
Appendix A

Probability theory

A.1 Basic probability notation

In this chapter basic elements of probability theory are reviewed. Readers familiar with proba-

bility theory can skip this chapter. Readers which are very unfamiliar with this topic are advised

to read an introductory textbook in probability theory.

A.1.1 Event

In order to define probability, we need to work with events. Let as an example A be the event

that there is an operator error in a control room. This is written:

A = {operator error}

An event may occur, or not. We do not know the outcome in advance prior to the experiment

or a situation in the “real life”. We also use the word event to denote a set of distinct events. For

example the event that we get an even number when throwing a die.

A.1.2 Probability

When events are defined, the probability that the event occurs is of interest. Probability is de-

noted by Pr(·), i.e.,

Pr(A) = Probability that A occur

The numeric value of Pr(A) may be found by:

• Studying the sample space.
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• Analysing collected data.

• Look up the value in data hand books.

• “Expert judgement” ?.

The sample space defines all possible events. As an example let A = {It is Sunday}, B = {It is

Monday}, .. , G = {It is Saturday}. The sample space is then given by S = {A,B ,C ,D,E ,F,G}.

So-called Venn diagrams are useful when we want to analyse a subset of the sample space

S. A rectangle represents the entire sample space, and closed curves such as a circle are used to

represent subsets of the sample space as illustrated in Figure ??. In the following we will illustrate

Figure A.1: Venn diagram

frequently used combinations of events:

Union. We write A ∪B to denote the union of A and B , i.e., the occurrence of A or B or (A and

B). Let A be the event that tossing a die results in a “six”, and B be the event that we get an odd

number of eyes. We then have A∪B = {1,3,5,6}.

Intersection. We write A ∩B to denote the intersection of A and B , i.e. the occurrence of both

A and B . As an example, let A be the event that a project is not completed in due time, and let

B be the event that the budget limits are exceeded. A ∩B then represent the situation that the

project is not completed in due time and the budget limits are exceeded.

Disjoint events. A and B are said to be disjoint if they can not occur simultaneously, i.e. A∩B =

Ø = the empty set. Let A be the event that tossing a die results in a “six”, and B be the event that

we get an odd number of eyes. A and B are disjoint since they cannot occur simultaneously, and

we have A∩B = Ø.

Complementary events. The complement of an event A is all events in the sample space S

except for A. The complement of an event is denoted by AC . Let A be the event that tossing a

die results in an odd number of eyes. AC is then the event that we get an even number of eyes.
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A.1.3 Probability and Kolmogorov’s axioms

Probability is a set function Pr() which maps events A1, A2,... in the sample space S to real

numbers. The function Pr(·) can only take values in the interval from 0 to 1, i.e. probabilities are

greater or equal than 0, and less or equal than 1. Kolmogorov established the following axioms

Figure A.2: Mapping of events on the interval [0,1]

which all probability rules could be derived from:

1. 0 ≤ Pr(A)

2. Pr(S) = 1

3. If A1, A2, A3,... is a sequence of disjoint events we shall then have:

Pr(A1 ∪ A2 ∪ . . .) = Pr(A1)+Pr(A2)+ . . .

The axioms are the basis for establishing calculation rules when dealing with probabilities, but

they do not help us in establishing numerical values for the basic probabilities Pr(A1), Pr(A2),

etc. Historically two lines of thoughts have been established, the classical (frequentiest) and the

Bayesian approach. In the classical thinking we introduce the concept of a random experiment,

where Pr(Ai ) is the relative frequency with which the event Ai occurs. The probability could

then be interpreted as a property of the experiment, or a property of the world. By letting na-

ture reveal itself by doing experiments, we could in principle establish all probabilities that are

of interest. Within the Bayesian framework probabilities are interpreted as subjective believe

about whether Ai will occur or not. Probabilities is then not a property of the world, but rather

a measure of the knowledge and understanding we have about a phenomenon.

Before we set up the basic rules for probability theory that we will need, we introduce the

concepts of conditional probability and independent events.

Conditional probability. Pr(A|B) denotes the conditional probability that A will occur given

that B has occurred.
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Independent events. A and B are said to be independent if information about whether B has

occurred does not influence the probability that A will occur, i.e., Pr(A|B) = Pr(A).

