quantities we introduce the point probability for X in the point x;:
p(xj) =Pr(X = x;) (B.12)
where x1, X2, ... are possible values X could take.

Expectation. The expectation (mean) of X is given by

o0
J x- fx(x)dx if X is continuous

E[X]=4 > (B.13)
2 xj-p(x;) if X is discrete
J

The expectation can be interpreted as the long time run average of X, if an infinite amount of

observations are available.

Median. The median of a distribution is the value myg of the stochastic variable X such that
Pr(X = mgp) = 1/2 and Pr(X = myp) = 1/2. In other words, the probability at or below my is at least
1/2, and the probability at or above my is at least 1/2.

Mode. The mode of a distribution is the value M of the stochastic variable X such that the
probability density function, or point probability at M is higher or equal than for any other value
of the stochastic variable. We sometimes used the term ‘most likely value’ rather than mode.

Variance. The variance of a random quantity expresses the variation in the value X will take in

the long run. We denote the variance of X by:

ofo (x—E[X])?- fx(x)dx if X is continuous

Var(X) =< 9 (B.14)
Y ((x; —E[X])"- p(xj) if X is discrete
j

Standard deviation. The standard deviation of X is given by

SD(X) = ++/Var(X) (B.15)

The standard deviation defines an interval which observations are likely to fall into, i.e., if 100
observations are available, we expect that approximate! 67 of these observations fall in the in-
terval [E[X] —SD(X),E[X] +SD(X)].

IThis result is valid for the normal distribution. For other distributions there may be deviation from this result.
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1

Precision. The precision, P, is the reciprocate of the variance, i.e. P = g7%5-

a-percentiles. The upper a-percentile, x, in a distribution Fx(x) is the value satisfying a =
Pr(X > x,) = 1 - Fx(xg).

We end this section by giving some results regarding expectation and variances. These re-
sults apply when it is easier to express the expectation and variance of one variable if we condi-
tion on the value of another variable.

Result

Double expectation
Let X and Y be stochastic variables. We then have:

E[X] =E[E[XIY]] (B.16)
Var(X) = E[Var(X]Y)] + Var(E[XIY]) (B.17)
O
It follows easily that
E[X] = E[XIB] Pr(B) + E [ XIB®] Pr(B®) (B.18)
Var(X) = Var(X|B) Pr(B) + Var(X|B®) Pr(B®)
+(E[X|B] - E[X])2Pr(B) + (E [ X|BC] - E(X])* Pr(BO) (B.19)

B.2 Common probability distributions

In this section we will present some common probability distributions. We write X ~ <Name
of distribution>(<parameters>) to express that X belongs to <Name of distribution>, and with
parameters <parameters>. Sometimes we also use an abbreviation for the distribution, for ex-
ample we write X ~ N(3,4) to express that X is normally distributed with expectation 3 and
variance 4.
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B.2.1 The normal distribution

X is said to be normally distributed if the probability density function of X is given by:

fx(x) = —;e‘ 202 (B.20)

where u and o are parameters that characterise the distribution. The mean and variance are
given by:

E(X]=pu
Var(X) = o2 (B.21)

The distribution function for X could not be written on closed from. Numerical methods are
required to find Fx(x). It is convenient to introduce a standardised normal distribution for this
purpose. We say that U is standard normally distributed if it’s probability density function is

given by:
1 2
Juw) = p(u) = Ee‘? (B.22)
We then have
Fy(u) =0(u) = [o(,b(t)dt: [o \/%_”e_gdt (B.23)

and we observe that the distribution function of U does not contain any parameters. We there-
fore only need one look-up table or function representing ®(u). A look-up table is given in Table
B.1. To calculate probabilities in the non-standardised normal distribution we use the following

result:

Result

If X is normally distributed with parameters ¢ and o, then
U=—— (B.24)
is standard normally distributed. O

In many situations we are interested in calculating the “truncated expectation” f_“oo xf(x)dx.

For the normal distribution the following result may be used:
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Result

Let X be normally distributed with parameters y and o. We then have:

Result

f_a xf(x)dxz,u@(%)—acp(a_u) (B.25)

oo o

where ®() and ¢ () are the CDF and PDF for the standard normal distribution respectively. O

To prove Equation (B.25) first introduce u = (x — u)/o yielding [*_xf(x)dx = [“""'7(gu -
wow)du. The ugp(u) part of the integral is directly found by the @ () function whereas for the
oug(u) part introduce z = —u?/2 yielding —o/v2n f_(‘;;” *120% 4=2 4 2. The result then follows.

Example Calculation in the normal distribution
Let X be normally distributed with parameters =5 and o = 3. We will find Pr(3 < X < 6). We
have:

3-p X-pu 6-u 3-5 6-5
Pr(3 < X <6) =Pr( < < ) = Pr( <U=s——)
o o o 3 3

=0 (1) -0 (_?2) =0(0.33) - (1 -®(0.67)) =0.629-1+0.749 =0.378

3
O
Problem
Consider the example in Example B.2.1, and carry out the calculations. O
Problem

Let X be the height of men in a population, and assume X is normally distributed with param-

eters 1 = 181 and o = 4. How large percentage of the population is more than 190 cm? O

B.2.2 The exponential distribution

X is said to be exponentially distributed if the probability density function of X is given by:

fx(x)=Ae M (B.26)
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The cumulative distribution function is given by:
Fx(x)=1-e (B.27)
and the mean and variance are given by:

E[X]=1/A
Var(X) = 1/1? (B.28)

Note that for the exponential distribution, X will always be greater than 0. The parameter A
is often denoted the intensity in the distribution Example
We will obtain the probability that X is greater than it’s expected value. We then have:

Pr(X>E[X])=1-Pr(X<E[X])=1-Fx((E[X]) = e "X = ¢71 2037

O
B.2.3 The Weibull distribution
X is said to be Weibull distributed if the probability density function of X is given by:
fx(x) = aA(Ax) ¥ Le~ D" (B.29)
The cumulative distribution function is given by:
Fx(x)=1-e 0" (B.30)
and the mean and variance are given by:
E[X] = ! r ! + 1)
A \a
1 [ (2 ,(1
Var(X) = < |[T'|—+1|-T°|—+1 (B.31)
A? a a

where I'(-) is the gamma function. Note that in the Weibull distribution X will always be positive.
The Weibull distribution is often used as a distribution for time to failure of components,

partly because it is rather simple, and flexible. For time to failure distributions we introduce the
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concept of the failure rate function. The failure rate function is given by:

f(1)

