

Norwegian University of Science and Technology

"Learning strategies for digital twins used in maintenance, repair and operations" (Trial lecture)

PhD. candidate: Bahareh Tajiani

Main supervisor: Prof. Jørn Vatn

Co-supervisors: Prof. Anne Barros and Senior Researcher Dr. Rune Schlanbusch

23rd January 2024

NTNU

Outline

- Introduction and background
 - Industry 4.0
 - Digital twin (DT)
 - Main elements of DT
- Learning strategies in Digital twin
- Qualification of DT
- Case study
- Summary

- Industry 4.0
- Digital twin (DT)
- Main elements of DT
- Learning strategies in Digital twin
- Qualification of DT
- Case study
- Summary

- Industry 4.0
- Maintenance, repair, operations
- Reduction of unplanned downtime, equipment failures, maintenance cost
- More effective maintenance planning and minimization of production interruptions
- Digital twin technology

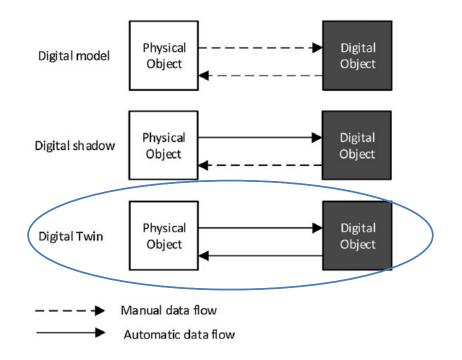
https://tractian.com/en/blog/maintenance-industry-4-role-management-software

- Digital twin is a virtual representation of a physical asset/system/process/product that is updated through the continuous exchange of information between the virtual system and its physical counterpart.
- Michael Grieves and John Vickers, NASA, 2002
- Visualization, monitoring, diagnostics, prognostics, optimization
 - Minimize risk of accidents
 - Remote monitoring of assets
 - Reduce downtime and maintenance costs
 - Root cause analysis
 - Optimize new designs based on historical data
 - Supporting real-time decision-making

Reyes Yanes, Abraham, Rabiya Abbasi, Pablo Martinez, and Rafiq Ahmad. 2022. "Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems." Sensors 2022, Vol. 22, Page 7393 22 (19): 7393 https://www.reliableplant.com/Read/31897/digital-twins-ai

Main characteristic of digital twin

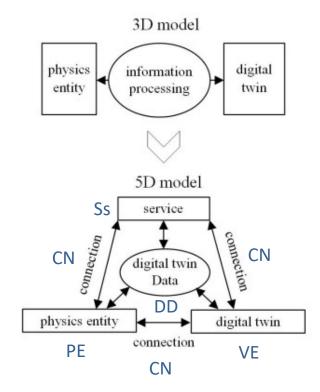
- Synchronization or flow of information between the physical and virtual system
- Ability to adapt to changes in their counterpart to provide modelling results in real-time



Errandonea, Itxaro, Sergio Beltrán, and Saioa Arrizabalaga. 2020. "Digital Twin for Maintenance: A Literature Review." Computers in Industry 123 (December): 103316

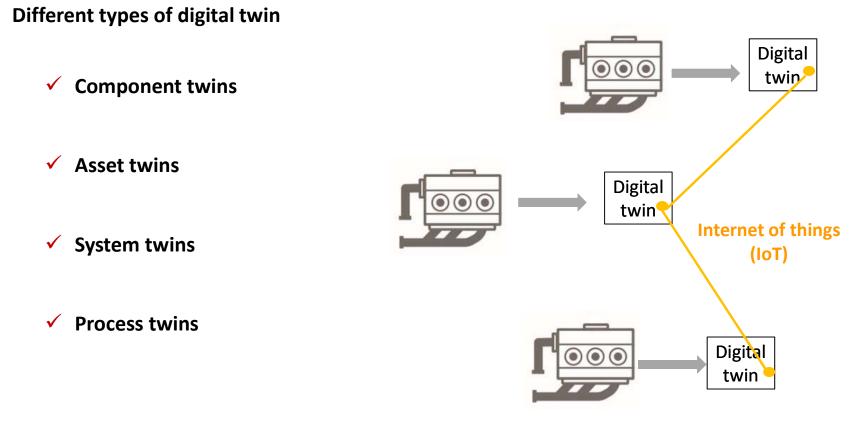
Main elements of digital twin

- Physical entity model (PE)
 - Functional subsystems, sensory devices
- ✓ Virtual model (VE)
 - Geometries, physical properties, behaviors, rules
- ✓ DT services (Ss)
 - Services for PE and VE, calibration, validation
- DT data (DD)
 - Data from PE and VE, fused data
- ✓ DT connections (CN)
 - Data transmission channels, interconnections



