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Chapter 5 - Probability Distributions in Reliability
Analysis

What to know from this chapter

• CDF, PDF, z(t), R(t), R(x|t), MRL(t)

• Important distributions, Binomial, Exponential, Weibull, Normal, log-
normal and Poisson

• Relation between Exponential lifetimes and a Poisson process

• Relation between Gamma distribution and the k’th event in the Poisson
process

......... □
This chapter deals with time-to-failure distributions for non-repairable

items. The results are also valid for repairable items if we only consider what
is happening up to the first failure. The reliability metrics to be covered are:

• The survivor function R(t)

• The failure rate function z(t)

• The mean time-to-failure (MTTF)

• The conditional survivor function

• The mean residual lifetime (MRL)

The textbook covers a wide range of distributions, whereas we will only con-
sider the following distributions:

• The exponential distribution

• The gamma distribution
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• The Weibull distribution

• The normal and lognormal distributions

• The Poisson distribution

• The binomial distribution

State variable

The state variable of an item was introduced in chapter 2 and chapter 4 where
we only considered that an item might be in various states. Now we will also
treat the stochastic behaviour of the item, hence the state variable will be a
stochastic variable:

X i(t)=
{

1 if the item is functioning at time t
0 if the item is in a failed state at time t

(1)

Time-to-failure

The time-to-failure, or lifetime of an item is the time elapsing from when the
item is put into operation until it fails for the first time. If we denote the
time-to-failure with T then

T =min {t : X (t)= 0}

Note that “time” sometimes is measured indirectly, e.g., by the number of
kilometres driven by a car, the number of times a switch is operated, and the
number of rotations of a bearing.

Since X (t) is a stochastic variable, the time-to-failure, T is also a stochas-
tic variable. To grasp the reliability metrics we will introduce, we could relate
these metrics to what we would observe if did experiments and collected the
true lifetimes of the items. In the textbook several examples of such “empiri-
cal metrics” are given.

PDF and CDF

Assume that the time-to-failure T is a continuous distributed stochastic vari-
able with probability density function (PDF) f (t) and cumulative (probability)
distribution function (CDF) F(t). Then we have:

F(t)=Pr(T ≤ t)=
∫ t

0
f (u)du

To interpret the PDF we have for small ∆t:

Pr(t < T ≤ t+∆t)≈ f (t)∆t

i.e., the probability that a new item will fail in the interval t to t+∆t equals
the PDF at time t multiplied with the length of the interval.
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Survivor Function

The survivor function of an item is defined by:

R(t)= 1−F(t)=Pr(T > t)=
∫ ∞

t
f (u)du

i.e., the probability that a new item will survive the time interval (0, t].

Failure Rate Function

The failure rate function is essentially the conditional probability that an
item will fail in a small time interval given that it has not failed up till now.
The probability that an item will fail in (t, t+∆t] when we know that the item
is functioning at time t is:

p(t,∆t)=Pr(t < T ≤ t+∆t|T > t)= Pr(t < T ≤ t+∆t)
Pr(T > t)

= F(t+∆t)−F(t)
R(t)

If we investigate the ratio p(t,∆t)/∆t we get the failure rate function z(t) of
the item:

z(t)= lim
∆t→0

p(t,∆t)
∆t

= lim
∆t→0

Pr(t < T ≤ t+∆t|T > t)
∆t

= lim
∆t→0

F(t+∆t)−F(t)
∆t

1
R(t)

= f (t)
R(t)

And for small ∆t:

Pr(t < T ≤ t+∆t|T > t)≈ z(t)∆t

Typical shape of z(t) is shown in Figure 1:

Figure 1: Typical shape of z(t)

hence the failure rate function is often denoted the bathtub curve. It
should be noted that not all items will follow the bathtub curve!