‘D=1"F0

(B.32)

here we use ¢ for running time, and we skip the index for the name of the stochastic variable
when it is obvious from the context. It follows that the failure rate function for the Weibull dis-

tribution is given by:
z(t) = ad“ ! (B.33)

B.2.4 The gamma distribution

X is said to be gamma distributed if the probability density function of X is given by:

(04

fx(x) = A ()% Lo (B.34)

I'(a)

a is denoted the intensity parameter whereas A is denoted the intensity parameter. For integer
values of a the gamma distribution is often denoted the Erlang distribution. The cumulative
distribution function could then be found on closed form:

a-1 a
Fx(x)=1-Y (A%e—(m (B.35)
n=0 :

For non-integer values of @ numerical methods are required to obtain the cumulative distribu-

tion function. The mean and variance are given by:

Var(X) = — (B.36)

If we know the expectation E and the variance V in the gamma distribution, we may obtain the
parameters @ and A by: A = E/V, and a = A- E. The gamma distribution is often used as a prior
distribution in a Bayesian approach.

For integer values of a the gamma distribution and in particular the Erlang distribution may

be seen as a distribution for a sum of exponentially distributed stochastic variables:

Result

Let Z, Z,... Z; be independent and exponentially distributed with parameter A. The variable
X= Zle Z; is then gamma distributed with shape parameter k and scale parameter A. O
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B.2.5 The inverted gamma distribution

X is said to be inverted gamma distributed if the probability density function of X is given by:

/1“ 1 a+l
fX(X):F(aC) (;) e Mx (B.37)

The mean and variance are given by:

E[X]=AM(a-1)
Var(X) =A% (a-1)"%(a-2)""! (B.38)

Note that if X is gamma distributed with parameters @ and A, then Y = X ~1 has an inverted
gamma distribution with parameters a and 1/A. If we know the expectation, E and the variance,
V, of an inverted gamma distribution we could obtain @ and A by & = E?/V+2,and A = E-(a—1).

B.2.6 Thelognormal distribution

X is said to be lognormally distributed if the probability density function of X is given by:
eqStream: Lognormal Distribution

1 11 1 qogyy?
fx(x) = ———— ¢ zzl08xY) (B.39)
2nTX

We write X ~ LN(v,7). The mean and variance of X is given by

E [X] — ev+% TZ
Var(X) = €2V (2" —e") (B.40)

The following result could be utilised:

Result

If X is lognormally distributed with parameters v and 7, then Y = In X is normally distributed®

with expected value v and variance 72. O

2In(-) is the natural logarithm function
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B.2.7 The binomial distribution

Before the binomial distribution is defined, binomial trials are defined. Let A be an event, and
assume that the following holds:

i) n trials are performed, and in each trial we record whether A occurrs or not.
ii) The trials are stochastic independent of each other.
iii) For each trial Pr(A) =p

When i)-iii) is satisfied, we say that we have binomial trials. Now let X be the number of times
event A occurs in such a binomial trial. X is then a stochastic variable with a binomial distribu-
tion. This is written X ~ Bin(n, p).

The probability function is given by

Pr(X=x)= ( " )Px(l -p)"*forx=0,1,2,..,n (B.41)
X

The cumulative distribution function Pr(X < x) is given in statistical tables. For the binomial

distribution, expectation and variance are given by:

E[X]=np
Var(X) =np(1-p) (B.42)

B.2.8 The Poisson distribution

The Poisson distribution is often appropriate in the situation where the stochastic variable may
take the values 0,1,2,..., and where the expected number of occurrences is proportional to an
exposure measure such as time or space. For the Poisson distribution we have the following

point distribution:
Ax
p(x) =Pr(X =x) = ye% (B.43)

For the poison distribution, expectation and variance are given by:

EX]=A
Var(X) =14 (B.44)

It can be proved that the Poisson distribution is appropriate if the following situation applies:
Consider the occurrence of a certain event (e.g., a component failure) in an interval (a, b), and

assume the following:
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1. A could occur anywhere in (a,b), and the probability that A occurs in (¢, £ + At) is approx-
imately equal to AA¢, and is independent of ¢ (At should be small).

2. The probability that A occurs several times in (¢, £+ At) is approximately 0 for small values
of At.

3. Let I0g I, be disjoint intervals in (a, b). The event A occurs within I; is independent of if

the event A occurs in I».

When the criteria above are fulfilled we say we have a Poisson point process with intensity A. The

number of occurrences (X) of Ain (a, b) is then Poisson distributed with parameter A(b — a):

[A(b - a)] e_,ub_a)

px)=Pr(X=x) =
x!

(B.45)

Result: Times between occurrence in the Poisson process

In a Poisson point process with parameter A the times between the occurrence of the event A
are exponentially distributed with parameter A. O

B.2.9 The inverse-Gauss distribution

The inverse-Gauss distribution is often used when we have an “under laying” deterioration pro-
cess. If this deterioration process follows a Wiener process with drift  and diffusion constant 62,
the time® T, until the first time the process reaches the value  will be Inverse-Gauss distributed
with parameters u = w/n, and A = w?/52.

If the failure progression Q(¢) follows a Wiener process it could be proven that Q(¢) - Q(s) is
normally distributed with expected value 1(t — s) and variance 6% (¢ - s). That is 7 is the average
growth rate in the process, whereas 62 is an expression for the variation of the growth around
the average value.

For the inverse-Gauss distribution we have:

Fr(f) =® \/1(5—1) )+ @ —\/E(£+1 e?Mu (B.46)
t\u t\u
and
E[T]=p (B.47)
Var(T) = u*/A (B.48)

3We use the symbol T rather than the more general symbol X here since this modell is so explicitly linked to the
time.
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B.3 Distribution of sums, products and maximum values

B.3.1 Distribution of sums

If X7, X,...,X,; are random variables we might obtain the expected value, the variance and the
standard deviation of the sum of the x-es:

EXi+Xo+...+ X =B[Y 1 Xi] =Y 1" EIXj] (B.49)
Var(Xi + Xp +...+ Xp) =Var (3.1 X;) =Y Var(X;) (B.50)
SD(}. 7, Xi) = \/Zle [SD(X7)]? (B.51)

Note that Equations (B.50) and (B.51) are only valid if the x-es are stochastically independent.
If there is dependency between the x-es we need to include a covariance term, e.g., if we only
have two variables X; and X, we have:

Var (X7 + Xp) = Var(X;) + Var(Xz) +2Cov(Xi, Xz) (B.52)

where Cov(X7, X>) is the covariance between X; and X5.
The results above help us in determine the expectation and variance of a sum of stochastic
variables, but the results could not be used to establish the probability distribution of the sum.