 $M_{DT} = (PE, VE, Ss, DD, CN)$

Xie, Jinghai, Jia Guo, Mi Sun, Dongyu Su, Wei Li, Siyuan Chen, and Shaorong Wang. 2022. "A Digital Twin Five-Dimensional Structural Model Construction Method Suitable for Active Distribution Network." 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology, ICEEMT 2022, 418–26



https://se.mathworks.com

DNTNU

Outline

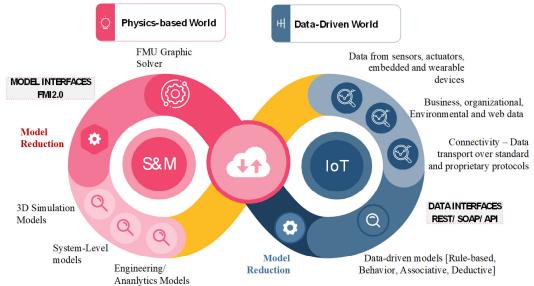
- Introduction and background
 - Industry 4.0
 - Digital twin (DT)
 - Main elements of DT

Learning strategies in Digital twin

- Qualification of DT
- Case study
- Summary

✓ Virtual model (VE)

- Geometries
- physical properties
- behaviors
- Rules
- Digital twin can learn from rule models, behavior models, and to some extent physics-based models



Chakraborti, Ananda, Henri Vainio, Kari T. Koskinen, and Juha Lammi. 2023. "A Graph-Based Model Reduction Method for Digital Twins." Machines 2023, Vol. 11, Page 733 11 (7): 733.

NTNU

- ✓ Virtual model (VE)
 - Geometries
 - physical properties
 - behaviors
 - Rules

Rule models

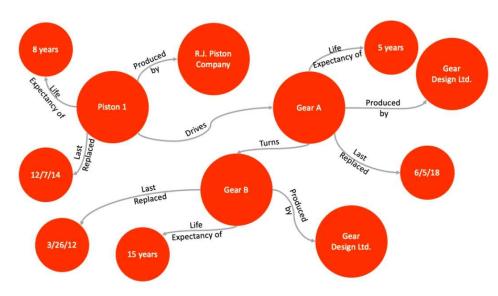
- To define the constraints, guidelines, and operational rules
- o "what-if" analysis, "if-then" statements
- Knowledge-graph
- Machine learning (e.g., Natural language processing)
- o Requires data from maintenance reports and manuals

Pros

- Easy to track the dependencies and interactions for simple systems
- Transparent and interpretable
- Does not require large data to be trained

