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Chapter 11 - Markov Analysis

What to know

• The definition of a Markov process, and what is meant by homogeneous
transition probabilities

• That it is possible to derive the Markov differential equations, but we
do not need to know all the details

• The understanding of states and how we derive the Markov transition
diagram

• How to map the information in the Markov transition diagram into the
transition matrix, A

• The understanding of the Markov differential equations: P(t) ·A= Ṗ(t)

• How to find the steady state solution: (i) Steps required for the numer-
ical solution, (ii) that it is possible to find an analytical solution....

• The definition of the visiting frequencies, and how to find them

• That the time dependent solution is given by P(t)=P(0)etA which can-
not be used unless a comprehensive matrix library is available

• How to use the iterative scheme: P(t+∆t) ≈ P(t)[A∆t+ I] if we have
access to a computer with simple matrix functions

Definitions

A Markov process is a special type of stochastic processes where the process
posses the so-called Markov property. A stochastic process {X (t), t ∈Θ} is a
collection of random variables. The set Θ is called the index set of the process.
For each index t in Θ, X (t) is called the state of the process at time t.
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In the general presentation we always assume that X (t) can only take
the values 1,2, ..., r. In practical examples it is often convenient to allow for
an additional zero value for the state variable. A process is said to have the
Markov property if:

Pr(X (t+ s)= j|X (s)= i∩ some history up to time s)=
Pr(X (t+ s)= j|X (s)= i)

This means that given the process is in state i at some time s, the probability
of being in another state, say j, t time units later is independent of the history
up to time s, i.e., we may ignore all information regarding the process in the
past when looking into the future. The only thing that counts is the current
state.

This general presentation also only treats Markov processes with station-
ary transition probabilities. This means that:

Pr(X (t+ s)= j|X (s)= i)=Pr(X (t)= j|X (0)= i) for all s, t ≥ 0

that is, the probability of going from state i to j during a time period of t is
independent of the starting point of such a “journey”.

The following notation is introduced:

Pi j(t)=Pr(X (t)= j|X (0)= i)

The so-called sojourn time, T̃i, is the time the process spends in state i
from it arrives to state i before it jumps out of state i. Further let Ti j denote
the time the process spends in state i before it eventually jumps to state j.
The transition rate from state i to state j is denoted ai j and is the limiting
conditional probability of jumping to state j given that the process is in state
i (divided by the length of the interval considered). It may be argued that
the Markov property and the stationary transition probabilities yields that
all transition times are exponentially distributed. The total rate of transition
out of state i is denoted αi, where

αi =
∑
j ̸=i

ai j

From the fact that the sojourn time and all other transition times are expo-
nentially distributed it follows that:

Pii(∆t)=Pr(T̃i >∆t)= e−αi∆t ≈ 1−αi∆t

Pi j(∆t)=Pr(Ti j ≤∆t))= 1− e−ai j∆t ≈ ai j∆t

Rearranging and letting ∆t approach 0, we get:

lim
∆t→0

1−Pii(∆t)
∆t

=αi (1)

lim
∆t→0

Pi j(∆t)
∆t

= ai j (2)
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These two equations will later be used to obtain the Kolmogorov differential
equations. From the Markov property and the law of total probability we
have:

Pi j(t+ s)=
r∑

k=1
Pik(t)Pk j(s)

This equation is denoted the Chapman-Kolmogorov equations. We utilize this
equation to find:

Pi j(t+∆t)= Pi j(∆t+ t)=
r∑

k=1
Pik(∆t)Pk j(t)

Rearranging (having in mind we are seeking the derivative) we get:

Pi j(t+∆t)−Pi j(t)=
r∑

k=1
k ̸=i

Pik(∆t)Pk j(t)− [1−Pii(∆t)]Pi j(t)

Now dividing by ∆t, inserting equations 1 and 2, letting ∆t → 0, and defining
aii =−αi, we get after some rearrangements:

Ṗi j(t)=
r∑

k=1
aikPk j(t) (3)

These differential equations are denoted the Kolmogorov backward equa-
tions. Similarly, we may obtain the Kolmogorov forward equations:

Ṗi j(t)=
r∑

k=1
ak jPik(t) (4)

The term ‘backward’ refers to that the equations were derived by considering
an instant jump (transition) to state k back at the start of the interval, and
then go to the required state j, i.e., first ∆t and then t. The ‘forward’ equa-
tions are derived by first considering going from i to k during time t and then
make an instant jump to the required state j at the end of the interval, i.e.,
first t and then ∆t.