Basic rules for probability. The following calculation rules for probability apply:

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) (A.1)

Pr(A∩B) = Pr(A) ·Pr(B) if A and B are independent (A.2)

Pr(AC ) = Pr(A does not occur) = 1−Pr(A) (A.3)

Pr(A|B) = Pr(A∩B)

Pr(B)
(A.4)

Example

Let the two events A and B be defined by A = {It is Sunday} and B = {It is between 6 and 8 pm).

First we note that A and B are independent but not disjoint. We will find Pr(A∩B), Pr(A∪B)

and Pr(A|B)

Pr(A∩B) = Pr(A) ·Pr(B) = 1

7
· 2

24
= 1

84

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) = 1

7
+ 2

24
− 1

84
= 9

42

Pr(A|B) = Pr(A∩B)

Pr(B)
= 1/84

2/24
= 1

7

□

A.1.4 The law of total probability

In many situations it is easier to assess the probability of an event B conditionally on some other

events, say A1, A2, . . ., Ar , than unconditionally. The law of total probability could then be used

to assess the unconditional probability. Now, we say that A1, A2, . . ., Ar is a division of the sample

space if the union of all Ai ’s covers the entire sample space, i.e. A1∪ A2∪ . . . ∪ Ar = S and the Ai ’s

are pair wise disjoint, i.e. Ai∩ A j = Ø for i ̸= j . An example is shown in Figure ??.

Let A1, A2, . . ., Ar represent a division of the sample space S, and let B be an arbitrary event in S.

The law of total probability now states:

Pr(B) =
r∑

i=1
Pr(Ai ) ·Pr(B |Ai ) (A.5)

Example

A special component type is ordered from two suppliers A1 and A2. Experience has shown that
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Figure A.3: Divition of the sample space

components from supplier A1 has a defect probability of 1%, whereas components from sup-

plier A2 has a defect probability of 2%. In average 70% of the components are provided by sup-

plier A1. Assume that all components are put on a common stock, and we are not able to trace

the supplier for a component in the stock. A component is now fetched from the stock, and we

will calculate the defect probability, Pr(B):

Pr(B) =
r∑

i=1
Pr(Ai ) ·Pr(B |Ai ) = Pr(A1) ·Pr(B |A1)+Pr(A2) ·Pr(B |A2) =

0.7 ·0.01+0.3 ·0.02 = 1.3%

□

A.1.5 Bayes theorem

Now consider the example above, and assume that we have got a defect component from the

stock (event B). We will derive the probability that the component originates from supplier A1.

We then use Bayes formula that states if A1, A2, . . ., Ar represent a division of the sample space,

and B is an arbitrary event then:

Pr(A j |B) = Pr(B |A j ) ·Pr(A j )
r∑

i=1
Pr(Ai ) ·Pr(B |Ai )

(A.6)

Example

We have

Pr(A1|B) = Pr(B |A1) ·Pr(A1)
r∑

i=1
Pr(Ai ) ·Pr(B |Ai )

= 0.01 ·0.7

0.013
= 0.54
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Thus, the probability of A1 is reduced from 0.7 to 0.54 when we know that the component is

defect. The reason for this is that components from supplier A1 are the best ones, and hence

when we know that the component was defect, it is less likely that it was from supplier A1. □

A.1.6 Stochastic variables

Stochastic variables are used to describe quantities which can not be predicted exactly. Note

that the term ‘random quantity’ is often used to denote a stochastic variable.

X is stochastic ⇔ Cannot say precisely the value X has or will take

To be more precise, a stochastic variable X is a real valued function that assigns a quantitative

measure to each event ei in the sample space S, i.e., X = X (ei ). Often the underlying events,

ei are of little interest. We are only interested in the stochastic variable X measured by some

means.

Examples of stochastic variables are given below:

• X = Life time of a component (continuous)

• R = Repair time after a failure (continuous)

• T = Duration of a construction project (continuous)

• C = Total cost of a renewal project (continuous)

• M = Number of delayed trains next month (discrete)

• N = Number of customers arriving today (discrete)

• S = Service time for the first customer arriving today (continuous)

• W = Maintenance and operational cost next year (continuous)

Remark: We distinguish between continuous and discrete stochastic variables. Continuous

stochastic variables can take any value among the real numbers, whereas discrete variables can

take only a finite (or countable finite) number of values. □

Cumulative distribution function (CDF). A stochastic variable X is characterized by it’s cumu-

lative distribution function:

FX (x) = Pr(X ≤ x) (A.7)
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We use subscript X to emphasise the relation to the cumulative distribution function of the

quantity X . The argument (lowercase x) states which values the stochastic variable X could take,

or is of our interest. From the expression we observe that FX (x) states the probability that the

random quantity X is less or equal than (the numeric value of) x. A typical distribution function

is shown in Figure ??. Note that the distribution function is strictly increasing, and 0 ≤ FX (x) ≤ 1.