In the following we refer some results we could utilise in many situations.

Result: Sum of normally distributed stochastic variables

Let X3, X»,...,X,, be independent normally distributed. Let Y be the sum of the x-es, i.e. Y =
:7:1 X;. Y is then normally distributed with E[Y] = ;7:1 E[X;] and Var(Y) = ?:1Var(Xi). O

Result: Sum of exponentially distributed stochastic variables

Let Xi, X»,...,X, independent exponentially distributed with parameter A. Let Y be the sum of
the x-es,i.e. Y =}" | X;. Y is then gamma distributed with parameters n and A. O
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Result: Sum of gamma distributed stochastic variables

Let X, Xo,...,X, independent gamma distributed with parameters @ and A. Let Y be the sum
of the x-es,i.e. Y =Y  X;. Y is then gamma distributed with parameters na and A. O

Result: Central limit theorem

Let X3, X»,...,X,, be a sequence of identical independent distributed stochastic variables with
expected value p and standard deviation o. As n approaches infinity, the average value of the
x-es will asymptotically have a normal distribution with expected value pu and standard devia-
tion o/+/n. Similarly, the sum of the x-es will asymptotically have a normal distribution with

expected value nu and standard deviation o/n. O

Several generalizations for finite variance exist which do not require identical distribution
but incorporate some conditions which guarantee that none of the variables exert a much larger
influence than the others. Two such conditions are the Lindeberg condition and the Lyapunov
condition. Now, as n approaches infinity, the sum of the x-es will asymptotically have a normal
distribution with expected value Y.}, E[X;] and variance }.}"  Var(Xj).

B.3.2 Distribution of a product

If Xj, X,...,X,, are independent stochastic variables we might obtain the expected value, the

variance and the standard deviation of the product of the x-es:

E[X;-Xo-...- Xyl =E

I Xl-] =[[EXi] (B.53)
i=1 i=1

The results for the variance and standard deviation is more complicated, and we only present

the results for n=2.

Var(X; X») = Var(X;)Var(Xa) + Var(X;) (E [X»])? + Var(Xa) (E [ X;])? (B.54)

SD(X1X5) = \/Var(Xl)Var(Xg) +Var(X;) (E[X2])? + Var(X) (E[X1])? (B.55)
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Table B.1: The Cumulative Standard Normal Distribution

2

z
(z) :Pr(Zsz):fLe‘”Tdu
J v
z 00 |0l .02 .03 [.04 .05 .06 .07 .08 .09
0.0 | .500 | .504 | .508 | 512 | .516 | .520 | .524 | .528 | .532 | .536
0.1 |.540 | .544 | 548 | .552 | .556 | .560 | .564 | .567 | .571 | .575
0.2 | .579 | .583 | .587 | .591 | .595 | .599 | .603 | .606 | .610 | .614
0.3 | .618 | .622 | .626 | .629 | .633 | .637 | .641 | .644 | .648 | .652
0.4 | .655 | .659 | .663 | .666 | .670 | .674 | .677 | .681 | .684 | .688
0.5 | .691 | .695 | .698 | .702 | .705 | .709 | .712 | .716 | .719 | .722
0.6 |.726 | .729 | .732 | .732 | 739 | .742 | 745 | 749 | .752 | 755
0.7 | .758 | .761 | .764 | .767 | .770 | .773 | .776 | 779 | .782 | .785
0.8 |.788 | .791 | .794 | .797 | .800 | .802 | .805 | .808 | .811 | .813
0.9 |.816|.819 | .821 | .824 | .826 | .829 | .831 | .834 | .836 | .839
1.0 | .841 | .844 | .846 | .849 | .851 | .853 | .855 | .858 | .860 | .862
1.1 | .864 | .867 | .869 | .871 | .873 | .875 | .877 | .879 | .881 | .883
1.2 | .885 | .887 | .889 | .891 | .893 | .894 | .896 | .898 | .900 | .901
1.3 |.903 | .905 | .907 | .908 | .910 | .911 | .913 | .915 | .916 | .918
1.4 | .919|.921 | .922 | .924 | .925 | .926 | .928 | .929 | .931 | .932
1.5 | .933 | .934 | .936 | .937 | .938 | .939 | .941 | .942 | .943 | .944
1.6 | .945 | .946 | .947 | 948 | .949 | 951 | .952 | .953 | .954 | .954
1.7 | .955 | .956 | .957 | .958 | .959 | .960 | .961 | .962 | .962 | .963
1.8 | .964 | .965 | .966 | .966 | .967 | .968 | .969 | .969 | .970 | .971
1.9 | .971|.972 | 973 | 973 | .974 | 974 | .975 | .976 | .976 | .977
2.0 |.977|.978 | .978 | .979 | .979 | .980 | .980 | .981 | .981 | .982
2.1 |.982|.983 | .983 | .983 | .984 | .984 | .985 | .985 | .985 | .986
2.2 | .986 | .986 | .987 | .987 | .987 | .988 | .988 | .988 | .989 | .989
2.3 |.989|.990 | .990 | .990 | .990 | .991 | .991 | .991 | .991 | .992
2.4 | .992 | .992 | .992 | .992 | .993 | .993 | .993 | .993 | .993 | .994
2.5 |.994 | 994 | .994 | .994 | .994 | .995 | .995 | .995 | .995 | .995
2.6 |.995|.995 | .996 | .996 | .996 | .996 | .996 | .996 | .996 | .996
2.7 | .997 | 997 | .997 | .997 | .997 | .997 | .997 | .997 | .997 | .997
2.8 |.997 | .998 | .998 | .998 | .998 | .998 | .998 | .998 | .998 | .998
2.9 |.998 | .998 | .998 | .998 | .998 | .998 | .999 | .999 | .999 | .999
3.0 |.999 | .999 | .999 | .999 | .999 | .999 | .999 | .999 | .999 | .999

O(-z) =1-D(z)

195



Appendix C

Failure Modes, Effects, and Criticality
Analysis

C.1 Introduction

Failure Mode and Effects Analysis (FMEA) was one of the first systematic techniques for failure
analysis. It was developed by reliability engineers in the late 1950’s to determine problems that
could arise from malfunctions of military systems. A Failure Mode and Effects Analysis is often
the first step in a systems reliability study. It involves reviewing as many components, assem-
blies and subsystems as possible to identify possible failure modes and the causes and effects
of such failures. For each component, the failure modes and their resulting effects on the rest of
the system are written onto a specific FMEA form. There are numerous variations of such forms.
An example of an FMEA form is shown below.