Markov state equations

We now assume that we know the initial state, and assume that the process
started in state i. We then simplify notation by omitting the index for the
initial state, hence we write P j(t) instead of Pi j(t).

It is convenient to introduce matrix and vector notation. First we define
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the transition rate matrix1 , A:

A=


a11 a12 · · · a1r
a21 a22 · · · a2r

...
... · · · ...

ar1 ar2 · · · arr


where

aii =−αi =−
r∑

j=1
j ̸=i

ai j

which means that the diagonal elements are defined such that the sum of
each row equals zero.

Further we define the row vectors: P(t)= [P1(t),P2(t), . . . ,Pr(t)] and Ṗ(t)=
[Ṗ1(t), Ṗ2(t), . . . , Ṗr(t)]. We may then write the Kolmogorov forward equations
on matrix format:

[P1(t),P2(t), . . . ,Pr(t)] ·


a11 a12 · · · a1r
a21 a22 · · · a2r

...
... · · · ...

ar1 ar2 · · · arr

= [Ṗ1(t), Ṗ2(t), . . . , Ṗr(t)]

that is:

P(t) ·A= Ṗ(t) (5)

Time dependent solution for the Markov process

To solve Equation (5) as a function of time we may use an analogy to ordinary
differential equations in one dimension and we get:

P(t)=P(0)etA

Although this is a very elegant solution, it is not very attractive since taking
the exponential of a matrix is not that easy. Computer codes such as Matlab
is required. We may, however, rewrite Equation (5) as:

Ṗ(t)= lim
∆t→0

P(t+∆t)−P(t)
∆t

=P(t) ·A

yielding

P(t+∆t)≈P(t)[A∆t+I] (6)
1In this presentation boldface notation is used both for vectors and matrices, e.g., P and A.

In the textbook boldface notation is used for vectors but Blackboard bold font, i.e., A are used
for matrices
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where I is the identity matrix. This equation may now be used iteratively
with a sufficient small time interval ∆t and starting point P(0) to find the
time dependent solution. Only simple matrix multiplication is required. Im-
plementing a solution in for example VBA some considerations are required
regarding the step length ∆t. Choosing a too low value gives numerical prob-
lems and will also require longer computational time. Choosing a too high
step length will cause the approximation in Equation (6) to be inaccurate. A
rule of thumb will be to use a value of one tenth of the inverse value of the
highest transition rate.

Note that in Markov analysis we usually only require the time-dependent
solution for a limiting time period, and typically we would like to calculate
P(t) at values t = 0,∆t,2∆t, . . .. Using Equation (6) is therefore attractive. To
improve the approximation in Equation (6) we could use one “intermediate”
point, i.e., we could use:

P(t+∆t)≈P(t)[A∆t/2+I][A∆t/2+I] (7)

and even improve by splitting into 2n sub-intervals, yielding:

P(t+∆t)≈P(t)
[
A∆t/2n +I

]2n
(8)

Note the similarity between Equation (8) and Equation (11.106) in the text-
book. The advantage of Equation (8) is the calculation efficiency, i.e., we only
need n matrix multiplications to reduce the step-length by a factor 2n. Note
that we only calculate [A∆t/2n +I]2n

once in Equation (8), so we could afford
double precision in that part of the calculations to increase the precision. It
should be noted that there is still a trade-off between round-off errors and
accuracy in the approximation in Equation (8), and a good choice of n would
be in the range 4-6.

Steady state solution for the Markov process

In the long run we will have that Ṗ(t)→ 0 when t →∞, hence P(t) ·A= 0. We
define the steady state probabilities by the vector P = [P1,P2, . . . ,Pr], where
we have omitted the time dependency (t) to reflect that in the long run the
state probabilities are not changing any more.