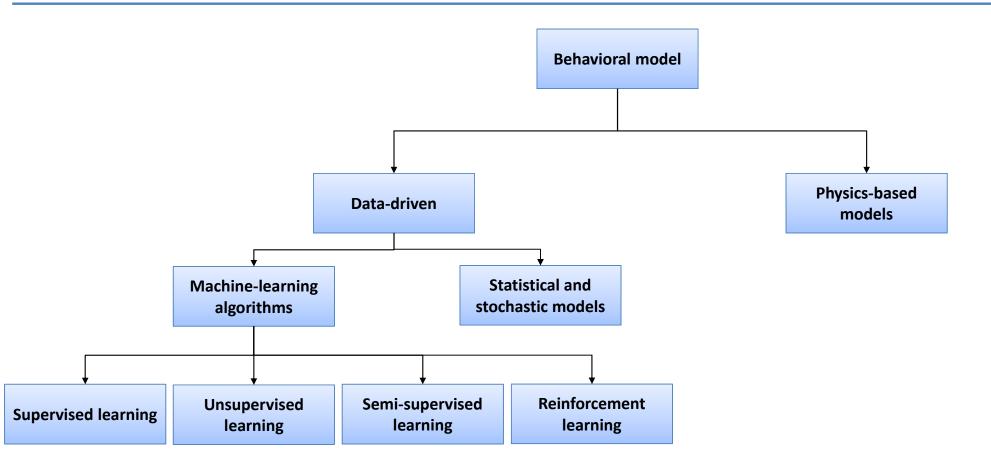
Cons

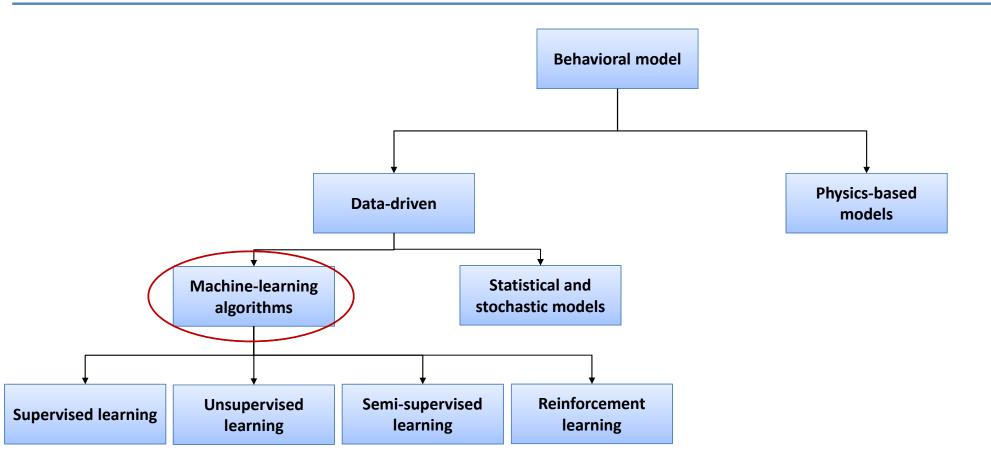
- Largely depend on data quality
- Design new rule-based models when it comes to different languages
- Challenging for complex systems and complex rules



https://www.ontotext.com/blog/knowledge-graphs-in-manufacturing/

- ✓ Virtual model (VE)
 - Geometries
- physical properties behaviors
 - Rules





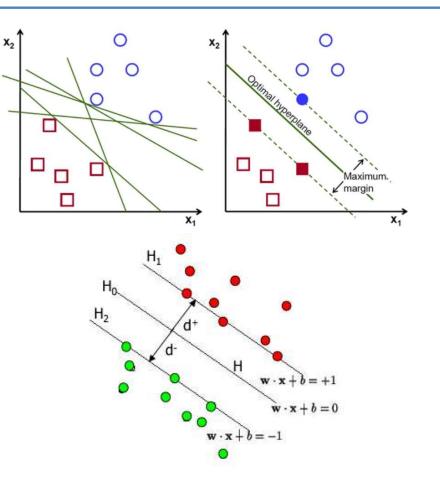
Machine Learning (ML) algorithms

- Support vector machine (SVM)
 - Supervised learning
 - Labeled data
 - Classification and regression

 $Features = [x_1, x_2, \dots, x_n]$

 $y = health status = \begin{cases} y = 1, healthy \\ y = 0, faulty \end{cases}$ $w^{T}.x + b = 0$ $w^{T}.x + b \ge 0 \quad for \ d_{i} = +1$

 $w^T \cdot x + b \le 0$ for $d_i = -1$



Nalepa, Jakub, and Michal Kawulok. 2018. "Selecting Training Sets for Support Vector Machines: A Review." Artificial Intelligence Review 2018 52:2 52 (2): 857–900

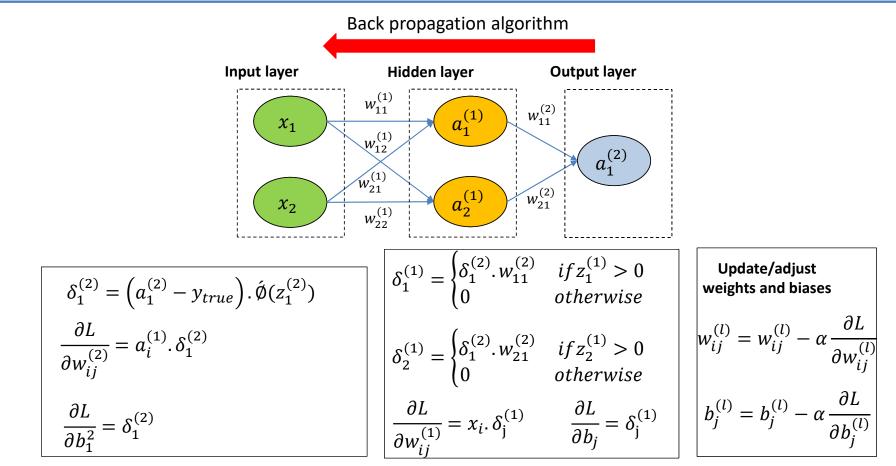
Machine learning (ML)

- Artificial Neural Network (ANN)
- Layers and nodes
- Weights and biases
- Feedforward algorithm
- Back propagation algorithm