A Failure Mode and Effects Analysis is mainly a qualitative analysis, which is usually carried
out during the design stage of a system. The purpose is then to identify design areas where
improvements are needed to meet the reliability requirements. The Failure Mode and Effect
Analysis can be carried out either by starting at the component level and expanding upwards
(the “bottom up” approach), or from the system level downwards (the “top down” approach).
The component level to which the analysis should be conducted is often a problem to define.
It is often necessary to make compromises since the workload could be tremendous even for a
system of moderate size. It is, how-ever, a general rule to expand the analysis down to a level
at which failure rate estimates are available or can be obtained. Most Failure Mode and Effects
Analyses are carried out according to the “bottom-up” approach. One may, however, for some
particular systems save a considerable amount of effort by adopting the “top down” approach.
With this approach, the analysis is carried out in two or more stages. The first stage is an analysis
on the functional block diagram level. The possible failure modes and failure effects of each

functional block are identified based on knowledge of the block’s required function, or from

196



APPENDIX C. FAILURE MODES, EFFECTS, AND CRITICALITY ANALYSIS 197

experience on similar equipment. One then proceeds to the next stage, where the components
within each functional block are analysed. If a functional block has no failure modes which are
critical, then no further analysis of that block needs to be performed. By this screening, it is
possible to save time and effort. A weakness of this “top down” approach lies in the fact that it is
not possible to ensure that all failure modes of a functional block have been identified.

An FMEA becomes a Failure Modes, Effects and Criticality Analysis (FMECA) if practicalities
or priorities are assigned to the failure mode effects.

More detailed information on how to conduct a Failure Mode and Effects Analysis (and an
FMECA) may be found in:

MIL-STD 1629 “Procedures for performing a failure mode and effect analysis”
* JEC 60812 “Procedures for failure mode and effect analysis (FMEA)”

e SAE ARP 5580 “Recommended failure modes and effects analysis (FMEA) practices for
non-automobile applications”

* SAE J1739 “Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Po-
tential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Pro-
cess FMEA) and Effects Analysis for Machinery (Machinery FMEA)”

C.2 FMECA procedure

1. FMECA prerequisites

2. System structure analysis

3. Failure analysis and preparation of FMECA worksheets
4. Team review

5. Corrective actions

Important aspects of FMECA prerequisites are:

1. Define the system to be analysed in terms of (a) System boundaries (which parts should be
included and which should not), (b) Main system missions and functions (incl. functional

requirements), and (c) Operational and environmental conditions to be considered

2. Collect available information that describes the system to be analysed; including draw-
ings, specifications, schematics, component lists, interface information, functional de-

scriptions, and so on
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3. Collectinformation about previous and similar designs from internal and external sources;
including FRACAS (Failure reporting, analysis, and corrective action system) interviews
with design personnel, operations and maintenance personnel, component suppliers,
and so on.

Various methods for the system structure analysis exist. An SADT analysis may be a good start-
ing point.

A suitable FMECA worksheet for the analysis has to be decided. In many cases the client
(customer) will have requirements to the worksheet format - for example to fit into his mainte-
nance management system. A sample FMECA worksheet covering the most relevant columns is
given in Figure C.1.

FMECA

System: Performed by:
Subsystem: Date:
Function: Page:
DESCRIPTION OF UNIT DESCRIPTION OF FAILURE EFFECT OF FAILURE FAILURE | CRITICALITY | CORRECTIVE REMARKS
RATE ACTION

IDENTI - OPERATIONAL FUNCTION FAILURE MODE FAILURE HOW TO LOCAL SYSTEM OPERAT .
FICATION MODE MECHANISM DETECT STATUS

Figure C.1: Relevant columns in an FMECA form.

C.3 Columns in the FMECA form

Please refer to the listed references to get a comprehensive discussion of the various columns in
an FMECA form. In the following we highlight some important aspects.

C.3.1 Operational mode

Example of operational modes are: idle, standby, and running. Operational modes for an air
plane include, for example, taxi, take-off, climb, cruise, descent, approach, flare-out, and roll.
Also note that operational mode at the system level is not the same as operational mode at the
component level.

C.3.2 Failure mechanisms and failure causes

Failure mechanisms relates to physical, chemical or other processes that deteriorates the entity,

and leads to a failure The term “failure cause” is often used in two different ways:

* Proximate cause, e.g., failure on a lower level in the system hierarchy such as a defect
bearing in a pump
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* Root cause, for example bad maintenance, inadequate design etc.
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Figure C.2 illustrates the relation between function, failure mode, failure cause and failure mech-

anism:

Function n

Function 2

Functionl

>
P

Failure mode 2

\ 4

Pump water

Minimum 800
litre per
minute

A 4

Failure mode 1

Failure cuase 2

Does not pump
sufficient water

\ 4

Failure cuase 1

Failure mech. 2

(subsystem)

Defect bearing

Failure

>
P

Failure cause 2

mechanims 1

\ 4

Wear

A 4

Failure cuase 1
(root cause)

Bad
maintenance

Figure C.2: Relation between function, failure mode, failure cause and failure mechanism

C.3.3 Hidden versus evident failures

We often distinguish between hidden and evident failures. The term “hidden” often relates to

entities that is not continuously demanded. For example the SIFA valve on a train (bleed of the

air pressure by activation) is a hidden function, and a failure will not be detected automatically.

The term “evident” relates to entities that are continuously demanded, and a failure will most

likely be detected immediately. Note that the same SIFA-valve will also have a evident function

(“not bleed of air pressure under normal operation”) because an unintended activation imme-

diately will be detected (breaks are activated).

C.4 Example of FMECA form

Figure C.3 shows an example FMECA form for a bike.

FMECA
System: Bike Performed by: Jprn
Subsystem:  Traction Date: Some date
Function: Convert pedal force from the rider to wheel torque Page: 1
DESCRIPTION OF UNIT DESCRIPTION OF FAILURE EFFECT OF FAILURE FAILURE CRITICALITY CORRECTIVE REMARKS
RATE ACTION

IDENTI - OPERATIONAL FUNCTION FAILURE MODE FAILURE HOW TO LOCAL SYSTEM OPERAT .