Note, f (t) is the probability of failing at time t, whereas R(t) is the prob-
ability of surviving time t. In z(t) = f (t)

R(t) we divided by R(t), so even if the
probability of failing at large times t is low, the fraction becomes very high
since we hardly survive t.
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Conditional survivor function

To express the conditional survivor function we introduce R(x|t) = Pr(T >
x+ t|T > t), i.e., the conditional probability of surviving another x time units
given that the component has survived t time units. It follows that

R(x|t)= Pr(T > x+ t∩T > t)
Pr(T > t)

= Pr(T > x+ t)
Pr(T > t)

= R(t+ x)
R(t)

MTTF

The mean time to failure is the expected value of the lifetime of an item. The
formula E(T) = ∫ ∞

0 R(t)dt is often easier to apply than E(T) = ∫ ∞
0 t · f (t)dt

when we are seeking the mean time to failure. To prove this result we use
the partial integration, i.e.,∫ b

a
u(x)v′(x)dx = u(x)v(x)

∣∣b
a −

∫ b

a
u′(x)v(x)dx

Using t rather than x, and letting u(t)= t and v(t)=−R(t), we have∫ ∞

0
t · f (t)d =

∫ ∞

0
u(t)v′(t)dt = u(t)v(t)

∣∣∞
0 −

∫ ∞

0
u′(t)v(t)dt =

−t ·R(t)
∣∣∞
0 −

∫ ∞

0
−1 ·R(t)dt =

∫ ∞

0
R(t)dt

where we use that f (t)= F ′(t)=−R′(t)

Mean residual life

To obtain the mean residual life we use the conditional survivor function, i.e.,

MRL(t)=
∫ ∞

0
R(x|t)dx =

∫ ∞

0

R(t+ x)
R(t)

dx = 1
R(t)

∫ ∞

t
R(x)dx

Relationships between the functions F(t), f (t), R(t), and z(t)

For easy reference the relationships between the functions F(t), f (t), R(t),
and z(t) are given in Table 1.

Some distribution classes

Binomial Distribution

Bernoulli trial: (i) n independent trials, (ii) observing A or AC, and (iii)
Pr(A) = p in all trials. Let X be the number of A’s in the experiment. X
is then binomially distributed:

Pr(X = x)=
(
n
x

)
px(1− p)n−x for x = 0,1, . . . ,n
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Table 1: Relationship between the functions F(t), f (t),R(t), and z(t)
Expressed

by F(t) f (t) R(t) z(t)

F(t)= –
∫ t

0
f (u)du 1−R(t) 1−exp

(
−

∫ t

0
z(u)du

)

f (t)= d
dt

F(t) – − d
dt

R(t) z(t) ·exp
(
−

∫ t

0
z(u)du

)

R(t)= 1−F(t)
∫ ∞

t
f (u)du – exp

(
−

∫ t

0
z(u)du

)

z(t)= dF(t)/dt
1−F(t)

f (t)∫ ∞
t f (u)du

− d
dt

lnR(t) –

E(X )= np, var(X )= np(1− p)

To calculate
(n

x
)= n!

x!(n−x)! by hand we use
(n

x
)= n·(n−1)·(n−2)·...·(n−x)

1·2·...·x .
In MS Excel we may use Pr(X = x) =binomdist(x,n,p,FALSE), Pr(X ≤ x)

=binomdist(x,n,p,TRUE) and
(n

x
)
=combin(n,x).

Geometric Distribution

We are considering the same situation as for the binomial distribution, but
now n is not fixed, and we repeat the experiment until the first time we get
an A. Let X be the number of trials until an A is received. X is then geomet-
rically distributed:

Pr(X = x)= (1− p)x−1 p for x = 1,2, . . .

E(X )= 1
p

, var(X )= 1− p
p2

Exponential Distribution

f (t) = λe−λt

R(t) = e−λt

E(T)= 1
λ

, var(T)= 1
λ2

z(t)=λ (= constant, independent of age)
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Homogeneous Poisson Process

We are considering a time interval from 0 to t. For this interval we have (i)
Events, say A’s, may occur at any point of time on the interval, and the prob-
ability of an event A occurring in a small interval of length ∆t is independent
on where this small interval is, and is given by λ∆t plus a “small term”, i.e.,
o(∆t), (ii) the probability of two or more A’s in such a small interval is “very
small” i.e., o(∆t), and (iii) the event that A occurs in one interval is indepen-
dent of whether event A occurs in another non-overlapping interval.

Let N(t) be the number of A’s occurring in an interval of length t. N(t) is
Poisson distributed, i.e.,

Pr(N(t)= n)= (λt)n

n!
e−λt for n = 0,1,2, . . .