From FX (x) we can obtain the probability that X will be within a specified interval, [a,b):

Pr(a < X ≤ b) = FX (b)−FX (a) (A.8)

Figure A.4: Cumulative distribution function, FX (x)

Note that the index X representing the stochastic variable X often is dropped if it is obvious

which stochastic variable we are working with. Note also the distinction between lowercase and

uppercase letters. The uppercase X is used to denote a stochastic variable, for example number

of customers arriving next day. The lowercase x is just a representation of possible values X can

take. For example X = 3.

Example

Assume that the probability distribution function of X is given by FX (x) = 1− e−(0.01x)2
, and we

will find the probability that X is in the interval (100,200]. From Equation (??) we have:

Pr(100 < X ≤ 200) = FX (200)−FX (100) =[
1−e−(0.01·200)2

]
−

[
1−e−(0.01·100)2

]
= e−1 −e−4 ≈ 0.35

□

Probability density function (PDF). For a continuous stochastic variable, the probability den-

sity function is given by

fX (x) = d

d x
FX (x) (A.9)
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The probability density function expresses how likely the various x-values are.

Figure A.5: Probability density function, fX (x)

Note that for continuous random variables the probability that X will take a specific value van-

ishes. However, the probability that X will fall into a small interval around a specific value is

positive. For each x-value given in Figure ?? fX (x) could be interpreted as the probability that

X will fall within a small interval around x divided by the length of this interval. Especially we

have:

FX (x) =
x∫

−∞
fX (u)du (A.10)

and

Pr(a < X ≤ b) =
b∫

a

fX (x)d x (A.11)

The last expression is illustrated in Figure ??.

Figure A.6: The shadded area equals Pr(a < X ≤ b)

Random quantities that take discrete values are said to be discretely distributed. For such

quantities we introduce the point probability for X in the point x j :

p(x j ) = Pr(X = x j ) (A.12)
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where x1, x2, . . . are possible values X could take.

Expectation. The expectation (mean) of X is given by

E[X ] =


∞∫

−∞
x · fX (x)d x if X is continuous∑

j
x j ·p(x j ) if X is discrete

(A.13)

The expectation can be interpreted as the long time run average of X , if an infinite amount of

observations are available.

Median. The median of a distribution is the value m0 of the stochastic variable X such that

Pr(X ≤ m0) ≥ 1/2 and Pr(X ≥ m0) ≥ 1/2. In other words, the probability at or below m0 is at least

1/2, and the probability at or above m0 is at least 1/2.

Mode. The mode of a distribution is the value M of the stochastic variable X such that the

probability density function, or point probability at M is higher or equal than for any other value

of the stochastic variable. We sometimes used the term ‘most likely value’ rather than mode.

Variance. The variance of a random quantity expresses the variation in the value X will take in

the long run. We denote the variance of X by:

Var(X ) =


∞∫

−∞
(x −E[X ])2 · fX (x)d x if X is continuous∑

j

(
(x j −E[X ]

)2 ·p(x j ) if X is discrete
(A.14)

Standard deviation. The standard deviation of X is given by

SD(X ) =+
√

Var(X ) (A.15)

The standard deviation defines an interval which observations are likely to fall into, i.e., if 100

observations are available, we expect that approximate1 67 of these observations fall in the in-

terval [E[X ]−SD(X ),E[X ]+SD(X )].

Precision. The precision, P , is the reciprocate of the variance, i.e. P = 1
Var(X ) .

α-percentiles. The upper α-percentile, xα, in a distribution FX (x) is the value satisfying α =
Pr(X > xα) = 1−FX (xα).

1This result is valid for the normal distribution. For other distributions there may be deviation from this result.
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We end this section by giving some results regarding expectation and variances. These re-

sults apply when it is easier to express the expectation and variance of one variable if we condi-

tion on the value of another variable.