To solve the steady state equations we realize that the matrix A has not
full rank due to the way have have established the diagonal elements. To
overcome this problem we remove one (arbitrary) of the equations in the fol-
lowing set of equations:

[P1,P2, . . . ,Pr] ·


a11 a12 · · · a1r
a21 a22 · · · a2r

...
... · · · ...

ar1 ar2 · · · arr

= [0,0, . . . ,0]
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and replace it by the following equation:

r∑
j=1

P j = 1

For example replacing the first equation gives:

[P1,P2, . . . ,Pr] ·


1 a12 · · · a1r
1 a22 · · · a2r
...

... · · · ...
1 ar2 · · · arr

= [1,0, . . . ,0]

In matrix form we write:

P ·A1 =b (9)

where b is a row vector of zeros except for the first element which equals one.
Note that Equation (9) is not on standard form A ·x = b. Transposing each
side on the equal symbol in Equation (9) gives AT

1 ·PT = bT which could be
solved by standard Gauss-Jordan elimination.

Ideally we could obtain an analytical solution for the steady state equa-
tions, but for r > 3 we usually stick to numerical solutions.

Visit frequency

The visiting frequency, ν, is one of several system performance that we define
for the steady-state situation. The visiting frequency for state j, ν j, is the
unconditional transition rate into state j. We could make different arguments
for the arrival rate, say ν j

arr, and the departure rate, say ν j
dep. Considering

departures we may argue directly that:

ν j
dep =α j P j (10)

Similarly for arrival we have from the law of total probability:

ν j
arr = ∑

k ̸= j
Pkak j (11)

Since in the long run we should fulfil the balance equations stating that the
total rate into a state equals the total rate out of that state we get:

ν j =α j P j =
∑
k ̸= j

Pkak j
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Mean time to first passage to a given state

The visiting frequency ν j is the unconditional transition rate into state j,
whereas 1/ν j is the unconditional mean time between state j is visited. In
some situation we would rather find the mean time to the first time the sys-
tem enters state j. To solve this problem we can make state j an absorbing
state. An absorbing state means that we can not leave that state. To make a
state absorbing we just remove all arcs out of that state.

Since we are considering state j as an absorbing state, we obtain the tran-
sition rate matrix identical with the original transition state matrix, except
that the j’th row (corresponding to a departure) comprises only zeros. From
before we know that the transition matrix has not full rank, and we may
therefore remove any of the equations. It is convenient to remove the j’th
column of the matrix. Further, since row j only contains zeros, P j(t) will dis-
appear from all equations. We may therefore also remove the j’th row in the
transition rate matrix. The result is a set of r−1 differential equations with
r−1 unknowns, P1(t), . . . ,P j−1(t),P j+1(t), . . . ,Pr(t).

Note that when establishing the reduced system by removing the j’th row
and the j’th column, the underlying argument is that we treat the modified
system with j as an absorbing state, we can not do this in general. The
reduced matrix is denoted AR.

To solve the set of differential equations we introduce the Laplace trans-
form. The Laplace transform of a function, say f (t) is given by f ∗(s)=L f (t)=∫ ∞

0 e−st f (t)dt. The following rule applies for the Laplace transform:

L [ f ′(t)]= sL [ f (t)]− f (0)= s f ∗(s)− f (0)

In addition we have that the Laplace transform of a sum of functions equals
the sum of the Laplace transforms of those functions. Now taking the Laplace
transform on both sides of the set of differential equations, we observe that
the right hand side is the derivative of the state probabilities, hence the
Laplace of the right hand side will be sP∗

i (s)− Pi(0), where Pi(0) = 1 only
for the initial state, and 0 else.

The result is a set of r−1 linear equations with r−1 unknowns, P∗
1 (s), . . . ,P∗

j−1(s),
P∗

j+1(s), . . . ,P∗
r (s). In principle we may solve these equations by elimination,

or we just use the solver in our linear algebra library.
The Laplace transform of the survivor function is

R∗(s)=
r∑

i=1,i ̸= j
P∗

i (s)

If we are able to take the inverse Laplace transform, we may also find the
survivor function R(t) of the system. A trick to do this would be to arrange
the denominator on the form (s−k1)(s−k2) and then factorize, and hope that
we get something we recognize from the table of Laplace transforms of known
functions.
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Our objective, is however, to find the mean time to the first time the sys-
tem enters state j. We have that

E(T)=
∫ ∞

0
R(t)dt

Further we also have

R∗(s)=L R(t)=
∫ ∞

0
e−stR(t)dt

Thus, by inserting s = 0 we have E(T)= ∫ ∞
0 R(t)e0dt = R∗(0).