Feedforward algorithm Input layer **Hidden layer Output layer** $w_{11}^{(1)}$ $a_{1}^{(1)}$ $w_{11}^{(2)}$ x_1 $w_{12}^{(1)}$ Loss function = $MSE = \frac{1}{2} \left(a_1^{(2)} - y_{\text{true}} \right)^2$ $a_1^{(2)}$ $w_{21}^{(1)}$ a⁽¹⁾ $w_{21}^{(2)}$ x_2 $w_{22}^{(1)}$ $z_{1}^{(1)} = w_{11}^{(1)} \cdot x_{1} + w_{21}^{(1)} \cdot x_{2} + b_{1}^{(1)} \quad z_{1}^{(2)} = w_{11}^{(2)} \cdot a_{1}^{(1)} + w_{21}^{(2)} \cdot a_{2}^{(1)} + b_{1}^{(2)}$ $\begin{vmatrix} z_{2}^{(1)} = w_{12}^{(1)} \cdot x_{1} + w_{22}^{(1)} \cdot x_{2} + b_{2}^{(1)} \end{vmatrix} \begin{vmatrix} a_{1}^{(2)} = \emptyset(z_{1}^{(2)}) \end{vmatrix}$ $a_1^{(1)} = \emptyset(z_1^{(1)})$ $a_2^{(1)} = \emptyset(z_2^{(1)})$ $\phi(k) = RELU(k) = \max(0, k)$

DNTNU

Machine learning (ML)



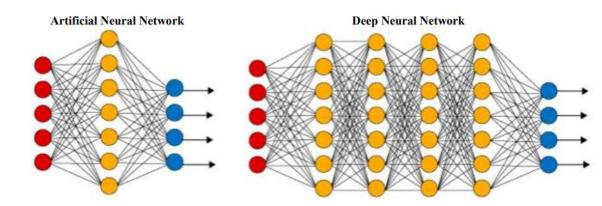
Emmert-Streib, Frank, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. 2020. "An Introductory Review of Deep Learning for Prediction Models With Big Data." Frontiers in Artificial Intelligence 3 (February): 507091. https://doi.org/10.3389/FRAI.2020.00004/BIBTEX

NTNU

Machine learning (ML)

Deep Neural Network (DNN)

More hidden layers, more complexity

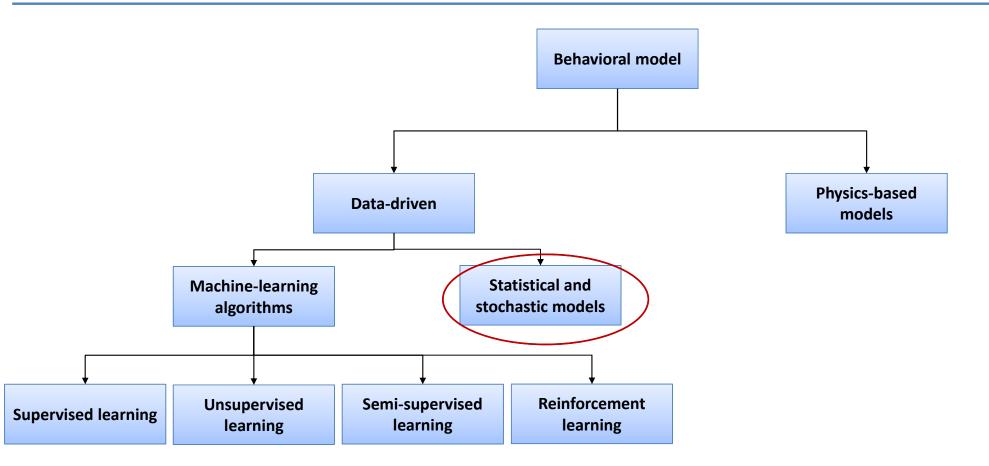


Mostafa, Bossy M, Noha E El-Attar, Samy A Abd-Elhafeez, and Wael A Awad. 2021. "Machine and Deep Learning Approaches in Genome: Review Article." Alfarama Journal of Basic & Applied Sciences 2 (1): **Challenges Solutions** 105-13 1. What is the optimal 1. Using MSE and measuring Deep learning number of hidden lavers function complexity to find the and nodes? What to number of hidden nodes include as input nodes? 2. Self-adaptation algorithm, Most learning 2. Finding optimal Combined genetic and Performance algorithms parameters (weights, differential evolution algorithm biases) 3. Probabilistic NN, 3. Uncertainty caused by bootstrapping measurement errors from sensors

Amount of data

DNTNU

Sarker, Iqbal H. 2021. "Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions." SN Computer Science 2 (6)

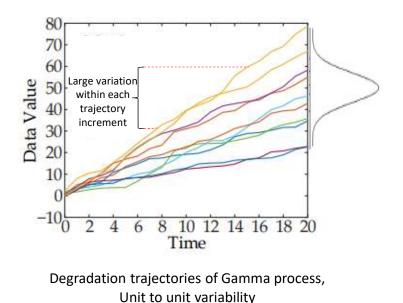


Stochastic approaches

Gamma process

- Independent and non-negative increments
- Monotonically increasing or decreasing degradation
- Fatigue, corrosion, crack growth
- G(t+u) G(u) and G(s+v) G(v) are independent for $t+u > u \ge s+v > v$
- $G(t+u) G(u) \sim Gamma(\alpha(t+u) \alpha(u), \beta)$

