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Chapter 6 - System Reliability Analysis

Up to now we have mainly used the symbol xi to represent the value a state
variable may take. In order to assess component and system reliability, we
need to treat the state variables and the structure function as random quan-
tities (stochastic variables). We let X i(t) denote the state variable i, and
X(t) = (X1(t), X2(t), ..., Xn(t)) be the state vector. Further the structure func-
tion is now a random quantity, i.e., φ(X(t)). Now, introduce the following
probabilities:

pi(t)=Pr(X i(t)= 1)= Component reliability

pS(t)=Pr(φ(X(t))= 1)= System reliability

Since both the state variables and the structure function is binary we have:

E(X i(t))= pi(t)

E(φ(X(t)))= pS(t)

Since the system reliability pS(t) depends on the component reliabilities, we
often write:

pS(t)= h[p1(t), p2(t), . . . , pn(t)]= h[p(t)]

Reliability of series structures

Since the structure function of a series structure is the product of the state
variables, we have

h[p(t)]=E(φ(X(t)))=E

(
n∏

i=1
X i(t)

)
=

n∏
i=1

E[X i(t)]=
n∏

i=1
pi(t)

where we have used that the expected value of a product equals the product
of the expectations if the stochastic variables are independent.
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Reliability of parallel structures

A similar argument may be used for a parallel structure which gives:

h[p(t)]= 1−
n∏

i=1
[1− pi(t)]=

n∐
i=1

pi(t)

In a more general setting assume that we are able to write the struc-
ture function as a sum of products of the state variables. Further assume
independent components and that we have removed any exponents in the ex-
pressions, i.e., xn

i = xi. We then use the results that “the expectation of a sum
equals to the sum of expectations” and “the expectation of a product equals
the product of the expectations”. This means that pS(t)=E(φ(X(t))) will equal
the sum of products of expectations, i.e., a sum of products of E(X i(t))’s. Fur-
ther since E(X i(t)) = pi(t) we have proven that the system reliability pS(t)
may be found by replacing all the x′i ’s in the structure function with corre-
sponding pi(t)’s.

Note that this approach is only valid if we have carried out the multi-
plication, i.e., resolved any parentheses in the expression for the structure
function, and removed any exponents.

General approach utilizing the structure function

1. Map the physical system into a reliability block diagram or another
representation as a starting point

2. Use various approaches (series, parallels, bridges, k-out-of-n’s etc) to
derive the structure function

3. Multiply out any parentheses, collect terms, and remove any exponents,
yielding a structure function as a sum of products

4. The system reliability, pS(t) is now found by replacing all the xi ’s with
corresponding pi(t)’s in the sum of product version of the structure
function

Example

Assume that we have component 1 in series with a parallel of two components
2 and 3 as shown in Figure 1

The structure function is

φ(x)= x1 · (x2 q x3)= x1x2 + x1x3 − x1x2x3

We now replace all the x′i ’s in the structure function with corresponding pi(t)’s
to get the system reliability. Assuming p1 = 0.99, p2 = p3 = 0.9 gives:

pS(t)= p1 p2 + p1 p3 − p1 p2 p3 = 0.891+0.891−0.8019= 0.9801
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Figure 1: Example RBD

Pivotal Decomposition and Critical component

In connection with bridge structure in chapter 4 we introduced the technique
of pivotal decomposition, i.e.,

φ [X(t)]= X i(t)φ [1i,X(t)]+ [1− X i(t)]φ [0i,X(t)]

where 1i and 0i are flags to specify that component i takes the values 1 and
0 respectively. Since we assume independent components we use the product
rule for expectations, and by rearranging the terms we get:

h[p(t)]=E(φ(X(t)))= pi(t)
(
h

[
1i,p(t)

]−h
[
0i,p(t)

])+h
[
0i,p(t)

]
where 1i and 0i are flags to specify that reliability of component i is 1 and 0
respectively

Component i is said to be critical if the rest of the components are in
such states that the system is functioning when component i is functioning
and fails when component i fails. Thus component i is critical if and only if
φ [1i,X(t)] = 1 and φ [0i,X(t)] = 0. For a coherent and binary system compo-
nent i is critical if and only if:

φ [1i,X(t)]−φ [0i,X(t)]= 1

The probability that component i is critical is thus given by:

Pr(Component i is critical)=Pr(φ [1i,X(t)]−φ [0i,X(t)]= 1)

E
(
φ [1i,X(t)]−φ [0i,X(t)]

)= h
[
1i,p(t)

]−h
[
0i,p(t)

]
where we have used that the [1i,X(t)]−φ [0i,X(t)] is binary to go from prob-
ability to expectation. If this probability is high, component i has a high
reliability importance. This is discussed in Chapter 7.