FICATION MODE MECHANISM DETECT STATUS
Chain Running Convert Not converting Inspection No gear [Bike is Cant Low High Bring chain

torque from| Uneven movement

crank to
gear

torque

not
moving

reach
lecture
today

lock

Figure C.3: Example FMECA for a bike




Appendix D

Markov Analysis

D.1 Introduction

Markov analysis is used to model systems which have many different states. These states range
from “perfect function” to a total fault state. The migration between the different states may
often be described by a so-called Markov-model. The possible transitions between the states
may further be described by a Markov-diagram, or a state diagram.

Markov analysis is well suited for deciding reliability characteristics of a system. Especially
the method is well suited for small systems with complicated maintenance strategies. In a
Markov analysis the following topics will be of interest:

* The average time the system is in each state. These numbers might further form a basis
for economic considerations

e How many times the system in average “visits” the various states. This information might

further be used to estimate the need for spare parts, and maintenance personnel
e The mean time until the system enters one specific state, for example a critical state.

The main learning objectives of this Appendix is:

* The definition of a Markov process, and what is meant by homogeneous transition prob-
abilities

e That it is possible to derive the Markov differential equations, but we do not need to know
all the details

e The understanding of states and how we derive the Markov transition diagram

* How to map the information in the Markov transition diagram into the transition matrix,
A

200
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 The understanding of the Markov differential equations: P(1)-A = P(1)

* How to find the steady state solution: (i) Steps required for the numerical solution, (ii) that

itis possible to find an analytical solution....
* The definition of the visiting frequencies, and how to find them

e That the time dependent solution is given by P(f) = P(0)e" which cannot be used unless

a comprehensive matrix library is available

* How to use the iterative scheme: P(z + At) = P(¢)[AA¢ +1] if we have access to a computer

with simple matrix functions

D.2 Definitions

A Markov process is a special type of stochastic processes where the process posses the so-called
Markov property. A stochastic process {X(?), t € ®} is a collection of random variables. The set ©
is called the index set of the process. For each index ¢ in ©, X (¢) is called the state of the process
at time 7.

In the general presentation we always assume that X(¢) can only take the values 1,2,...,r.
In practical examples it is often convenient to allow for an additional zero value for the state
variable. A process is said to have the Markov property if:

Pr(X(z+s) = jlIX(s) = in some history up to time s) =
Pr(X(t+s)=jlX(s)=1)

This means that given the process is in state i at some time s, the probability of being in another
state, say j, t time units later is independent of the history up to time s, i.e., we may ignore all
information regarding the process in the past when looking into the future. The only thing that
counts is the current state.

This general presentation also only treats Markov processes with stationary transition prob-
abilities. This means that:

Pr(X(t+s)=jlX(s)=1) =Pr(X(2) = jIX(0)=1i) foralls,£=0

that is, the probability of going from state i to j during a time period of ¢ is independent of the
starting point of such a “journey”.

The following notation is introduced:

P;j(2) =Pr(X(1) = jIX(0)=1)
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The so-called sojourn time, T, is the time the process spends in state i from it arrives to
state i before it jumps out of state i. Further let T;; denote the time the process spends in state
i before it eventually jumps to state j. The transition rate from state i to state j is denoted a;;
and is the limiting conditional probability of jumping to state j given that the process is in state
i (divided by the length of the interval considered). It may be argued that the Markov prop-
erty and the stationary transition probabilities yields that all transition times are exponentially
distributed. The total rate of transition out of state i is denoted «;, where

ai:Zaij

J#i

From the fact that the sojourn time and all other transition times are exponentially distributed
it follows that:

Pii(A) =Pr(T; > At) = e Y% = 1 —a;At
Pij(AD) =Pr(T;; < AD) =1-e %t = g;; At

Rearranging and letting A ¢ approach 0, we get:

1-P;i(At)
im ————=aq; (D.1)
At—0 At
im LU0 _ (D.2)
Ar—0 At Y '

These two equations will later be used to obtain the Kolmogorov differential equations. From

the Markov property and the law of total probability we have:

.
Pij(t+s) =) Pir(t)Prj(s)
k=1
This equation is denoted the Chapman-Kolmogorov equations. We utilize this equation to find:
r
Pij(lf+ At) = Pij(At+ 1= Z Pik(At)ij(t)
k=1
Rearranging (having in mind we are seeking the derivative) we get:
r
Pij(t+A1)—Pij(t) = ) Pi(AD)Py;(t) — [1 - Py (AD] Pij(t)

k=1
k#i

Now dividing by At, inserting equations D.1 and D.2, letting At — 0, and defining a;; = —«;, we
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get after some rearrangements:
. r
Pij(t)=)_ aixPr;(0) (D.3)
k=1

These differential equations are denoted the Kolmogorov backward equations. Similarly, we may

obtain the Kolmogorov forward equations:
. r
Pij(t) =) ax;Pi (1) (D.4)
k=1

The term ‘backward’ refers to that the equations were derived by considering an instant jump
(transition) to state k back at the start of the interval, and then go to the required state j, i.e.,
first At and then ¢. The ‘forward’ equations are derived by first considering going from i to k
during time ¢ and then make an instant jump to the required state j at the end of the interval,
i.e., first f and then At.

D.3 Markov state equations

We now assume that we know the initial state, and assume that the process started in state i. We
then simplify notation by omitting the index for the initial state, hence we write P;(¢) instead of
Py (D).

It is convenient to introduce matrix and vector notation. First we define the transition rate

matrix, A:
ay ayp - dyr
azy azy - Ay
A=
harl arp -+ Qrr )
where
;
ajij=-a;=-)_ aj
j=1
J#i

which means that the diagonal elements are defined such that the sum of each row equals zero.
Further we define the row vectors: P(#) = [Py (), Pa(2),..., Pr(t)] and P(2) = [Py (1), P2(0), ..., Pr(D)].
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We may then write the Kolmogorov forward equations on matrix format:

a adyp - air 1
azy dz - Aoy . . .
[Pl(t)yPZ(t)nyr(t)] . . . :[Pl(t)rPZ(t)err(t)]
| dr1 Qr2 ccc Grr |
that is:
P(t)-A=P() (D.5)

D.4 Time dependent solution for the Markov process

To solve Equation (D.5) as a function of time we may use an analogy to ordinary differential

equations in one dimension and we get:
P(1) =P(0)e* (D.6)

Although this is a very elegant solution, it is not very attractive since taking the exponential of a
matrix is not that easy. Computer codes such as Matlab is required. We may, however, rewrite
Equation (D.5) as:

P(t+ A1) -P(1)

i
yielding
P(t+At) = P(t)[AAL +]1] (D.7)

where I is the identity matrix. This equation may now be used iteratively with a sufficient small
time interval A and starting point P(0) to find the time dependent solution. Only simple matrix
multiplication is required. Implementing a solution in for example VBA some considerations
are required regarding the step length Az. Choosing a too low value gives numerical problems
and will also require longer computational time. Choosing a too high step length will cause the
approximation in Equation (D.7) to be inaccurate. A rule of thumb will be to use a value of one
tenth of the inverse value of the highest transition rate.

