
Chapter 4

Calculation of system reliability metrics

This document is basically a motivated by chapter 4-8 in the textbook Reliability of Safety-

Critical Systems by Marvin Rausand.

4.1 Introduction

In this chapter we introduce methods and approaches for calculation of the following system

reliability metrics

• PFD = Probability of Failure on Demand

• PFH = Probability of Failure per Hour

• STR = Spurious Trip Rate

Note that these terms are time dependent and are changing during a proof test interval. The

objective is usually to find average values during the proof test interval. When these terms are

given with out any time dependency, it is implicitly assumed that we are presenting average

value. In same cases we also use the subscript “avg” to emphasize that the value is the average

value during one proof test interval

4.2 PFD calculations for systems

To obtain PFD for a system we may follow the following procedure:

1. Find PFD for the system as a function of t in an interval, i.e., 0 É t É τ, and denote the

result PFD(t )

2. To obtain PFD(t ) we often utilize the system survivor function, say R(t )

1
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3. Find the average PFD(t ) by integration: PFD = 1
τ

∫ τ
0 PFD(t )d t = 1− 1

τ

∫ τ
0 R (t )d t

The classical example is one component proof tested at point of times τ,2τ,3τ,. . . , and time to

failure is exponentially distributed, i.e., R(t ) = e−λt .

PFD = 1− 1

τ

∫ τ

0
R(t )d t = 1− 1

τ

∫ τ

0
e−λt d t = 1+ 1

λτ

∫ τ

0
−λe−λt d t = 1+ 1

λτ
e−λt

∣∣∣τ
0
= (4.1)

1+ 1

λτ

(
e−λτ−1

)
(4.2)

If λτ is small, i.e., (<0.01) we utilize that e−x ≈ 1− x + x2/2, and inserting in the expression for

PFD(t ) yields:

PFD = 1+ 1

λτ

(
e−λτ−1

)
≈ 1+ 1

λτ

(
1−λτ+ (λτ)2/2−1

)=λτ/2 (4.3)

Note that λ is the rate of DU-failures. In some presentations the notation λDU is used, but for

simplicity we only use λ. In general we also need to add contribution of DD failures, but this is

not further discussed in this presentation.

Another way to obtain the same result is to use that e−x ≈ 1− x for small x-values directly,

hence we have that PFD(t ) = 1−e−λt ≈λt in an each proof test interval:

t  

PFD(t) 

3τ 2τ τ 4τ 

 

 

 PFD »  lt/2

PFD(t) = 1- e-lt

»  lt

which yields PFD ≈λτ/2.

Such an argument we may also use for two identical components in parallel that are proof

tested at the same time. The time dependent PFD of the two components is found by

PFD(t ) = PFD1(t ) ·PFD2(t ) ≈ (λt )2

yielding:

PFD = 1/τ
∫ τ

0
PFD1(t ) ·PFD2(t )d t ≈ 1/τ

∫ τ

0
(λt )2d t = (λτ)2

3

The PFDs of some koon systems of identical and independent components with constant failure

rate λ and test interval τ are found to be:
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k\n 1 2 3 4

1
λτ

2

(λτ)2

3

(λτ)3

4

(λτ)4

5

2 – λτ (λτ)2 (λτ)3

3 – –
3λτ

2
2(λτ)2

4 – – – 2λτ

The general formula for PFD is

PFD =
(

n

n −k +1

)
(λτ)n−k+1

n −k +2
(4.4)

The argument for this formula is as follows. We have a k oo n : G system corresponding to an

n −k +1oo n : F system. This means that if n −k +1 components are in a fault state, the system

will be in a fault state. The minimal cut sets will all contain n −k +1 components, and there are( n
n−k+1

)
such minimal cut sets. At time t ,0 ≤ t < τ the probability that one such cut set is in a

fault state is PFD j (t ) ≈ (λt )n−k+1 with an average PFD j = (λτ)n−k+1

n−k+2 . Multiplying with the number

of minimal cut sets gives the above formula.