Result

Double expectation

Let X and Y be stochastic variables. We then have:

E[X ] = E[E[X Y ]] (A.16)

Var(X ) = E[Var(X Y )]+Var(E[X Y ]) (A.17)

□

It follows easily that

E[X ] = E[X B ]Pr(B)+E
[

X BC ]
Pr(BC ) (A.18)

Var(X ) = Var(X |B)Pr(B)+Var(X |BC )Pr(BC )

+ (E[X |B ]−E[X ])2 Pr(B)+ (
E

[
X |BC ]−E[X ]

)2
Pr(BC ) (A.19)

A.2 Common probability distributions

In this section we will present some common probability distributions. We write X ∼ <Name

of distribution>(<parameters>) to express that X belongs to <Name of distribution>, and with

parameters <parameters>. Sometimes we also use an abbreviation for the distribution, for ex-

ample we write X ∼ N (3,4) to express that X is normally distributed with expectation 3 and

variance 4.

A.2.1 The normal distribution

X is said to be normally distributed if the probability density function of X is given by:

fX (x) = 1p
2π

1

σ
e− (x−µ)2

2σ2 (A.20)
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where µ and σ are parameters that characterise the distribution. The mean and variance are

given by:

E[X ] =µ
Var(X ) =σ2 (A.21)

The distribution function for X could not be written on closed from. Numerical methods are

required to find FX (x). It is convenient to introduce a standardised normal distribution for this

purpose. We say that U is standard normally distributed if it’s probability density function is

given by:

fU (u) =φ(u) = 1p
2π

e− u2

2 (A.22)

We then have

FU (u) =Φ(u) =
u∫

−∞
φ(t )dt =

u∫
−∞

1p
2π

e− t2

2 dt (A.23)

and we observe that the distribution function of U does not contain any parameters. We there-

fore only need one look-up table or function representingΦ(u). A look-up table is given in Table

??. To calculate probabilities in the non-standardised normal distribution we use the following

result:

Result

If X is normally distributed with parameters µ and σ, then

U = X −µ
σ

(A.24)

is standard normally distributed. □

In many situations we are interested in calculating the “truncated expectation”
∫ a
−∞ x f (x)d x.

For the normal distribution the following result may be used:

Result

Let X be normally distributed with parameters µ and σ. We then have:
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Result

∫ a

−∞
x f (x)d x =µΦ

(a −µ
σ

)
−σφ

(a −µ
σ

)
(A.25)

whereΦ() and φ() are the CDF and PDF for the standard normal distribution respectively. □

To prove Equation (??) first introduce u = (x −µ)/σ yielding
∫ a
−∞ x f (x)d x = ∫ (a−µ)/σ

−∞ (σu −
µ)φ(u)du. The µφ(u) part of the integral is directly found by the Φ() function whereas for the

σuφ(u) part introduce z =−u2/2 yielding −σ/
p

2π
∫ (a−µ)2/2σ2

−∞ e−zd z. The result then follows.

Example Calculation in the normal distribution

Let X be normally distributed with parameters µ = 5 and σ = 3. We will find Pr(3 < X ≤ 6). We

have:

Pr(3 < X ≤ 6) = Pr(
3−µ
σ

< X −µ
σ

≤ 6−µ
σ

) = Pr(
3−5

3
<U ≤ 6−5

3
)

=Φ
(

1

3

)
−Φ

(−2

3

)
=Φ(0.33)− (1−Φ(0.67)) = 0.629−1+0.749 = 0.378

□

Problem

Consider the example in Example ??, and carry out the calculations. □

Problem

Let X be the height of men in a population, and assume X is normally distributed with param-

eters µ = 181 and σ = 4. How large percentage of the population is more than 190 cm? □

A.2.2 The exponential distribution

X is said to be exponentially distributed if the probability density function of X is given by:

fX (x) =λe−λx (A.26)

The cumulative distribution function is given by:

FX (x) = 1−e−λx (A.27)
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and the mean and variance are given by:

E[X ] = 1/λ

Var(X ) = 1/λ2 (A.28)

Note that for the exponential distribution, X will always be greater than 0. The parameter λ

is often denoted the intensity in the distribution Example

We will obtain the probability that X is greater than it’s expected value. We then have:

Pr(X > E[X ]) = 1−Pr(X ≤ E[X ]) = 1−FX (E[X ]) = e−λE[X ] = e−1 ≈ 0.37

□

A.2.3 The Weibull distribution

X is said to be Weibull distributed if the probability density function of X is given by:

fX (x) =αλ(λx)α−1e−(λx)α (A.29)

The cumulative distribution function is given by:

FX (x) = 1−e−(λx)α (A.30)

and the mean and variance are given by:

E[X ] = 1

λ
Γ

(
1

α
+1

)
Var(X ) = 1

λ2

[
Γ

(
2

α
+1

)
−Γ2

(
1

α
+1

)]
(A.31)

where Γ(·) is the gamma function. Note that in the Weibull distribution X will always be positive.