Note that in Markov analysis we usually only require the time-dependent solution for a lim-
iting time period, and typically we would like to calculate P(¢) at values ¢ = 0,At,2A¢,.... Using

Equation (D.7) is therefore attractive. To improve the approximation in Equation (D.7) we could
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use one “intermediate” point, i.e., we could use:
P(t+ A1) =P()[AAL/2 +T1][AAL/2 +1] (D.8)
and even improve by splitting into 2” sub-intervals, yielding:
P(t+A0) ~P(1) [AAL/2" +1)F (D.9)

Note the similarity between Equation (D.9) and Equation (11.106) in the textbook. The advan-
tage of Equation (D.9) is the calculation efficiency, i.e., we only need n matrix multiplications to
reduce the step-length by a factor 2”. Note that we only calculate [AAZ/2" + 1°" once in Equa-
tion (D.9), so we could afford double precision in that part of the calculations to increase the
precision. It should be noted that there is still a trade-off between round-off errors and accuracy
in the approximation in Equation (D.9), and a good choice of n would be in the range 4-6.

Steady state solution for the Markov process

In the long run we will have that P(¢) — 0 when ¢ — oo, hence P(¢) - A = 0. We define the steady
state probabilities by the vector P = [Py, P», ..., P;], where we have omitted the time dependency
(1) to reflect that in the long run the state probabilities are not changing any more.

To solve the steady state equations we realize that the matrix A has not full rank due to the
way have have established the diagonal elements. To overcome this problem we remove one
(arbitrary) of the equations in the following set of equations:

ay di2 - Air
az dxp -+ Aoy
[PI)PZ)---)PI']' . . . :[0,0,...,0]
| ary dr2 - Arr ]

and replace it by the following equation:

;
Pj=1
j=1
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For example replacing the first equation gives:

1 a2 - air
1 axp - ap
[PI!PZr-'-rPr]' . . . :[1,0,...,0]
| 1 ap - apr ]
In matrix form we write:
P-A;=b (D.10)

where b is a row vector of zeros except for the first element which equals one. Note that Equation
(D.10) is not on standard form A -x = b. Transposing each side on the equal symbol in Equation
(D.10) gives A] - PT = b" which could be solved by standard Gauss-Jordan elimination.

Ideally we could obtain an analytical solution for the steady state equations, but for r > 3 we
usually stick to numerical solutions.

D.4.1 Visit frequency

The visiting frequency, v, is one of several system performance that we define for the steady-
state situation. The visiting frequency for state j, v, is the unconditional transition rate into
state j. We could make different arguments for the arrival rate, say v;*", and the departure rate,
say v jdep. Considering departures we may argue directly that:

v;4P = q; P, (D.11)
Similarly for arrival we have from the law of total probability:

V¥ =Y Pray; (D.12)
k#j

Since in the long run we should fulfil the balance equations stating that the total rate into a state

equals the total rate out of that state we get:

Vj:aij:ZPkakj (D.13)
k#j

D.5 Mean time to first passage to a given state

The visiting frequency v; is the unconditional transition rate into state j, whereas 1/v; is the

unconditional mean time between state j is visited. In some situation we would rather find the
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mean time to the first time the system enters state j. To solve this problem we can make state j
an absorbing state. An absorbing state means that we can not leave that state. To make a state
absorbing we just remove all arcs out of that state.

Since we are considering state j as an absorbing state, we obtain the transition rate matrix
identical with the original transition state matrix, except that the j’th row (corresponding to a
departure) comprises only zeros. From before we know that the transition matrix has not full
rank, and we may therefore remove any of the equations. It is convenient to remove the j’th
column of the matrix. Further, since row j only contains zeros, P;(¢) will disappear from all
equations. We may therefore also remove the j’th row in the transition rate matrix. The result is
a set of r — 1 differential equations with r — 1 unknowns, Py (#),...,Pj-1(£), Pj+1(1),..., Pr(2).

Note that when establishing the reduced system by removing the j’th row and the j’th col-
umn, the underlying argument is that we treat the modified system with j as an absorbing state,
we can not do this in general. The reduced matrix is denoted Ag.

To solve the set of differential equations we introduce the Laplace transform. The Laplace
transform of a function, say f(¢) is given by f*(s) = L f(¢) = [y e *' f(t)dt. The following rule
applies for the Laplace transform:

LIf'(D1=sL[f(D] - f0)=sf"(s) - f(0) (D.14)

In addition we have that the Laplace transform of a sum of functions equals the sum of the
Laplace transforms of those functions. Now taking the Laplace transform on both sides of the
set of differential equations, we observe that the right hand side is the derivative of the state
probabilities, hence the Laplace of the right hand side will be sP; (s) — P;(0), where P;(0) = 1
only for the initial state, and 0 else.

The resultis a set of r — 1 linear equations with r — 1 unknowns, Py (s), ... ,P;.‘_l (s), P}.*H (s),...,
P?(s). In principle we may solve these equations by elimination, or we just use the solver in our
linear algebra library.

The Laplace transform of the survivor function is

r
R*(s)= Y PI() (D.15)
i=1,i#]
If we are able to take the inverse Laplace transform, we may also find the survivor function R(?)
of the system. A trick to do this would be to arrange the denominator on the form (s — k) (s — k»)
and then factorize, and hope that we get something we recognize from the table of Laplace
transforms of known functions.

Our objective, is however, to find the mean time to the first time the system enters state j.
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We have that
E[T] = foooR(t)dt
Further we also have
R*(s) = ZR(1) :foooe—”ﬂ(t)dt (D.16)

Thus, by inserting s = 0 we have E(T) = [;° R(1)e’dt = R*(0).