4.2.1 Staggered Testing

Now, consider the case with the two components in a 1oo2 voting having the same λ and τ, but

where the testing is not carried out simultaneously. The situation is illustrated in Figure 4.1.

t

PFD(t)

a  

 

0 τ  2τ 

≈λ(t+τ-a)

≈λt

≈λ(t-a)

Figure 4.1: Staggered testing

Assuming that component 2 is tested at time (a) inside the test interval of component 1, it can
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be shown that:

PFD(a) ≈ (λτ)2

3

(
1− 3a

2τ
+ 3a2

2τ2

)
(4.5)

PFD(a) attains its maximum value

PFDmax ≈ (λτ)2

3
= 4

3
· λτ

2
· λτ

2
(4.6)

when a = 0 or a = τ, i.e., when the components are tested simultaneously.

PFD(a) attains its minimum value when a = τ/2, i.e., when component 2 is tested in the

middle of the test interval of component 1:

PFDmi n ≈ 5

8

(λτ)2

3
= 5

6
· λτ

2
· λτ

2
(4.7)

Note that this minimum PFD is actually smaller than the PFD obtained when simply multiplying

the average PFD values of the individual components. Compared to the case of simultaneous

testing, we obtain a PFD reduction of 38% in the case of “optimal” testing. Hence, there is a great

potential for improvement in the total PFD if components are tested at different times. This is

exploited in staggered testing. Also note that the minimum value is obtained when a = τ/2 for

a 1oo2 system, for general configuration it is more complicated to set up the optimal staggered

testing regime.

4.3 More about the test regime

There are three different test regimes that are considered

• Simultaneous testing, i.e., a = 0 in Figure 4.1

• Optimal staggered testing, i.e., a = τ/2 in Figure 4.1

• Independent testing

If the components are tested independently we can calculate PFD for each component by the

formula PFDi = λiτi /2 and proceed with the structure function. Due to the independent test

regime, it is reasonable to argue that the components are independent, and we proceed with the

standard approach which here means to replace xi in the structure function with pi = 1−PFDi .

If common cause failures are relevant, we may add an artificial block to represent the common

cause “part" of the components.

It is important to understand the difference between independent testing and independent

components. Independent testing means that if we know that one of the component is in a fault
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state this will have no information regarding if the other component is in a fault state. This is

not true for e.g., simultaneous testing. For simultaneous testing we have: If one component

is known to be in a fault state it is more likely that we are at the end of the test interval com-

pared to if it was functioning. Hence, it is also more likely that the other component is in a fault

state because the likelihood of being at the end of the test interval is higher. The components

performance are dependent not because of any physical reasons, only due to the testing regime.

4.4 RBD-approach

Reliability block diagrams (RBDs) are valuable when we want to visualise the performance of a

system comprised of several (binary) components. The basic theory for RBD analysis is intro-

duced in Appendix F.

1 2 3 n
a b

. . . .

Figure 4.2: Reliability block diagram for a series structure

Figure 4.2 shows the reliability block diagram for a series structure. In general the interpre-

tation of the diagram is that the system is functioning if it is a connection between a and b, i.e.,

there exists a path of functioning components from a to b. The system is in a fault state (is not

functioning) if it does not exist a path of functioning components between a and b.

4.4.1 Structure function

For components we have:

xi (t ) =
{

1 if component i is functioning at time t

0 if component i is in a fault state at time t
(4.8)

For the system we now introduce

φ(x, t ) =
{

1 if the system is functioning at time t

0 if the system is in a fault state (not functioning) at time t
(4.9)

φ denotes the structure function, and depends on the xi s (x is a vector of all the xi ’s). φ(x, t ) is

thus a mathematical function that uniquely determines whether the system functions or not for

a given value of the x -vector.

To simplify notation we skip the index t in the following.
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4.4.2 The structure function for some simple structures

In the following we omit the time dependence from the notation.

For a series structure we have:

φ(x) = x1 · x2 · ... · xn =
n∏

i=1
xi

For a parallel structure we have

φ(x) = 1− (1−x1)(1−x2). . . (1−xn) = 1−
n∏

i=1
(1−xi ) =

n∐
i=1

xi

Note that we for two components in parallel may simplify:

φ(x1, x2) = 1− (1−x1)(1−x2) = x1 +x2 −x1x2

We may combine the results for series and parallel structures to obtain the structure function

for more complex structures.