•
$$F_{T_c}^G(t) = P\{T_c \le t\} = P\{G(t) \ge c\} = \frac{\Gamma(\alpha t, cu)}{\Gamma(\alpha t)}$$



NTNU

Rodríguez-Picón, Luis Alberto, Luis Carlos Méndez-González, Iván Juan Carlos Pérez-Olguín, and Jesús Israel Hernández-Hernández. 2023. "A Gamma Process with Three Sources of Variability." Symmetry 2023, Vol. 15, Page 162 15 (1): 162

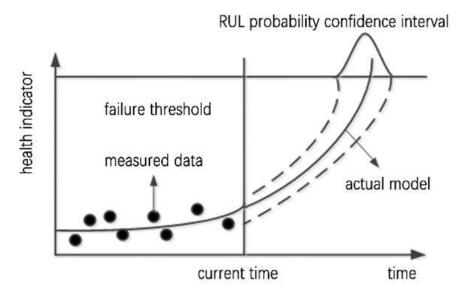
hang, Zongyi, Dianrong Gao, Tianyuan Guan, Yingna Liang, Jianhua Zhao, Liwen Wang, and Jie Tang. 2023. "A Reliability Evaluation Method for Gamma Processes with Multiple Random Effects

Stochastic approaches

- Wiener process
 - Non-monotonic degradation process
 - Independent increments following a Normal distribution
 - $\{Y(t), t \ge 0\}$
 - $Y(t) = y_0 + \nu t + \sigma_B B(t)$
 - First passage time (FPT) distribution: Inverse
 Gaussian (IG) distribution

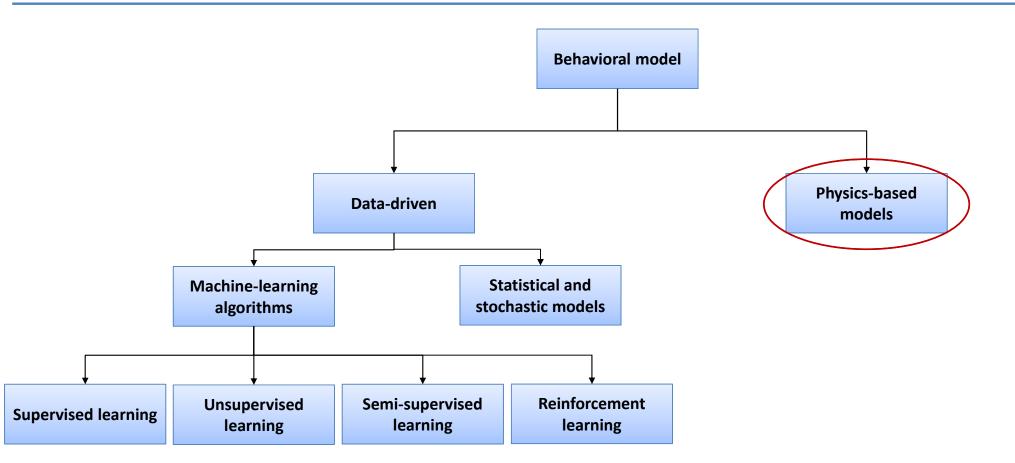
•
$$T_L \sim IG(\mu, \lambda)$$
, where $\mu = \frac{L - y_0}{\nu}$ and $\lambda = \frac{(L - y_0)^2}{\sigma_R^2}$

•
$$f_T(t;\mu,\lambda) = \sqrt{\frac{\lambda}{2\pi t^3}} \exp(-\frac{\lambda(t-\mu)^2}{2\mu^2 t})$$



ghui Meng, Yiqiang Chen, and Zhenwei Zhou. 2022. "Segmental Degradation RUL Prediction of IGBT Based on Combinatorial Prediction Algorithms - IEEE Access %." 2022

NTNU



DNTNU

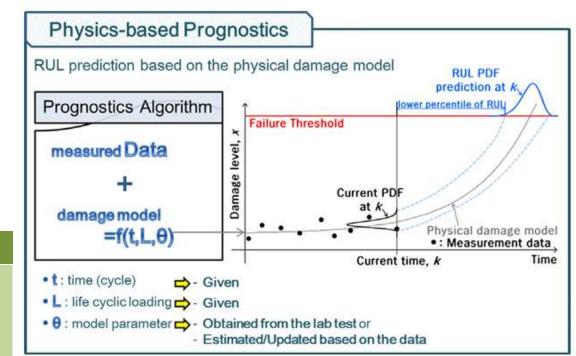
- Computational fluid dynamics (CFD)
- Paris' law
- Finite element analysis (FEA)