Since R∗(0) = ∑r
i=1,i ̸= j P∗

i (0) we therefore obtain the mean time to first
system failure by:

MTTF=
r∑

i=1,i ̸= j
P∗

i (0)

Note that we by this procedure may establish the mean time to the first
visit to sate j without actually calculating the Laplace transforms. What we
actually do is to solve a set of linear equations, where the unknown variables
are the P∗

i (0)’s from the reduced systems by removing the row column corre-
sponding to the absorbing state. Further note that the right hand side equals
0 for all equations except the equation representing the initial state, where
the right hand side equals -1, since sP∗

i (s)= 0 for s = 0.
Note that we here have assumed that state 0 represent the system fail-

ure. In a more general setting we apply the same approach but rather than
deleting the first row and column to obtain the reduced matrix, we delete the
rows and columns corresponding to one or more system failure states.

Birth-death processes

A birth-death process is a special type of Markov process where the transi-
tions are to the next state immediately above or immediately below the cur-
rent state. The states has some natural ordering, for example the number of
customers being served by one or more servers. For that reason we also usu-
ally start the numbering from zero rather than one. The transition matrix is
then tridiagonal as shown in Equation

A=


a00 a01 0 . . . . . . . . .
a10 a11 a12 0 . . . . . .
0 a21 a22 a23 0 . . .
... 0 a32 a33 a34 0

 (12)

The above-diagonal elements, ai j, j− i = 1 are denoted births and causes the
system state to increase by one, whereas the below-diagonal elements, ai j, i−
j = 1 are denoted deaths, and causes the system state to decrease by one. In
birth-death processes it is common to use λ as a transition symbol for births
and µ as transition symbol for deaths. A birth-death process may have a
finite or an infinite number of states.
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Figure 1: Markov transition diagram

Example

Consider a workshop with three critical machines. Each machine has a con-
stant failure rate equal to λ and there is one repair man that can repair failed
machines. The rate of repair is µ meaning that the mean repair time is 1/µ.
The state variable represent the number of failed machines. The transition
matrix is given by:

A=


? µ 0 0
λ ? µ 0
0 2λ ? µ

0 0 3λ ?


Figure 1 shows the Markov transition diagram corresponding to the transi-
tion matrix.

Note when the system is in state 3 and all machines are functioning, there
are 3 machines that potentially may fail, hence the transition rate from state
3 to state 2 equals 3λ. In state 2 there is only two machines that may fail,
hence the transition rate from state 2 to state 1 is 2λ. Since there is only one
repair man, all the above-diagonal elements equal the repair rate µ.

The question marks in the transition matrix represent the diagonal el-
ements. They are completed at the end when all the “real" transitions are
specified by applying the rule that all rows should sum to one, i.e., we get:

A=


−µ µ 0 0
λ −λ−µ µ 0
0 2λ −2λ−µ µ

0 0 3λ −λ


Figure 2 shows the specification of this model in MS-Excel. It is conve-

nient to give names to the cell containing λ and µ. The numerical values used
are: λ= 0.001 and µ= 0.1.

Figure 2: MS Excel specification of the transition matrix
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Table 1 shows the calculated steady state probabilities. Full production
is achieved in 97% of the operating hours. For some 3% one machine is down
for corrective maintenance, whereas the probability of two or more failed ma-
chines is very low.

Table 1: Steady state probabilities

State Pi

3 0.9703
2 2.91E-02
1 5.82E-04
0 5.82E-06

Problem

In a workshop there are two production lines in parallel. Each production line
has a critical machine with constant failure rate λ = 0.01 failures per hour.
There is one (common) spare machine that can replace a failed machine. We
assume that switching time can be ignored. The repair rate of the machines
is assumed constant and equal to µ = 0.2 per hour. If a production line is
down the loss is assumed to be cU = 10 000 NOKs per hour. Only one repair
man is available.