To obtain system reliability we introduce the component reliability metric pi (t ) for compo-

nent i . There are various ways we can establish the component reliability metric. One way is to

consider the probability that the component has survived the time interval [0, t ). In this case we

usually assume that time-to-failure is exponentially distributed, and we have:

pi (t ) = eλi t (4.10)

In other situations we consider the average probability of functioning in an interval or a time

period. In this situation p is not depending on time. For components that are proof-tested with

interval of length τ we obtain from Equation (4.3):

pi = 1−PFDi ≈ 1−λiτ/2 (4.11)

4.4.3 General approach utilizing the structure function

1. Map the physical system into a reliability block diagram or another representation as a

starting point

2. Use various approaches (series, parallels, bridges, k-out-of-n’s etc) to derive the structure

function

3. Multiply out any parentheses, collect terms, and remove any exponents, yielding a struc-

ture function as a sum of products
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4. The system reliability, pS(t ) is now found by replacing all the xi ’s with corresponding

pi (t )’s in the sum of product version of the structure function

Note that exponents in the structure function can always be removed because xn = x for all

binary variables. Further exponents shall always be removed since our expectation results above

is not valid if there are exponents corresponding to dependent variables, for example X 2 = X ·X

is the product of the same variable.

Note that the assumption for this approach is that components are stochastically indepen-

dent. If two or more components are proof tested at the same time, these components will be

stochastic dependent if an arbitrary point of time is considered. Therefore the average approach

by using pi = 1−λiτ/2 can not be used. In this situation we can calculate pS(t ) for n points of

time in the interval [0,τ) and take the average of these numbers to obtain an approximation for:

PFD = 1− 1

τ

∫ τ

0
pS(t )d t (4.12)

4.5 FTA apporach

A fault tree is a logic diagram that displays the relationships between a potential critical event

(accident) in a system and the reasons for this event. The reasons may be environmental condi-

tions, human errors, normal events (events which are expected to occur during the life span of

the system) and specific component failures. A properly constructed fault tree provides a good

illustration of the various combinations of failures and other events which can lead to a speci-

fied critical event. The fault tree is easy to explain to engineers without prior experience of fault

tree analysis. Appendix D introduce the required theory for fault tree analysis (FTA).

4.6 The fault tree construction

To construct a fault tree we need:

1. A precise definition of the critical event (the accident) to be analysed.

2. A definition of the boundary conditions for the analysis.

The critical event (accident) to be analysed is called the TOP event. To give the TOP event is

given a clear and unambiguous definition should always answer the questions: What, where

and when?

What: Describes what type of critical event (accident) is occurring, e.g., collision between

two trains.

Where: Describes where the critical event occurs, e.g., on a single track section.
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When: Describes when the critical event occurs, e.g., during normal operation.

When the TOP event is defined start developing the fault tree by asking what are the direct

reasons for the TOP event to occur. We combine those causes by logical gates, i.e.,:

• An AND gate if all direct reasons have to occur in order to have the TOP event occurring

• An OR gate if one or more of the direct reasons will lead to the TOP event

• An koon gate if k or more of the n direct reasons will lead to the TOP event

Then we proceed to investigate each of the direct causes, i.e., gates, and proceed in the same

way. The analysis is in other words deductive and is carried out by repeated asking “What are

the reasons for...?”

4.6.1 Qualitative analysis

A fault tree provides valuable information about possible combinations of fault events which

can result in a critical failure (TOP event) of the system. Such a combination of fault events is

called a cut set.

Acut set in a fault tree is a set of Basic events whose (simultaneous) occurrence ensures that

the TOP event occurs. A cut set is said to be minimal if the set cannot be reduced without loosing

its status as a cut set.

Computer codes exist to obtain the minimal cut sets. In this course we do not expect the

students being able to find the minimal cut sets, but if they are given, the students should be

able to explain each of the cut set based on the fault tree diagram.

Cut sets with only one component are very critical cut sets since there are no barriers to

prevent the TOP event to occur if there is a component failure.

