
TPK4120 - Lecture summary

Jørn Vatn
eMail: jorn.vatn@ntnu.no

Updated 2021-11-17

Chapter 15 - Bayesian Reliability Analysis

Introduction

In classical estimation approaches the main idea is that we believe in “true”
reliability parameters. The objective of the statistician is to “reveal” these
true parameters in an “objective” manner. The statistician makes assump-
tion regarding the observed data in terms of for example independent and
identical distributed life times from some distribution class, for example the
Weibull distribution. The more data available, the better will be the result.

Bayesian methods takes another starting point. The Bayesian statisti-
cian treats the parameters as stochastic variables. Before he or she looks
into the data, a subjective judgement is made about the parameters. This
judgement is denoted the prior distribution, i.e., prior to observing the data.
The prior distribution for each of the relevant parameters are described by
some distribution class, for example the normal distribution, the gamma dis-
tribution and so on.

There are various ways to establish the prior distribution. The statisti-
cian may utilize statements from experts having domain knowledge relevant
for the problem at hand, he or she might utilize data from similar compo-
nents or systems and so forth. In this presentation we will not elaborate
on how to establish the prior distribution. To find out more the key words
“expert judgement” would be a starting point.

When the prior distribution is established, the statistician consider the
data, t as evidence. This means that he or she will update the prior distribu-
tion to what is called the posterior distribution which also takes the evidence
into account.

Procedure

The procedure for Bayesian estimation could briefly be described as follows:

1. Specify a prior uncertainty distribution of the reliability parameter,
π(θ).
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2. Structure reliability data information into a likelihood function, L(θ;t)
(The likelihood function was discussed in Chapter 14 in the textbook).

3. Calculate the posterior uncertainty distribution of the reliability pa-
rameter vector, π(θ|t). The posterior distribution is found by π(θ|t) ∝
L(θ;t)π(θ), and the proportionality constant is found by requiring the
posterior to integrate to one.

4. The Bayes estimate for the reliability parameter is given by the poste-
rior mean, which in principle could be found by integration.

Note that the relation π(θ|t) ∝ L(θ;t)π(θ) follows from Bayes’ theorem and
the law of total probability: If B1,B2, . . .,Br (corresponding to the θ-vector)
represent a division of the sample space, and A is an arbitrary event (corre-
sponding to t = the data vector), then:

Pr(B j|A)= Pr(A|B j) ·Pr(B j)
Pr(A)

= Pr(A|B j) ·Pr(B j)
r∑

i=1
Pr(Bi) ·Pr(A|Bi)

Since we in the denominator sum over all possible Bi values (corresponding
to the θ-vector) it will not contain θ, hence it may be regarded as a constant
wrt θ. Further Pr(B j) corresponds to the prior distribution, and Pr(A|B j)
corresponds to the likelihood function (in terms of the the product of the pdf ’s
for each data point).

It is not obvious that we in step 4. should use the posterior mean. But
if we aim for a single parameter estimate, and we have a posterior uncer-
tainty distribution, it is reasonable to choose the mean value in this distribu-
tion. It might be proven that the posterior mean is the optimal value under
“quadratic loss”.

Exponential distribution

In the following we give an example showing the main elements of the proce-
dure. In the example we will estimate the failure rate in the constant failure
rate situation. Assume that we express our prior believe1 about the failure
rate λ of a certain component (gas detector used on an oil and gas platform),
in terms of the mean value µ= 0.7·10−6 (failures / hour), and the standard de-
viation σ= 0.3 ·10−6. For mathematical convenience, it is common to choose
a gamma distribution2 with parameters α and ξ for the prior distribution.
The expected value and the variance in the gamma distribution are given by
µ = α/ξ and σ2 = α/ξ2 respectively, and we obtain the following expressions
for α and ξ:

1This could be based on statements from experts, see Øien et.al (1998), or by analysis of
similar components (empirical Bayesian analysis).

2π(λ)∝λα−1e−ξλ for the gamma distribution.
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ξ=µ/σ2 = (0.7 ·10−6)/(0.3 ·10−6)2 = 7.78 ·106

α= ξµ≈ (7.78 ·106) · (0.7 ·10−6)≈ 5.44

To establish the likelihood function, we look at the data. In this example we
assume that we have observed identical units for a total time in service, t,
equal to 525 600 hours (e.g., 60 detector years). In this period we have ob-
served n = 1 failure. If we assume exponentially distributed time-to-failures,
we know that the number of failures in a period of length t, N(t), is Poisson
distributed with parameter λ · t. The probability of observing n failures is
thus given by:

L(λ;n, t)=Pr(N(t)= n)∝λne−λ·t

and we have an expression for the likelihood function L(λ;n, t).
The posterior distribution is found by multiplying the prior distribution

with the likelihood function:

π(λ|n)∝ L(λ;n, t) ·π(λ)∝λne−λ·t ·λα−1e−ξλ ∝λ(α+n)−1e−(ξ+t)λ

and we recognize the posterior distribution as a gamma distribution with new
parameters α′ =α+n, and ξ′ = ξ+ t. The Bayes estimate is given by the mean
in this distribution:

λ̂= α+n
ξ+ t

≈ 5.44+1
7.78 ·106 +525600

≈ 0.78 ·10−6

We note that the maximum likelihood estimate gives a much higher fail-
ure rate estimate (t/n = 1.9 ·10−6), but the “weighing procedure” favours the
prior distribution in our example. Generally we could interpret α and ξ here
as “number of failures” and “time in service” respectively for the “prior infor-
mation”. Note that as more and more data becomes available, the data will
dominate, and the effect of the prior distribution will be wiped out.

In Bayesian probability theory, if the posterior distribution π(θ|t) is in
the same probability distribution family as the prior probability distribution
π(θ), the prior and posterior are then called conjugate distributions, and the
prior is called a conjugate prior for the likelihood function L(θ;t).

A conjugate prior is an algebraic convenience, giving a closed-form ex-
pression for the posterior. If we cannot establish a conjugate prior we usually
need numerical integration to solve the denominator in Bayes’ theorem. The
conjugate priors may also give some intuition because it shows how the data
updates the prior distribution. In the example we had α′ =α+n, and ξ′ = ξ+t.
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