The Weibull distribution is often used as a distribution for time to failure of components,

partly because it is rather simple, and flexible. For time to failure distributions we introduce the

concept of the failure rate function. The failure rate function is given by:

z(t ) = f (t )

1−F (t )
(A.32)

here we use t for running time, and we skip the index for the name of the stochastic variable

when it is obvious from the context. It follows that the failure rate function for the Weibull dis-
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tribution is given by:

z(t ) =αλαtα−1 (A.33)

A.2.4 The gamma distribution

X is said to be gamma distributed if the probability density function of X is given by:

fX (x) = λα

Γ(α)
(x)α−1e−λx (A.34)

α is denoted the intensity parameter whereas λ is denoted the intensity parameter. For integer

values of α the gamma distribution is often denoted the Erlang distribution. The cumulative

distribution function could then be found on closed form:

FX (x) = 1−
α−1∑
n=0

(λx)α

n!
e−(λx) (A.35)

For non-integer values of α numerical methods are required to obtain the cumulative distribu-

tion function. The mean and variance are given by:

E[X ] = α

λ

Var(X ) = α

λ2
(A.36)

If we know the expectation E and the variance V in the gamma distribution, we may obtain the

parameters α and λ by: λ = E/V , and α= λ ·E . The gamma distribution is often used as a prior

distribution in a Bayesian approach.

For integer values ofα the gamma distribution and in particular the Erlang distribution may

be seen as a distribution for a sum of exponentially distributed stochastic variables:

Result

Let Z1, Z2, . . . Zk be independent and exponentially distributed with parameter λ. The variable

X =∑k
i=1 Zi is then gamma distributed with shape parameter k and scale parameter λ. □
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A.2.5 The inverted gamma distribution

X is said to be inverted gamma distributed if the probability density function of X is given by:

fX (x) = λα

Γ(α)

(
1

x

)α+1

e−λ/x (A.37)

The mean and variance are given by:

E[X ] =λ/(α−1)

Var(X ) =λ2(α−1)−2(α−2)−1 (A.38)

Note that if X is gamma distributed with parameters α and λ, then Y = X −1 has an inverted

gamma distribution with parametersα and 1/λ. If we know the expectation, E and the variance,

V , of an inverted gamma distribution we could obtainα andλ byα= E 2/V +2, andλ= E ·(α−1).

A.2.6 The lognormal distribution

X is said to be lognormally distributed if the probability density function of X is given by:

eqStream: Lognormal Distribution

fX (x) = 1p
2π

1

τ

1

x
e− 1

2τ2 (log x−ν )2

(A.39)

We write X ∼ LN(v ,τ). The mean and variance of X is given by

E[X ] = eν+
1
2 τ

2

Var(X ) = e2ν(e2τ2 −eτ
2
) (A.40)

The following result could be utilised:

Result

If X is lognormally distributed with parameters ν and τ, then Y = ln X is normally distributed2

with expected value ν and variance τ2. □

2ln(·) is the natural logarithm function
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A.2.7 The binomial distribution

Before the binomial distribution is defined, binomial trials are defined. Let A be an event, and

assume that the following holds:

i) n trials are performed, and in each trial we record whether A occurrs or not.

ii) The trials are stochastic independent of each other.

iii) For each trial Pr(A) = p

When i)-iii) is satisfied, we say that we have binomial trials. Now let X be the number of times

event A occurs in such a binomial trial. X is then a stochastic variable with a binomial distribu-

tion. This is written X ∼ Bi n(n, p).