4.6.2 Quantitative analysis

In the quantitative part of a fault tree analysis the main objective is to calculate the following

metrics:

• Q0(t ) = Probability that the TOP-event occurs at time t

• F0(t ) = Expected number of TOP-event occurrence per unit time at time t

• I (i | t ) = Importance metric for basic event i at time t

In this course we only focus on Q0(t ). The approach for calculating Q0(t ) is the following:

• Find the cut set contribution to Q0(t ) for each cut set
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• Add the cut set contributions

The probability that cut set number j is occurring at time t is found by:

Q̌ j (t ) = ∏
i∈K j

qi (t ) (4.13)

where qi (t ) is the probability that component i is in a fault state at time t . For PFD calculations

we usually consider time-to-failure to be exponentially distributed, and we have

qi (t ) = 1−eλi t (4.14)

The TOP event probability is then found by:

Q0(t ) ≈
k∑

j=1
Q̌ j (t ) (4.15)

where k is the number of minimal cut sets.

4.6.3 PFD calculations

As for the RBD analysis, we can take the average of Q0(t ) to obtain the PFD:

PFD = 1

τ

∫ τ

0
Q0(t )d t (4.16)

4.7 Common cause failures

The equation above assumes that components in a SIS fail independent of each other. In prac-

tice components may fail due to common causes. Common cause failure may be due to mainte-

nance introduced failures, design failures, excessive stress etc. To model common cause failures

the total failure rate of one component (i.e., rate of DU failures) is split into an independent part

and a dependent part:

λ=λ(i ) +λ(c) = (1−β)λ+βλ (4.17)

where β=λ(c)/λ is the common cause factor. This (beta factor) model now yields:

• For the dependent part, use PFD = βλτ
2

• For the independent part, use the independent failure rate (1−β)λ in the PFD formulas of

the koon system of identical and independent components
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• Add the contributions:

PFD = βλτ

2
+

(
n

n −k +1

)[
(1−β)λτ

]n−k+1

n −k +2
(4.18)

4.8 The PDS method

The PDS method is developed by SINTEF Safety. The method has two main features:

1. It proposes a more realistic way to model common cause failures (CCF). In the β-factor

model a CFF will always cause all components to fail. This is often not realistic. The PDS

method therefore proposes a correction factor to adjust the β-factor to account for the

situation where not all components fail due to the CCF situation.

2. In IEC 61508 only random hardware failures are quantified. The PDS method also quan-

tifies systematic failures by the so-called test independent failure term, pTIF. Systematic

failures are not treated in this presentation.

The idea behind adjusting the β-factor is that if we have a CFF causing two components to fail,

it is not certain that the remaining components will fail. Some assumptions are then made

regarding the probability that a third component fails given that two components have failed

due to a CFF and so on. The correction factor is dependent on k and n, and is generally denoted

Ckoon, and is presented in Table 4.1 for some combinations:

Table 4.1: Ckoon correction factors
k\n n = 2 n = 3 n = 4 n = 5 n = 6
k = 1 C1oo2 = 1.0 C1oo3 = 0.5 C1oo4 = 0.3 C1oo5 = 0.20 C1oo6 = 0.15
k = 2 - C2oo3 = 2.0 C2oo4 = 1.1 C2oo5 = 0.8 C2oo6 = 0.6
k = 3 - - C3oo4 = 2.8 C3oo5 = 1.6 C3oo6 = 1.2
k = 4 - - - C4oo5 = 3.6 C4oo6 = 1.9
k = 5 - - - - C5oo6 = 4.5

A configuration specific β-factor is now calculated by multiplying the original β-factor with

the correction factor Ckoon found in Table 4.1. Note that the baseline β-factor is assumed to be

specified for a 1oo2 system.
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4.9 PFH calculations

In the following we present the simple approximation formula proposed in the PDS method for

the probability of failure per hour, PFH:

PFH =Ckoonβλ+ n![λ(1−β)τ]n−k+1

(n −k +1)!(k −1)!τ
(4.19)

Note that the correction factor Ckoon only applies for the PDS method. To obtain eq. (4.19) we

treat CCF failures and independent failures individually. For the CCF failures the results is rather

obvious. For independent failures, let p(t ,k,n) be the probability that the first n−k components

are in a fault state assuming they are numbered 1,2, . . . ,n. If the the first n −k components are

in a fault state and the remaining k components are functioning, then they are critical. A system

failure will occur if one of remaining k components fails. We have that p(t ,k,n) ≈ [
λ(1−β)t

]n−k .

