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Chapter 14 - Reliability Data Analysis

Methods and models introduced in previous chapters require numbers for the
reliability parameters such as the failure rates, repair rates, ageing parame-
ters and so on. A parameter in this context is a quantity in a reliability model
for which we assign numerical values. To obtain such numeric values several
principle for parameter estimation exist.

In this presentation only the principle of maximum likelihood estimation
will be addressed.

The MLE principle

The basic idea behind the Maximum Likelihood Estimation (MLE) principle
is to choose the numerical values of the parameters that are the most likely
ones in light of the data. The procedure goes as follows:

¢ Assume that we know the probability density function of the observa-
tions for which we have data. Let this distribution be denoted f(¢;0).

* The involved parameters, are unknown, and are generally denoted ©.

¢ We have n independent observations (data points) that we denote 7’1,
To, ..., T,. When we refer to the actual numerical values observed, we
use the (lowercase) notation ¢1, to, ..., 5.

The MLE principle now tells us to estimate © by the value which is most
likely given the observed data. To define “likelihood” we use the probability
density function. The simultaneous probability density for T'1, T, ..., T, is
given by:

f(t1;0)f(t2;0)...f(tn;0) =[] F(2:;0) (1)
i=1

This density express how likely a given combination of the ¢-values are, given
the value of ©. However, in our situation the t-values are given, whereas



O is unknown. We therefore interchange the arguments, and consider the
expression as a function of O:

L(O;t1,t1...,ty) = Hf(ti;e) (2)
i=1

where L(0;t1,¢1...t,) in equation denotes the likelihood function. The
MLE principle will now be formulated as to choose the 0-value that maxi-
mizes the likelihood function. To denote the MLE estimator we write a “hat”
over O, 0. Generally, © will be a function of the observations:

0=0(T1,Ts,...,T,) (3)

When we insert numerical values for the ¢-values we denote the result as the
parameter estimate.

Estimation in the exponential distribution

We consider the situation where we have observed n failure times, and we
will estimate the failure rate, 1, under the assumption of exponentially dis-
tributed failure times.The observed failure times are denoted ¢1, o, ..., 5.
Equation (@) gives:

LAty t,... ty) =]  Ae™ M

Note that the parameter is denoted A, whereas we generally use 6. Fur-
ther we denote the observations with ¢ because we here have failure times.
The probability density function in the exponential distribution is given by
f(t) = Ae™*. A common “trick” when maximising the likelihood function is
to take the logarithm. Because the logarithm (In) function is monotonically
increasing, InL will also be maximised for the same value as for which L is
maximised. We could then find:

I(Asty,te,...,t)) =InL(A;t1,te,...,tn) =nlnA =) " At

By taking the derivative wrt 1 and equate to zero, we easily obtain:
2 n
A=n/Y i iti

How to obtain the data?

In some situations we are able to conduct experiments to get access to reli-
ability data. We can imagine that we put n identical lightbulbs in n sockets
and observe the failure times. A challenge might be that we do not have time
to wait for all light bulbs to fail. This means that we will have some “real” life
times and some “censored” life times. The censored life times are then the pe-
riod they have survived. The fact that some light bulbs might have survived



the time period of our experiment is also an information we will utilize. In
the text book different types of censoring is discussed.

In most cases we do not have access to data in such a controlled manner.
But very often we will have access to data from computerized maintenance
management systems (CMMS) in terms of failure reports and reports from
preventive maintenance.

From the CMMS it is to some extent possible to extract life time data.
Several challenges are encountered in such an attempt to get life time data
to use in our parameter estimation:

¢ Data is not reported on the appropriate level, for example we are seek-
ing the failure rate of a pump bearing, but failures are only reported on
the pump level

* There are several failure modes reported for an item, and we do not
have any information regarding if the item is “as good as new” with
respect to all failure modes after a corrective repair action

¢ Preventive maintenance is carried out, and hence we have very few
“real” life times

¢ We have data for several items, but they are not operated under “iden-
tical” conditions, hence merging the data to get a sufficient number of
data points is not easy

Failures vs censoring life times

In experiments as well as in real life there are situations where we are not
able to observe the time of failure of an item. The reasons for this could be
that the experiment is terminated before all items have failed, or for a real
life item, the item is replaced preventively before a failure occurs. In this
situations we will usually know that the item has survived a certain time
period. The point of time representing this survival period is denoted a cen-
soring life time. It is obvious that a censoring life time has less informative
value than a real life time in order to assess the underlying reliability param-
eters. However, the censoring life time represent some information we will
not discard in the parameter estimation. We often put a star (*) on the cen-
soring life times to distinguish them from the real life times. In the following
we also use an indicator variable to distinguish censoring and real life times,
where the value 1 means a real life time and the value 0 means a censoring
life time.