Challenges

- Model complexity increases, number of parameters increases, parameters estimation becomes difficult.
- Correlation between parameters
- Noise and bias in sensor signals

Solutions

- Identifying equivalent parameters from a simpler model (not always possible)
- Sensitivity analysis, statistical methods, ...
- Denoising in signal processing

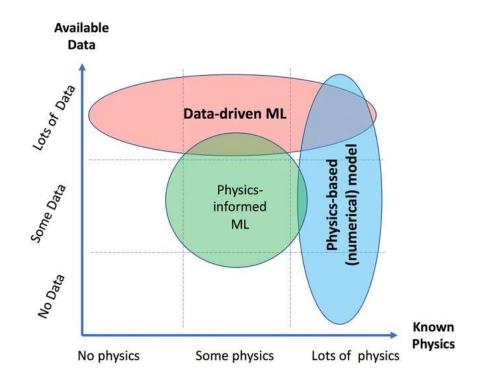


DNTNU

An, Dawn, Nam H. Kim, and Joo Ho Choi. 2015. "Practical Options for Selecting Data-Driven or Physics-Based Prognostics Algorithms with Reviews." Reliability Engineering & System Safety 133 (January): 223–36

	Physics-based	Data-driven
Comparison	Solid foundations based on physics, first principles and reasoning (high interpretability)	Black box (less interpretability)
	Generalizes well to systems with similar physics	Poor generalization on unseen problems
	Less data is required	Lots of data for training
	Less biases	Bias in data is reflected in prediction
	Not suitable for very complex systems with	Multidimensional analysis of complex
	lots of parameters	systems
	Causal relationships provide insight and	Correlations, not causality
	understanding	
	Model has universal validity-predict any	Difficult to predict extreme/critical
	point covered by the model	condition

- Physics-Informed Neural Network (PINN)
- Incorporates physical principles into the learning process
- Accurately model physical systems even with limited data



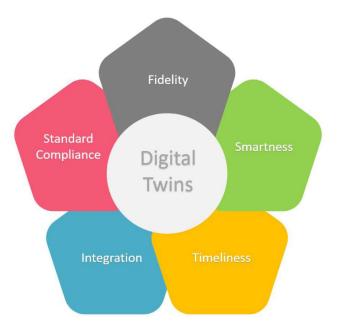
Tartakovsky, A. M., C. Ortiz Marrero, Paris Perdikaris, G. D. Tartakovsky, and D. Barajas-Solano. 2020. "Physics-Informed Deep Neural Networks for Learning Parameters and Constitutive Relationships in Subsurface Flow Problems." *Water Resources Research* 56 (5)

Outline

- Introduction and background
 - Industry 4.0
 - Digital twin (DT)
 - Main elements of DT
- Learning strategies in Digital twin
- Qualification of DT
- Case study
- Summary

Qualification of digital twin

- Fidelity:
 - Quantity of input parameters
 - Precision of the outcome
- Smartness
 - Descriptive
 - Diagnostic
 - Prognostic
 - Decision-making
- Timeliness
 - Ability of the DT to accurately and quickly reflect to changes or updates of the physical system
- Integration
 - level of a DT connected both internally and externally
- Standard compliance
 - ability of DT to follow the established standards, guidelines, and best practices



Liu, Jie, Xingheng Liu, Jørn Vatn, and Shen Yin. 2023. "A Generic Framework for Qualifications of Digital Twins in Maintenance." *Journal of Automation and Intelligence* 2 (4): 196–203

Outline

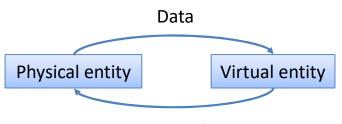
- Introduction and background
 - Industry 4.0
 - Digital twin (DT)
 - Main elements of DT
- Learning strategies in Digital twin
- Qualification of DT
- Case study
- Summary

Digital Twin Enabled Domain Adversarial Graph Networks for Bearing Fault Diagnosis (Feng et al. 2023)