• Construct the Markov diagram and find the steady state solution.

• Calculate the expected loss due to downtime.

• If production is not 24/7 but runs from 07:00 to 15:00 it is reasonable to
assume that each morning we start with 3 functioning machines. Find
the time dependent solution and find the expected loss due to downtime.

• Repeat the analysis, but assume that two repair men are available.

• How much should one be willing to pay per hour for having this extra
backup on repair resources?

Procedure

The Markov Analysis is usually carried out in six steps:

1. Make a sketch of the system

2. Define the system states

3. Group similar sates to one state (reduce dimension)

4. Draw the Markov diagram with the transition rates
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5. Quantitative assessment

6. Compilation and presentation of the result from the analysis

Below we describe the state together with an example

Step 1 - Make a sketch of the system

The sketch is mainly used to visualise parallel and serial structures, stand-
by systems, switching systems etc. In Figure 3 we have drawn a sketch of
a simple cold standby system. We consider a system comprising an active
pump and a spare pump in cold stand-by. If the active pump fails, the stand-
by pump is started and continue to do the duty. The failed active pump is
then repaired. If the stand-by pump, which now is working, fails during the
repair of the failed pump there will be a system failure.

Active 
pump

Standby 
pump

Figure 3: Example of cold standby system

Step 2 - Define the system states

Based on the sketch of the systems the various components are identified.
For each component one or more states are defined. Often a number is given
to each state, where the highest number represents perfect performance,
whereas zero represent a complete fault state. Next the various states of
all components are combined. This may lead to very many states due to the
combinatorial effect. Table 2 shows the states for the example system.

Table 2: States for the example system

State Explanation

2 Active pump is running
1 Active pump failed, stand-by pump running
0 Both pumps failed

Step 3 - Group similar sates to one state (reduce dimension)

This step is only introduced in order to reduce the dimension of the problem.
In many situations several components may be identical and it will usually
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be possible to group similar system states into one system state, and hence
reduce the dimension of the problem. For example if we have n = 3 pumps we
can group into state 3={All 3 pumps are OK}, 2={2 pumps are OK}, 1={One
pump is OK} and 0={All pumps are failed}. For state 1 and 2 we do not distin-
guish between which pumps are functioning. In the example there is no need
to group states.

Step 4 - Draw the Markov diagram with the transition rates

The various system states are now drawn in a Markov diagram. Each state
is drawn as a circle labelled with the state number. Transitions between the
states are visualised by drawing arrows between the corresponding circles.
On each arrow the transition rate is labelled. Very often the Greek letter λ

represents component failure rates, whereas the Greek letter µ represents
repair rates.

Table 3 shows the transition rates for the example system. Here we as-

Table 3: Transition rates
Rate Explanation

λ1 failure rate of the active pump
λ2 failure rate of the standby pump (while running, λ2 = 0 in standby position)
µ1 repair rate of the active pump
µB repair rate when both pumps are in a fault state

sume that both pumps are repaired as part of one common repair activity
if we enter state 0. Figure 4 shows the transition diagram for the example
system.

2 1 0

λ 1 λ 2

μB
μ1

Figure 4: Transition diagram for the example system

Step 5 - Quantitative assessment

Steady state solution:
The transition matrix A is given by:

A=
 a00 a01 a02

a10 a11 a12
a20 a21 a22

=
 −µB 0 µB

λ2 −λ2 −µ1 µ1
0 λ1 −λ1


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To find the steady state solution we solve the system P ·A1 =b where we may
replace any column (equation) in A with ones. To simplify the set of equations
as much as possible we now choose to replace the last column:

[P0,P1,P2] ·
 −µB 0 1

λ2 −λ2 −µ1 1
0 λ1 1

= [0,0,1]

To solve the set of equation we start with the second equation:

P1(−λ2 −µ1)+P2λ1 = 0⇒ P1 =λ1/(λ2 +µ1)P2

Inserted in the first equation:

P0(−µB)+P1λ2 = 0⇒ P0 =λ2/µBP1 = λ1λ2

µB(λ2 +µ1)
P2

Now P0 and P1 may be inserted in the third equation:

P0 +P1 +P2 =
[

λ1λ2

µB(λ2 +µ1)
+ λ1

λ2 +µ1
+1

]
P2 = 1

Multiplying with µB(λ2 +µ1) on both sides and rearranging gives:

P2 = µB(λ2 +µ1)
λ1(λ2 +µB)+µB(λ2 +µ1)

P1 = µBλ1

λ1(λ2 +µB)+µB(λ2 +µ1)

P0 = λ1λ2

λ1(λ2 +µB)+µB(λ2 +µ1)

Visiting frequencies:
From ν j =−P ja j j we get for example:

ν0 =−P0a00 =−P0(−µB)= µBλ1λ2

λ1(λ2 +µB)+µB(λ2 +µ1)

Time dependent solution:
The time dependent solution requires to solve the Laplace equations, and is
rather complicated. Therefore we stick to numerical methods. At the end of
this document we demonstrate the use of Laplace to find the time dependent
solution for a simpler situation with only one component.

Mean time to first system failure:
We use the Laplace transform approach. That is, first we delete the row and
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column corresponding to the absorbing state, i.e., state 0, and replace the P j ’s
with P∗

j s:

[P∗
1 ,P∗

2 ] ·
[ −λ2 −µ1 µ1

λ1 −λ1

]
= [0,−1]

with the solution P∗
1 = 1/λ2 and P∗

2 = (λ2 +µ1)/(λ1λ2), and thus:

MTTFS = P∗
1 +P∗

2 = (λ1 +λ2 +µ1)/(λ1λ2)

Time dependent solution for a repairable component

Consider a component with constant failure rate λ and constant repair rate
µ. Let state 1 represent the functioning state and state 0 represent the failed
state. The transition matrix for this system is given by:

A=
[ −µ µ

λ −λ
]

Assuming the system starts in state 1 we have P0(0) = 0 and P1(0) = 1, and
the Laplace transform of the time dependent solution is given by:

[P∗
0 (s),P∗

1 (s)]
[ −µ µ

λ −λ
]
= [sP∗

0 (s), sP∗
1 (s)−1]

Thus

−µP∗
0 (s)+λP∗

1 (s)= sP∗
0 (s)

µP∗
0 (s)−λP∗

1 (s)= sP∗
1 (s)−1

Adding these two equations yields:

sP∗
0 (s)+ sP∗

1 (s)= 1⇒ P∗
0 (s)= 1/s−P∗

1 (s)

and inserting into the last of the above equations:

µ/s−µP∗
1 (s)−λP∗

1 (s)= sP∗
1 (s)−1

which is solved wrt P∗
1 (s):

P∗
1 (s)= 1

λ+µ+ s
+ µ

s
1

λ+µ+ s

This expression is not recognized in the list of Laplace transforms. A trick is
now to multiply with (λ+µ)/(λ+µ):

P∗
1 (s)= λ+µ

λ+µ

(
1

λ+µ+ s
+ µ

s
1

λ+µ+ s

)
=

λ

λ+µ
· 1
λ+µ+ s

+ λ

λ+µ
· µ

s
· 1
λ+µ+ s

+ µ

λ+µ
· 1
λ+µ+ s

+ µ

λ+µ
· µ

s
· 1
λ+µ+ s

= λ

λ+µ
· 1
λ+µ+ s

+ µ

s
· λ+ s+µ

λ+µ
· 1
λ+µ+ s

= λ

λ+µ
· 1
λ+µ+ s

+ µ

λ+µ
· 1

s
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Now using L eαt = 1/(s−α) and L 1= 1/s we find the inverse Laplace of P∗
1 (s)

(−α=λ+µ):

P1(t)= λ

λ+µ
e−(λ+µ)t + µ

λ+µ

and

P0(t)= 1−P0(t)= λ

λ+µ

(
1− e−(λ+µ)t

)
Note that when t > 3/(λ+µ) the time dependent solution is deviating from
the steady state solution with only 5%. In practice, we therefore often say
that steady state is achieved after 3 times the shortest expected transition
time, here 3/µ. The time dependent solution is often needed in FTA and RBD
analyses.
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