The probability function is given by

Pr(X = x) =
(

n

x

)
px(1−p )n−x for x = 0,1,2, ..,n (A.41)

The cumulative distribution function Pr(X ≤ x) is given in statistical tables. For the binomial

distribution, expectation and variance are given by:

E[X ] = np

Var(X ) = np(1−p) (A.42)

A.2.8 The Poisson distribution

The Poisson distribution is often appropriate in the situation where the stochastic variable may

take the values 0,1,2,. . ., and where the expected number of occurrences is proportional to an

exposure measure such as time or space. For the Poisson distribution we have the following

point distribution:

p(x) = Pr(X = x) = λx

x!
e−λ (A.43)

For the poison distribution, expectation and variance are given by:

E[X ] =λ
Var(X ) =λ (A.44)

It can be proved that the Poisson distribution is appropriate if the following situation applies:

Consider the occurrence of a certain event (e.g., a component failure) in an interval (a,b), and

assume the following:
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1. A could occur anywhere in (a,b), and the probability that A occurs in (t , t +∆t ) is approx-

imately equal to λ∆t , and is independent of t (∆t should be small).

2. The probability that A occurs several times in (t , t +∆t ) is approximately 0 for small values

of ∆t .

3. Let I1og I2 be disjoint intervals in (a,b). The event A occurs within I1 is independent of if

the event A occurs in I2.

When the criteria above are fulfilled we say we have a Poisson point process with intensity λ. The

number of occurrences (X ) of A in (a,b) is then Poisson distributed with parameter λ(b −a):

p(x) = Pr(X = x) = [λ(b −a)]x

x!
e−λ(b−a) (A.45)

Result: Times between occurrence in the Poisson process

In a Poisson point process with parameter λ the times between the occurrence of the event A

are exponentially distributed with parameter λ. □

A.2.9 The inverse-Gauss distribution

The inverse-Gauss distribution is often used when we have an “under laying” deterioration pro-

cess. If this deterioration process follows a Wiener process with drift η and diffusion constant δ2,

the time3 T , until the first time the process reaches the valueωwill be Inverse-Gauss distributed

with parameters µ=ω/η, and λ = ω2/δ2.

If the failure progressionΩ(t ) follows a Wiener process it could be proven thatΩ(t ) -Ω(s) is

normally distributed with expected value η(t − s) and variance δ2(t - s). That is η is the average

growth rate in the process, whereas δ2 is an expression for the variation of the growth around

the average value.

For the inverse-Gauss distribution we have:

FT (t ) =Φ
√

λ

t

(
t

µ
−1

))+Φ
−

√
λ

t

(
t

µ
+1

)e2λ/µ (A.46)

and

E[T ] =µ (A.47)

Var(T ) =µ3/λ (A.48)
3We use the symbol T rather than the more general symbol X here since this modell is so explicitly linked to the

time.
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A.3 Distribution of sums, products and maximum values

A.3.1 Distribution of sums

If X1, X2,. . . ,Xn are random variables we might obtain the expected value, the variance and the

standard deviation of the sum of the x-es:

E[X1 +X2 + . . .+Xn] = E
[∑n

i=1 Xi
]=∑n

i=1 E[Xi ] (A.49)

Var(X1 +X2 + . . .+Xn) = Var
(∑n

i=1 Xi
)=∑n

i=1 Var(Xi ) (A.50)

SD
(∑n

i=1 Xi
)=√∑n

i=1 [SD(Xi )]2 (A.51)

Note that Equations (??) and (??) are only valid if the x-es are stochastically independent. If there

is dependency between the x-es we need to include a covariance term, e.g., if we only have two

variables X1 and X2 we have:

Var(X1 +X2) = Var(X1)+Var(X2)+2Cov(X1, X2) (A.52)

where Cov(X1, X2) is the covariance between X1 and X2.

The results above help us in determine the expectation and variance of a sum of stochastic

variables, but the results could not be used to establish the probability distribution of the sum.

In the following we refer some results we could utilise in many situations.