Since R*(0) = X.;_ 1i%] P (0) we therefore obtain the mean time to first system failure by:
r
MTTF= ) P (0) (D.17)
i=1,i#]

Note that we by this procedure may establish the mean time to the first visit to sate j without
actually calculating the Laplace transforms. What we actually do is to solve a set of linear equa-
tions, where the unknown variables are the P; (0)’s from the reduced systems by removing the
row column corresponding to the absorbing state. Further note that the right hand side equals
0 for all equations except the equation representing the initial state, where the right hand side
equals -1, since sP;‘ (s)=0fors=0.

Note that we here have assumed that state 0 represent the system failure. In a more general
setting we apply the same approach but rather than deleting the first row and column to ob-
tain the reduced matrix, we delete the rows and columns corresponding to one or more system
failure states.

D.6 Birth-death processes

A birth-death process is a special type of Markov process where the transitions are to the next
state immediately above or immediately below the current state. The states has some natural
ordering, for example the number of customers being served by one or more servers. For that
reason we also usually start the numbering from zero rather than one. The transition matrix is

then tridiagonal as shown in Equation

app apr O

ap an aiz 0

A= (D.18)
0 ary dr2 A3 0 ..

0 azx as azs 0
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Figure D.1: Markov transition diagram

The above-diagonal elements, a;;, j — i = 1 are denoted births and causes the system state to
increase by one, whereas the below-diagonal elements, a;;,i — j = 1 are denoted deaths, and
causes the system state to decrease by one. In birth-death processes it is common to use A as
a transition symbol for births and p as transition symbol for deaths. A birth-death process may

have a finite or an infinite number of states.

Example

Consider a workshop with three critical machines. Each machine has a constant failure rate
equal to A and there is one repair man that can repair failed machines. The rate of repair is u
meaning that the mean repair time is 1/u. The state variable represent the number of failed
machines. The transition matrix is given by:

¢ u 0 0

A2 0
A= K

0 24 ? u

0 0 31 ¢

Figure D.1 shows the Markov transition diagram corresponding to the transition matrix.

Note when the system is in state 3 and all machines are functioning, there are 3 machines
that potentially may fail, hence the transition rate from state 3 to state 2 equals 3. In state 2
there is only two machines that may fail, hence the transition rate from state 2 to state 1 is 2A.
Since there is only one repair man, all the above-diagonal elements equal the repair rate p.

The question marks in the transition matrix represent the diagonal elements. They are com-
pleted at the end when all the “real" transitions are specified by applying the rule that all rows
should sum to one, i.e., we get:

—HH 0 0
A —A-u u 0
0 2V 2A-pu u
0 0 31 -A

A=

Figure D.2 shows the specification of this model in MS-Excel. It is convenient to give names

to the cell containing A and p. The numerical values used are: A =0.001 and p =0.1.
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|From {

0 =3*lambda

Figure D.2: MS Excel specification of the transition matrix
Table D.1 shows the calculated steady state probabilities. Full production is achieved in 97%
of the operating hours. For some 3% one machine is down for corrective maintenance, whereas

the probability of two or more failed machines is very low.

Table D.1: Steady state probabilities

State pP;
3 0.9703
2 2.91E-02
1 5.82E-04
0 5.82E-06

Problem

In a workshop there are two production lines in parallel. Each production line has a critical
machine with constant failure rate A = 0.01 failures per hour. There is one (common) spare
machine that can replace a failed machine. We assume that switching time can be ignored. The
repair rate of the machines is assumed constant and equal to p = 0.2 per hour. If a production
line is down the loss is assumed to be cy = 10 000 NOKs per hour. Only one repair man is
available.

* Construct the Markov diagram and find the steady state solution.
¢ Calculate the expected loss due to downtime.

e If production is not 24/7 but runs from 07:00 to 15:00 it is reasonable to assume that each
morning we start with 3 functioning machines. Find the time dependent solution and find
the expected loss due to downtime.

* Repeat the analysis, but assume that two repair men are available.

* How much should one be willing to pay per hour for having this extra backup on repair
resources?
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D.7 Procedure

The Markov Analysis is usually carried out in six steps:
1. Make a sketch of the system
2. Define the system states
3. Group similar sates to one state (reduce dimension)
4. Draw the Markov diagram with the transition rates
5. Quantitative assessment
6. Compilation and presentation of the result from the analysis

Below we describe the state together with an example

Step 1 - Make a sketch of the system

The sketch is mainly used to visualise parallel and serial structures, stand-by systems, switching
systems etc. In Figure D.3 we have drawn a sketch of a simple cold standby system. We consider
a system comprising an active pump and a spare pump in cold stand-by. If the active pump
fails, the stand-by pump is started and continue to do the duty. The failed active pump is then
repaired. If the stand-by pump, which now is working, fails during the repair of the failed pump

there will be a system failure.

Active
pump

Standby

pump

Figure D.3: Example of cold standby system

Step 2 - Define the system states

Based on the sketch of the systems the various components are identified. For each compo-
nent one or more states are defined. Often a number is given to each state, where the highest
number represents perfect performance, whereas zero represent a complete fault state. Next
the various states of all components are combined. This may lead to very many states due to the

combinatorial effect. Table D.2 shows the states for the example system.
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Table D.2: States for the example system

State Explanation

2 Active pump is running
1 Active pump failed, stand-by pump running
0  Both pumps failed

Step 3 - Group similar sates to one state (reduce dimension)

This step is only introduced in order to reduce the dimension of the problem. In many situations
several components may be identical and it will usually be possible to group similar system
states into one system state, and hence reduce the dimension of the problem. For example if we
have n = 3 pumps we can group into state 3={All 3 pumps are OK}, 2={2 pumps are OK}, 1={One
pump is OK} and 0={All pumps are failed}. For state 1 and 2 we do not distinguish between which

pumps are functioning. In the example there is no need to group states.

Step 4 - Draw the Markov diagram with the transition rates

The various system states are now drawn in a Markov diagram. Each state is drawn as a circle
labelled with the state number. Transitions between the states are visualised by drawing arrows
between the corresponding circles. On each arrow the transition rate is labelled. Very often the
Greek letter A represents component failure rates, whereas the Greek letter u represents repair
rates.