E(N(t))=λt, var(N(t))=λt

It may be proved that the times between the events (A) in an homogeneous
Poisson process are exponentially distributed with parameter λ. This is easily
verified for the first occurrence of A, say T1. We have: FT1(t) = 1−Pr(T1 >
t) = 1−Pr(No A’s in [0, t >). Since N(t) is Poisson distributed, Pr(N(t) = 0) =
(λt)0

0! e−λt = e−λt, and hence : FT1(t)= 1−e−λt which is the distribution function
in the exponential distribution.

Let Sk denote the k’th occurrence of an A event. We have that FSk (t)= 1−
Pr(Sk > t) = 1−Pr(less than k failures up to time t) = 1−∑k−1

j=0
(λt) j

j! e−λt. The
distribution function is recognized as the distribution function in the gamma
distribution.

Gamma Distribution

f (t)= λ

Γ(k)
(λt)k−1e−λt

where Γ() is the gamma function, which is tabulated in Table 2 at the end of
this document.

R(t)=
k−1∑
x=0

(λt)x

x!
e−λt when k is an integer

When k is not an integer R(t) can be expressed by the incomplete gamma
function, but numerical methods are required for computation. The failure
rate function can be expressed by z(t)= f (t)

R(t) , but no simple expression can be
found.

E(T)= k
λ

, var(T)= k
λ2

With Excel we may use the =gammadist(t,k,1/lambda,TRUE) function. Note
that the parametrization is deviating from the textbook.
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Weibull Distribution

f (t) = αλαtα−1e−(λt)α

R(t) = e−(λt)α

α is a shape parameter and λ is an intensity parameter.

E(T)= 1
λ
Γ

(
1
α
+1

)
, var(T)= 1

λ2

(
Γ

(
2
α
+1

)
−Γ2

(
1
α
+1

))

z(t)= f (t)
R(t)

=αλαtα−1

where we observe that the failure rate function is increasing for α > 1, and
decreasing for α< 1.

Example

For Norwegian women MTTF= 84 years and for Norwegian men MTTF= 81.
Assume we will model the life times with a Weibull distribution with α = 5.
For men we have:

λ=Γ(1+1/α)/MTTF=Γ(1+1/5)/81≈ 0.0113

For a new born boy the probability of surviving 100 years is:

R(100)= e−(100λ)α ≈ 15%

For a 59 years old man the probability of becoming 100 years or more (x =
100−59= 41) we have:

R(x = 100−59|59)= R(100)/R(59)≈ 17%

The mean residual life,MRL(t) = 1
R(t)

∫ ∞

t
R(x)dx, for this man is found by

numerical methods to be approximately 27 years and he will die at the age of
86 (expected value !) which is four years more than for the new born boy.

Parametrization of the Weibull distribution

For may distributions we can use several reasonable ways to parametrize the
distribution. Each way to do this could have pros and cons. For the Weibull
distribution it is common to use an alternative parametrization:

R(t)= e−( 1
θ )α

where θ is a scale parameter measured in time units, and α is still the shape
parameter. The last version of the textbook is using the parametrization
with the scale parameter, whereas previous versions used the parametriza-
tion with the intensity parameter (λ= 1/θ).
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Normal Distribution

f (t)= 1p
2π ·τ e−(t−µ)2/2τ2

E(T)=µ, var(T)= τ2

The distribution function for T could not be written on closed from. Nu-
merical methods are required to find FT (t). It is convenient to introduce a
standardised normal distribution for this purpose. We say that U is standard
normally distributed if it’s probability density function is given by:

fU (u)=φ(u)= 1p
2π

e−
u2
2

We then have

FU (u)=Φ(u)=
u∫

−∞
φ(t)dt =

u∫
−∞

1p
2π

e−
t2
2 dt

and we observe that the distribution function of U does not contain any pa-
rameters. We therefore only need one look-up table or function representing
Φ(u). A look-up table is given in the table of formulas. To calculate probabili-
ties in the non-standardised normal distribution we use the following result:

If T is normally distributed with parameters µ and σ, then

U = T −µ

σ
(2)

is standard normally distributed.
If we have access to for example MS Excel we may useΦ(u)=normdist(u,0,1,TRUE),

or even Pr(T ≤ t) =normdist(t,mu,sigma,TRUE).