Result: Sum of normally distributed stochastic variables

Let X1, X2,. . . ,Xn be independent normally distributed. Let Y be the sum of the x-es, i.e. Y =∑n
i=1 Xi . Y is then normally distributed with E[Y ] =∑n

i=1 E[Xi ] and Var(Y ) =∑n
i=1 Var(Xi ). □

Result: Sum of exponentially distributed stochastic variables

Let X1, X2,. . . ,Xn independent exponentially distributed with parameter λ. Let Y be the sum of

the x-es, i.e. Y =∑n
i=1 Xi . Y is then gamma distributed with parameters n and λ. □
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Result: Sum of gamma distributed stochastic variables

Let X1, X2,. . . ,Xn independent gamma distributed with parameters α and λ. Let Y be the sum

of the x-es, i.e. Y =∑n
i=1 Xi . Y is then gamma distributed with parameters nα and λ. □

Result: Central limit theorem

Let X1, X2,. . . ,Xn be a sequence of identical independent distributed stochastic variables with

expected value µ and standard deviation σ. As n approaches infinity, the average value of the

x-es will asymptotically have a normal distribution with expected value µ and standard devia-

tion σ/
p

n. Similarly, the sum of the x-es will asymptotically have a normal distribution with

expected value nµ and standard deviation σ
p

n. □

Several generalizations for finite variance exist which do not require identical distribution

but incorporate some conditions which guarantee that none of the variables exert a much larger

influence than the others. Two such conditions are the Lindeberg condition and the Lyapunov

condition. Now, as n approaches infinity, the sum of the x-es will asymptotically have a normal

distribution with expected value
∑n

i=1 E[Xi ] and variance
∑n

i=1 Var(Xi ).

A.3.2 Distribution of a product

If X1, X2,. . . ,Xn are independent stochastic variables we might obtain the expected value, the

variance and the standard deviation of the product of the x-es:

E[X1 ·X2 · . . . ·Xn] = E

[
n∏

i=1
Xi

]
=

n∏
i=1

E[Xi ] (A.53)

The results for the variance and standard deviation is more complicated, and we only present

the results for n=2.

Var(X1X2) = Var(X1)Var(X2)+Var(X1) (E[X2])2 +Var(X2) (E[X1])2 (A.54)

SD(X1X2) =
√

Var(X1)Var(X2)+Var(X1) (E[X2])2 +Var(X2) (E[X1])2 (A.55)
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Table A.1: The Cumulative Standard Normal Distribution

Φ(z) = Pr(Z ≤ z) =
z∫

−∞

1p
2π

e− u2

2 du

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

.500

.540

.579

.618

.655

.691

.726

.758

.788

.816

.841

.864

.885

.903

.919

.933

.945

.955

.964

.971

.977

.982

.986

.989

.992

.994

.995

.997

.997

.998

.999

.504

.544

.583

.622

.659

.695

.729

.761

.791

.819

.844

.867

.887

.905

.921

.934

.946

.956

.965

.972

.978

.983

.986

.990

.992

.994

.995

.997

.998

.998

.999

.508

.548

.587

.626

.663

.698

.732

.764

.794

.821

.846

.869

.889

.907

.922

.936

.947

.957

.966

.973

.978

.983

.987

.990

.992

.994

.996

.997

.998

.998

.999

.512

.552

.591

.629

.666

.702

.732

.767

.797

.824

.849

.871

.891

.908

.924

.937

.948

.958

.966

.973

.979

.983

.987

.990

.992

.994

.996

.997

.998

.998

.999

.516

.556

.595

.633

.670

.705

.739

.770

.800

.826

.851

.873

.893

.910

.925

.938

.949

.959

.967

.974

.979

.984

.987

.990

.993

.994

.996

.997

.998

.998

.999

.520

.560

.599

.637

.674

.709

.742

.773

.802

.829

.853

.875

.894

.911

.926

.939

.951

.960

.968

.974

.980

.984

.988

.991

.993

.995

.996

.997

.998

.998

.999

.524

.564

.603

.641

.677

.712

.745

.776

.805

.831

.855

.877

.896

.913

.928

.941

.952

.961

.969

.975

.980

.985

.988

.991

.993

.995

.996

.997

.998

.999

.999

.528

.567

.606

.644

.681

.716

.749

.779

.808

.834

.858

.879

.898

.915

.929

.942

.953

.962

.969

.976

.981

.985

.988

.991

.993

.995

.996

.997

.998

.999

.999

.532

.571

.610

.648

.684

.719

.752

.782

.811

.836

.860

.881

.900

.916

.931

.943

.954

.962

.970

.976

.981

.985

.989

.991

.993

.995

.996

.997

.998

.999

.999

.536

.575

.614

.652

.688

.722

.755

.785

.813

.839

.862

.883

.901

.918

.932

.944

.954

.963

.971

.977

.982

.986

.989

.992

.994

.995

.996

.997

.998

.999

.999

Φ(-z) = 1 -Φ(z)