Table D.3 shows the transition rates for the example system. Here we assume that both

Table D.3: Transition rates

Rate Explanation

Ay failure rate of the active pump

Ao failure rate of the standby pump (while running, A, = 0 in standby position)
Y1 repair rate of the active pump

1p  repair rate when both pumps are in a fault state

pumps are repaired as part of one common repair activity if we enter state 0. Figure D.4 shows

the transition diagram for the example system.
My 1

Figure D.4: Transition diagram for the example system
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Step 5 - Quantitative assessment

Steady state solution:
The transition matrix A is given by:

app do1 Ao —UB 0 UB
A= ap ann a2 |=| A2 —-Ado—p1
ax) dy ax 0 M -

To find the steady state solution we solve the system P-A; = b where we may replace any column
(equation) in A with ones. To simplify the set of equations as much as possible we now choose
to replace the last column:

—HB 0 1
[Pg, P1, P>] - A2 —Ax—pp 1 [ =10,0,1]
0 A1

To solve the set of equation we start with the second equation:
Pi(=A2 = 1) + Po2A1 =0= Py = A1/ (A2 + 1) P2

Inserted in the first equation:

Ao
Py(—ug) + PyAy=0=> Py =Ay/ugPy = ———P
ol—HUB 142 0 2/ ULy 115 (s + 1) 2
Now Py and P; may be inserted in the third equation:
A1 A1
Py+ P+ Py = + +1({Py=1

up(A2+p1) Ao+

Multiplying with pp(A, + 1) on both sides and rearranging gives:

P, = 1Az + )
A (A2 + pB) + pup(A2 + pr)
P, = 11
A (A2 +pB) + pup(A2 + pr)
A
P, 12

- A (A2 + pB) + pup(A + py)
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Visiting frequencies:
From v; = —Pja; j we get for example:

upAidz
A (A + puB) + pp(Aa + py)

vo =—Poagy = —Po(—up) =

Time dependent solution:

The time dependent solution requires to solve the Laplace equations, and is rather complicated.
Therefore we stick to numerical methods. At the end of this document we demonstrate the use
of Laplace to find the time dependent solution for a simpler situation with only one component.

Mean time to first system failure:
We use the Laplace transform approach. That is, first we delete the row and column correspond-
ing to the absorbing state, i.e., state 0, and replace the P;’s with P]’.‘ S:

A=

Py,P)]-
[Py, P, N A

=[0,-1]

with the solution P; = 1/, and P, = (A2 + 1)/ (A112), and thus:

MTTFg = Pl* +Pék =1+ +,u1)/(/11/12)

D.8 Time dependent solution for a repairable component

Consider a component with constant failure rate A and constant repair rate . Let state 1 rep-
resent the functioning state and state 0 represent the failed state. The transition matrix for this

system is given by:

-1
-

Assuming the system starts in state 1 we have Py(0) = 0 and P;(0) = 1, and the Laplace transform
of the time dependent solution is given by:
P59, P{e |

. l = [sPg (), 5P} (5)—1]



APPENDIX D. MARKOV ANALYSIS 215

Thus

—uP(s) + AP[ () = sPy (s)
WPy () —AP{(s) =sP{(s)—1

Adding these two equations yields:
SPy(8)+sPy(s)=1=Py(s)=1/s—P{(s)
and inserting into the last of the above equations:
pls—pPy(s)—AP;(s) = sPy(s)—1
which is solved wrt Py (s):

u 1
A+pu+s sA+u+s

Pi(s) =

This expression is not recognized in the list of Laplace transforms. A trick is now to multiply
with (A + w) /(A + w):

A+u 1 [T |

Pl(s)_/1+u )l—i-,u+s+;/l+u+s B

A LY S S S S R —
A+p A+p+s A+p s A+pu+s A+p A+p+s A+p s A+pu+s
A 1 +E.)L+s+u‘ 1 A 1 w1

= . = . + - —_
A+pu A4+p+s s A+p A+pu+s A+p A+pu+s A+p s

Now using Ze®" =1/(s—a) and £1 = 1/s we find the inverse Laplace of P} (s) (—a = A+ p):
d
and

Po(t) =1-Py(1) = % (1-eemr)
TH
Note that when t > 3/(A + u) the time dependent solution is deviating from the steady state
solution with only 5%. In practice, we therefore often say that steady state is achieved after 3
times the shortest expected transition time, here 3/u. The time dependent solution is often
needed in FTA (fault tree analysis) and RBD (reliability block diagram) analyses.



Appendix E

Calculating Q, in the PF-model

In this Appendix we will describe the method used for calculating the probability that a potential
failure is not detected by the inspection regime. There are two main sources for not detecting
a potential failure in due time; i) the inspection interval is to long compared to the PF- inter-
val, and ii) the quality of the inspection is too low to detect a potential failure. The following
quantities are defined:

e Tpr = PF interval (stochastic variable).

¢ (1) = Probability density function of Tpg

q = Failure probability of one inspection

* gc = Common cause part of g

q1 = Independent part of g
e 7 = Inspection interval

The probability that the inspection strategy fails to reveal a potential failure before a critical
failure occurs could be found by the low of total probability:

Qo(r,&,q) = fo (1, g, DEDAL E1)

where Q(7, g, t) is the probability of not detecting a potential failure given that the PF inter-
val, Tpr, equals ¢. In order to calculate Q,(t, g, t) we observe that when Tpr = ¢, then number
of possibilities to detect a failure equals n or n + 1 where n = int(z/7) and int(-) is the integer
function.

The probability that we will have n + 1 opportunities equals ¢/7 — n and thus the probability
that we will have n opportunities to detect a potential failure equals n+ 1 — ¢/7. Since the prob-

ability that a given inspection fails to detect a potential failure equals g, Q;(t, g, t) could easily

216
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be obtained by:
Qi(t,q, ) =(n+1-tiT)g" + (t/t—n)g"*V (E.2)

if the inspections could be considered statistically independent. However, the assumption that
inspections are independent does not seem realistic. A more realistic assumption would be to

assume that the failure probability of one inspection is given by:

q=dc+q (E.3)

where ¢gc represents common cause failures due to systematic failures such as low coverage,
and g represents the failure probability due to specific conditions for one run, e.g., inadequate
velocity of the measuring wagon, human errors etc.

Assuming that the failure probability of one inspection could be split into a common and
an independent part as shown in Equation (E.3) we calculate the total failure probability of the

inspection strategy as:

QE)k (T)ér qc, CII) =1- (]- - CIC) [1 - QO(Tyf) ql)] (E4)

Codes for implementing Qy(7,¢, g) in this course assume that ¢(#) is the gamma probability den-
sity function with some expected value and standard deviation. If we use the gamma distribu-
tion the format of the Qy-function will be Qo (7, Epg, SDpr, q1).
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