To find the contribution to the PFH for this situation we calculate the average of p(t ,k,n) in a

proof test period, and multiply with fk = kλ(1−β). fk is the total frequency of the event that

one of the remaining k components fails. The above argument is valid when we consider the

numbered n −k components. There are
( n

n−k

) = n!
(n−k)!k ! ways to chose n −k components, and

adding up we obtain eq. (4.19). Note that the probability that the k remaining components

being in a functioning state is considered to be close to one, so we do not take this into account.

4.10 STR calculations

In the following we present the simple approximation formula proposed in the PDS method for

the spurious trip rate, STR:

STR =C(n−k+1)oonβλSU

Note that the correction factor C(n−k+1)oon only applies for the PDS method. We have here ex-

plicitly indicated that the failure rate to go into the formula is the rate of SU failures. In some

presentations λSO is used to reflect the rate of spurious operations on component level.

4.11 Markov approach

We have seen that the Markov equations may be written on matrix form:

P(t ) ·A = Ṗ(t ) (4.20)
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which may be approximated by:

Ṗ(t ) = P(t +∆t )−P(t )

∆t
= P(t ) ·A (4.21)

yielding

P(t +∆t ) = P(t )[A∆t + I] (4.22)

where I is the identity matrix. This equation may now be used iteratively with a sufficient small

time interval∆t and starting point P(0) to find the time dependent solution. Only simple matrix

multiplication is required for this approach.

4.11.1 PFD

Assume that we know the state vector P(0) just after a proof test, and that we have established

a Markov transition model for the SIS with respect to a given SIF. Then it is straight forward to

find P(t ) within a proof test interval by the approach presented above. Typically the probability

of being in a state where all components are functioning (state r ) is assumed to be one, and

probabilities for the other states are equal to zero. Let F be the set of failed states with respect to

the actual safety function of the SIS. We then have:

PFD = 1

τ

∫ τ

0
PFD(t )d t = 1

τ

∫ τ

0

∑
i∈F

Pi (t )d t (4.23)

The integral is replaced by a sum in the numerical calculations since we are already solving the

time dependent solution iteratively by time steps ∆t .

The following figure shows the Markov diagram for a 1oo2 system considering DU-failures

only:

2 1 0
DU2(1-bDU)DU

bDUDU

Note that whereas the closed form formulas for PFD presented earlier only takes DU failures into

account. With the Markov approach, DD failures may also be included. The Markov diagram for

the 1oo2 systems now reads:
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1

2

2

where the following system states are defined:

5: Both components OK

4: One OK, one DD-failure

3: One OK, one DU-failure

2: One DU-failure and one DD-failure

1: Two DD-failures

0: Two DU-failures

Red arrows are DU failures, blue arrows are DD failures, and black arrows are repairs.

4.11.2 PFH

The procedure is now similar to the approach for PFD, but we are seeking a rate, i.e., the rate of

transition from a functioning state to a fault state for the SIS safety function is found by averag-

ing:

PFH = 1

τ

∫ τ

0
PFH(t )d t = 1

τ

∫ τ

0

∑
i∉F

∑
j∈F

ai j Pi (t )d t (4.24)

where ai j is the transition rate from state i to state j measured in expected number of transitions

per hour. Note that we can interchange the integration and summation operators, i.e., we may

first calculate the average state probabilities, then calculate the appropriate transition rates.

4.11.3 STR

The procedure for the spurious trip rate is now similar to the approach for PFH, but we need

to consider the spurious trip system failure mode. Therefore, we typically need to draw a new

Markov diagram. Let F be the set of system failure states representing a spurious trip state. STR

is found by averaging:

STR = 1

τ

∫ τ

0
STR(t )d t = 1

τ

∫ τ

0

∑
i∉F

∑
j∈F

ai j Pi (t )d t (4.25)
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