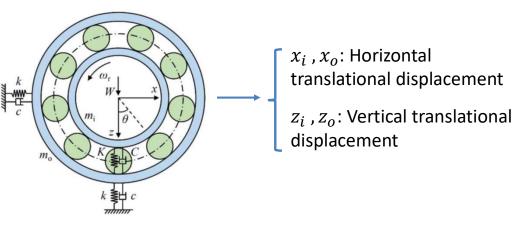
1. Limited pre-existing data

Construction of Digital Twin

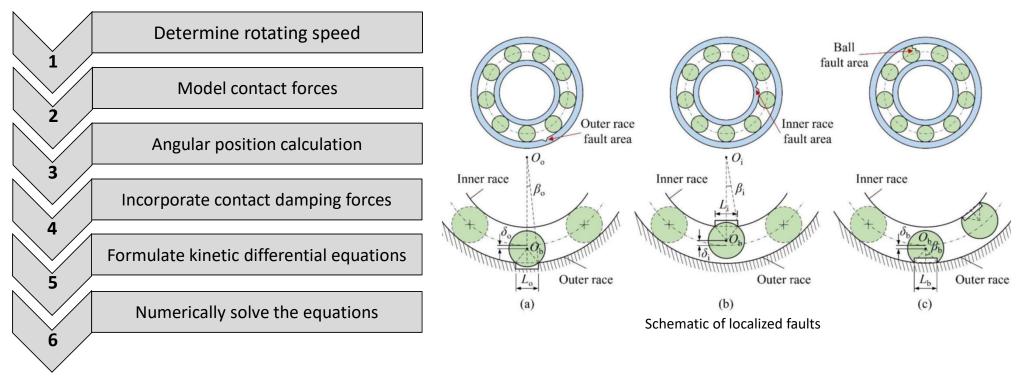
- 2. Dynamic simulation of operating conditions by digital twin
- 3. A graph convolutional network-based transfer learning to transfer knowledge from simulated data (DT) to measurement data for fault detection of bearings



Fault classification



Nonlinear dynamic model of roller bearing

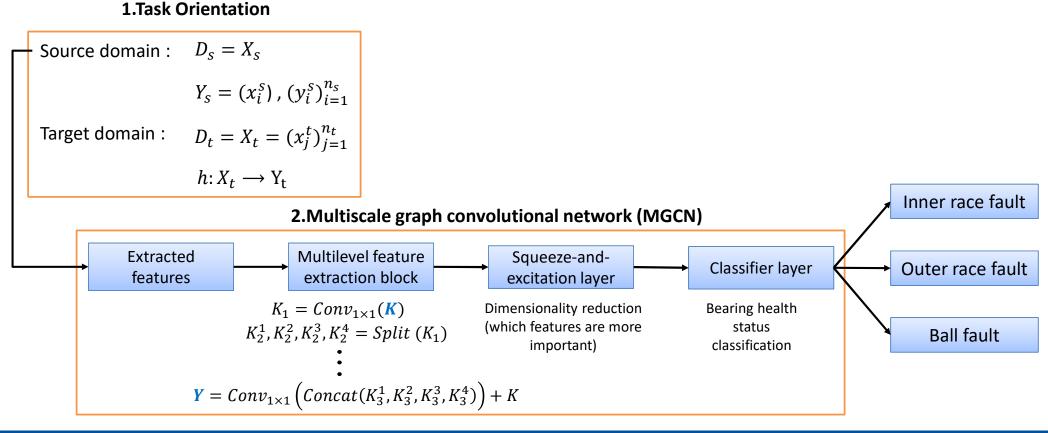


Dynamic physics-based model

Bearing fault frequencies $\times 10^{-3}$ 10 (b) (a) Amplitude (m/s²) Amplitude (m/s²) Fault condition **Characteristic frequency** 0 $f_o = \frac{N}{2} \left(1 - \frac{d}{D} \cos \alpha \right) f_r = 3.5848 f_r$ Ball pass frequency outer race -0.6 (BPFO) $f_i = \frac{N}{2} (1 + \frac{d}{D} \cos \alpha) f_r = 5.4152 f_r$ Ball pass frequency inner race -1.2 0.2 0.6 0.8 0.4 200 0 0 100 300 400(BPFI) Time (s) Frequency (Hz) Ball spin frequency (BSF) $f_b = \frac{D}{d} \left[1 - \left(\frac{d}{D}\cos\alpha\right)^2 \right] f_r = 4.7135 f_r$ 50 0.5 $f_{\rm b}(79 {\rm Hz})$ (c) (d) Amplitude (m/s²) 700 (m/s²) 700 (m/s²) Amplitude (m/s^2) 25 $5f_{\rm h}$ $\frac{Rotating \ speed(rpm)}{=} = \frac{1005}{1005}$ $f_r = rotating frequency =$ $\frac{35}{2} = 16.75$ 60 -25 -50 0 0 0.2 0.4 0.6 0.8 100 200 300 0 400 DT model is highly effective in Time (s) Frequency (Hz) Comparison of measured signal and simulated signal under rolling ball reproducing vibration response fault: (a) waveform of the measured signal, (b) envelope spectrum of the of bearings with various faults measured signal, (c) waveform of the simulated signal, (d) envelope spectrum of the simulated signal.