Lognormal Distribution

f (t)= 1p
2π ·τt

e−(ln t−ν)2/2τ2

E(T)= eν+τ
2/2, tm = eν, var(T)= e2ν

(
e2τ2 − eτ

2
)

If T is lognormally distributed with parameters ν and τ, then Y = lnT is
normally distributed1 with expected value ν and variance τ2.

1ln(·) is the natural logarithm function
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The failure rate function of the lognormal distribution can not be found on
closed forms, but is easy to calculate by using the Φ(u) function. It appears
that the failure rate function is first increasing, then decreasing. This is a
reason why repair times often are modelled by the lognormal distribution.
First the (repair) rate is increasing meaning that it is very likely that the
repair is completed in the near future. But if for some reason it takes long
time, the repair rate decreases. This is then an indication that problems were
encountered, and the likelihood of completing the repair is dropping.

The Gamma Function

The gamma function Γ(α) is defined for all real α> 0 by the integral

Γ(α)=
∫ ∞

0
tα−1e−t dt

By partial integration it is easy to show that

Γ(α+1)=αΓ(α) for all α> 0 (3)

When k is a positive integer

Γ(k+1)= k · (k−1) · · ·2 ·1 ·Γ(1)

Since

Γ(1)=
∫ ∞

0
e−t dt = 1

we have

Γ(k+1)= k!

In Table 2 the Gamma function Γ(α) is given for values of α between 1.00
and 2.00. Γ(α) for other positive values of α may be calculated from formula
(3).

If we have access to for example MS Excel we may use =Gamma().
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Table 2: Gamma Function Γ(α) for α between 1.00 and 2.00.

α Γ(α) α Γ(α) α Γ(α) α Γ(α)
1.00 1.00000 1.25 0.90640 1.50 0.88623 1.75 0.91906
1.01 0.99433 1.26 0.90440 1.51 0.88659 1.76 0.92137
1.02 0.98884 1.27 0.90250 1.52 0.88704 1.77 0.92376
1.03 0.98355 1.28 0.90072 1.53 0.88757 1.78 0.92623
1.04 0.97844 1.29 0.89904 1.54 0.88818 1.79 0.92877
1.05 0.97350 1.30 0.89747 1.55 0.88887 1.80 0.93138
1.06 0.96874 1.31 0.89600 1.56 0.88964 1.81 0.93408
1.07 0.96415 1.32 0.89464 1.57 0.89049 1.82 0.93685
1.08 0.95973 1.33 0.89338 1.58 0.89142 1.83 0.93969
1.09 0.95546 1.34 0.89222 1.59 0.89243 1.84 0.94261
1.10 0.95135 1.35 0.89115 1.60 0.89352 1.85 0.94561
1.11 0.94740 1.36 0.89018 1.61 0.89468 1.86 0.94869
1.12 0.94359 1.37 0.88931 1.62 0.89592 1.87 0.95184
1.13 0.93993 1.38 0.88854 1.63 0.89724 1.88 0.95507
1.14 0.93642 1.39 0.88785 1.64 0.89864 1.89 0.95838
1.15 0.93304 1.40 0.88725 1.65 0.90012 1.90 0.96177
1.16 0.92980 1.41 0.88676 1.66 0.90167 1.91 0.96523
1.17 0.92670 1.42 0.88636 1.67 0.90330 1.92 0.96877
1.18 0.92373 1.43 0.88604 1.68 0.90500 1.93 0.97240
1.19 0.92089 1.44 0.88581 1.69 0.90678 1.94 0.97610
1.20 0.91817 1.45 0.88566 1.70 0.90864 1.95 0.97988
1.21 0.91558 1.46 0.88560 1.71 0.91057 1.96 0.98374
1.22 0.91311 1.47 0.88563 1.72 0.91258 1.97 0.98768
1.23 0.91075 1.48 0.88575 1.73 0.91467 1.98 0.99171
1.24 0.90852 1.49 0.88595 1.74 0.91683 1.99 0.99581

2.00 1.00000
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