Estimation when life times are Weibull distributed

Now assume that we have been able to extract life time data from either
controlled experiments or from our CMMS.



Let ¢y, to, ...t, denote the observed life times including censored life
times. Further let I1, Io, ...I, be indicator variables equal to one if the
corresponding life time is a real life time, and equal to zero if it is a censored
life time.

The censored life times are assumed to be “right censored” life times in
the meaning that we know the “birth” of the item, but not the “death”. The
only thing we know is thus the fact that the item has survived the censored
life time. To get “something” to put into the likelihood function, we then use
the survivor function, R(¢). R(¢) is the likelihood that an item survives ¢,
and this is what we need, i.e., what is “the likelihood of observing what we
observed”?

Recall that the pdf of the Weibull distribution is given by f({;a,A) =
aA(A)*~1e~(D" and the survivor function is given by R(¢;a, 1) = e~ 49" Thus
the likelihood function is given by:

L@, Ast1,ta,. o T1, I3, ) = [ (LadAn™ LW 1 (1-1pe ") @)

1

taking logarithm we obtain:

Wa,At1,t9,...,11,10,...)=InL(a,A;t1,89,...,11,10,...)
n n

=Y Ii[lna+alnd+(a—Dint;]1- Y _(A£;)*

=1 i=1

()

Numerical methods are required for maximizing equation

Example

Assume we have observed the following life times: 8,9,7,6,12,18,14,18%,6,9,11,
24,30*% and 28*. Here a star (*) indicates that the life time is a censored life
time. The MLE estimates are given by:

& ~1.61
A ~0.0555

obtained by the “Solver” in Excel.

Graphical techniques

Several graphical techniques may be used to analyse life time data. In the
textbook the total time on test (TTT) plot, the Nelson plot and the Kaplan-
Meier plot are discussed. In the following we will demonstrate the use of the
Kaplan-Meier estimator. This estimator is estimating the survivor function
and can handle both real life times and censoring life times.

It may be shown that we always may sort our life time data since the
ordering of collecting data will in any case be arbitrary given that data are



independent and identically distributed. Let the sorted data be denoted ¢(y),
t@), ---, t(n) where also censored life times are included. Further let n; be
the number of items “under risk” at time ¢(;), i.e., the number of items not
failed just prior to ;) . Now at time ¢(;) there might be no failure if this
was a censoring time, it might be one failure, or it might even be more than
one failure if two failures occurred at the same time. Theoretically it is not
possible to have two failures exactly at the same time, but due to limitation
in “number of digits” to represent the failure times, we may have more than
one failure at the same time. Let s; be the number of life times observed at
time £(;).

To obtain the Kaplan-Meier estimator we use more or less the same type
of arguments as given in the text book.

First consider a small time interval around time ¢(;). In the beginning of
this interval it will be n; items at risk. Let p; be the probability that one
arbitrary of these items will survive this small interval. A natural estimator
for p; is given by

pi= n@) —33) (6)
n)

since n) — s(;) of the items we had survived this interval. Now, assume that

we have an estimate, R: for the probability that an item has survived up

to the interval we are considering, then it follows that an estimate for the

probability that an item will survive from ¢ = 0 to the end of the interval is

given by

R;—:Rl—ﬁz (7

Following such arguments we obtain the Kaplan-Meier estimator for the sur-
vivor function at time ¢:

i) —S3)

R =1T] 8

ti<t n’(l)

Example

Assume we have observed the following life times: 8,9,7,6,12,18,14,18%,6,9,11,
24,30*% and 28*. Here a star (*) indicates that the life time is a censored life
time. The tableau for the Kaplan-Meier plot now reads:

The following link shows the Excel file: http://folk.ntnu.no/jvatn/
elearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsxl


http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx
http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx

Table 1: Kaplan Meier plot

ti I, n; s; (n;—sj)n; R(;)
6 1 14 2 12/14=0.86 0.86
7 1 12 1 11/12=0.92 0.79
8 1 11 1 10/11=091 0.71
9 1 10 2 8/10=0.8 0.57
11 1 8 1 7/8=0.88 0.5

12 1 7 1 6/7=0.86 0.43
14 1 6 1 5/6=0.83 0.36
18 1 5 1 4/5=0.8 0.29
18 0 5 O 5/5=1 0.29
24 1 3 1 2/3=0.6"7 0.19
28 0 3 O 3/3=1 0.19
30 O 3 0 3/3=1 0.19