NTNU

Train the neural network model for fault diagnosis



DNTNU

Classification loss which is composed of 3 loss functions:

- **1.** Cross entropy loss (L_{CE}) : measure of dissimilarity between the true label and the predicted label
- 2. Maximum metric discrepancy (MMD) loss (L_{MMD}): to capture the difference between the probability distributions of the source domain and the target domain
- 3. Domain adversarial loss (L_{DA}) : To distinguish the data originating from source domain and target domain

4. Total loss =
$$L_{sum} = L_{CE} + \kappa L_{MMD} + \eta L_{DA}$$

Case A: Simulated data \rightarrow Measured data Case B: Measured data \rightarrow Simulated data

Approach	Accuracy $A \longrightarrow B(\%)$	Accuracy $B \rightarrow A(\%)$
WDCNN	83.96 <u>+</u> 7.76	68.03 ± 0.55
CNN-MMD	70.90 <u>+</u> 9.08	68.50 ± 3.40
CNN-Coral	71.83 <u>+</u> 6.93	60.14 ± 8.88
DAGCN	94.57 <u>+</u> 1.46	81.33 <u>+</u> 5.65
DDTLN	92.66 <u>+</u> 0.84	76.80 <u>+</u> 5.53
DT-DAGN	100.00 ± 0.00	91.20 ± 2.29

Outline

- Introduction and background
 - Industry 4.0
 - Digital twin (DT)
 - Main elements of DT
- Learning strategies in Digital twin
- Qualification of DT
- Case study
- Summary

Summary

- Digital twin helps us in real-time decision-making, controlling assets remotely, optimizing new designs based on historical data,
- Synchronization between the physical and virtual entities and ability to adapt to changes are the two main characteristics of digital twin
- Physics-based models and machine-learning algorithms are widely used in developing digital twins
- Physics-informed data-driven techniques

References

- An, Dawn, Nam H. Kim, and Joo Ho Choi. 2015. "Practical Options for Selecting Data-Driven or Physics-Based Prognostics Algorithms with Reviews." *Reliability Engineering & System Safety* 133 (January): 223–36.
- Feng, Ke, Yadong Xu, Yulin Wang, Sheng Li, Qiubo Jiang, Beibei Sun, Jinde Zheng, and Qing Ni. 2023. "Digital Twin Enabled Domain Adversarial Graph Networks for Bearing Fault Diagnosis." *IEEE Transactions on Industrial Cyber-Physical Systems* 1 (July): 113–22
- R. Berwick, Village Idiot. 2003. "An Idiot's Guide to Support Vector Machines (SVMs)."
- Rodríguez-Picón, Luis Alberto, Luis Carlos Méndez-González, Iván Juan Carlos Pérez-Olguín, and Jesús Israel Hernández-Hernández. 2023. "A Gamma Process with Three Sources of Variability." Symmetry 2023, Vol. 15, Page 162 15 (1): 162
- Ehrlinger, Lisa, and Wolfram Wöß. 2016. "Towards a Definition of Knowledge Graphs." International Conference on Semantic Systems.
- Errandonea, Itxaro, Sergio Beltrán, and Saioa Arrizabalaga. 2020. "Digital Twin for Maintenance: A Literature Review." Computers in Industry 123 (December): 103316
- Mostafa, Bossy M, Noha E El-Attar, Samy A Abd-Elhafeez, and Wael A Awad. 2021. "Machine and Deep Learning Approaches in Genome: Review Article." Alfarama Journal of Basic & Applied Sciences 2 (1): 105–13.
- Xie, Jinghai, Jia Guo, Mi Sun, Dongyu Su, Wei Li, Siyuan Chen, and Shaorong Wang. 2022. "A Digital Twin Five-Dimensional Structural Model Construction Method Suitable for Active Distribution Network." 2022 2nd International Conference on Electrical Engineering and Mechatronics Technology, ICEEMT 2022, 418–26
- Nalepa, Jakub, and Michal Kawulok. 2018. "Selecting Training Sets for Support Vector Machines: A Review." Artificial Intelligence Review 2018 52:2 52 (2): 857–900
- Emmert-Streib, Frank, Zhen Yang, Han Feng, Shailesh Tripathi, and Matthias Dehmer. 2020. "An Introductory Review of Deep Learning for Prediction Models With Big Data." Frontiers in Artificial Intelligence 3 (February): 507091
- Mahesh, Batta. 2019. "Machine Learning Algorithms—A Review." International Journal of Science and Research, no. 9: 381–86

Thank you!