Non-repairable Systems

Up to now we have been considering the instant reliability at a given point
of time, say t. pS(t) is then the probability that the system is functioning at
time t. For non-repairable systems we may use the same argument also to
find the probability that the system survives time t by inserting component
survival probabilities in the structure function as we did with the instant
probabilities. This will not be the case for repairable systems because a sys-
tem may survive t even though some or all of the components have failed, if
they are repaired and we are saved by redundancy.
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Non-repairable Series System

RS(t)=
n∏

i=1
Ri(t)

where RS(t) is the survivor function of the system, and Ri(t) is the survivor
function of component i. By using the relation between the survivor function
and the failure rate function we obtain:

RS(t)= e−
∫ t

0
∑n

i=1 zi(u)du

where zi(t) is the failure rate function of component i. Hence for a series
structure the failure rate function is a sum of the failure rate functions of the
components:

zS(t)=
n∑

i=1
zi(t)

Non-repairable Parallel System

RS(t)= 1−
n∏

i=1
(1−Ri(t))

The formula for e.g., the failure rate function and the MTTF is difficult to
obtain in the general case. Some results may be derived in special cases. For
example for two components of the same type with constant failure rate λ we
have:

RS(t)= 2e−λt − e−2λt, MTTF= 3
2λ

Nonrepairable 2-out-of-3 system

Three components of the same type with constant failure rate λ

RS(t)= 3e−2λt −2e−3λt, MTTF= 5
6λ

Non-repairable k-out-of-n system

For a k-out-of-n system it is hard to obtain general results, but for n compo-
nents of the same type with constant failure rate λ we may obtain:

RS(t)=
n∑

x=k

(
n
x

)
e−λtx(1− e−λt)n−x

MTTF= 1
λ

n∑
x=k

1
x

The MTTFs of some k-out-of-n systems of identical and independent compo-
nents with constant failure rate λ are listed in Table 1
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Table 1: MTTF of some k-out-of-n Systems of Identical and Independent
Components with Constant Failure Rate λ.

k\n 1 2 3 4 5

1
1
λ

3
2λ

11
6λ

25
12λ

137
60λ

2 –
1

2λ
5

6λ
13

12λ
77

60λ

3 – –
1

3λ
7

12λ
47

60λ

4 – – –
1

4λ
9

20λ

5 – – – –
1

5λ

Single repairable items

Recall the state variable of an item:

X (t)=
{

1 if the item is functioning at time t
0 if the item is in a fault state at time t

The availability A(t) of an repairable item is given by:

A(t)=Pr(X (t)= 1)=Pr(The item is in a functioning state at t)

Unavailability is given by:

U(t)= A(t)= 1− A(t)=Pr(X (t)= 0)=Pr(The item is in a failed state at t)

Since availability is time dependent, we would in some cases be interested in
the average availability in a time interval (t1, t2), i.e., the interval availabil-
ity:

Aavg(t1, t2)= 1
t2 − t1

∫ t2

t1

A(t)dt

The limiting availability is given by:

A = lim
t→∞ A(t)

Average Availability with Perfect Repair

Consider a component which is repaired after a failure. Assume that failures
and repairs are independent with constant mean up times (MUT) and mean
down times (MDT).
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For a large number of periods where each period is covering the uptime
and the downtime. The total percentage of uptime is given by

A =
∑

uptimes∑
uptimes+∑

downtimes
= averageuptimes

averageuptimes+averagedowntimes

In the limit the average values converges to the expected values, hence

Aavg = MUT
MUT+MDT

Note that we have introduced the term MUT = Mean Up Time rather than
the more familiar term MTTF = Mean Time To Failure. The reason for
this is that MTTF is always mean time to first failure for an item which
is considered to be perfect at time t=0. In general repairs will not put the
item back to a perfect state and the term MUT is used for the mean up
times if this mean value exist. In many textbooks we rather see the formula
Aavg =MTTF/(MTTF+MDT).

In chapter 11 is is shown that if repair times and failure times are expo-
nentially distributed with rates µ = 1/MDT and λ = 1/MUT respectively the
availability is given by:

A(t)= µ

µ+λ + λ

µ+λ e−(λ+µ)t

from which it follows that

A = MDT
MUT+MDT

If MDT<<MUT this formula simplifies

A =λMDT

which is a formula used in hand calculations.

ROCOF = Rate of OCcurence Of Failures

The failure rate function z(t) was introduced to describe the conditional prob-
ability of failure for an item which has not experienced any failures yet. For
repairable items this first uptime interval is not that relevant and the RO-
COF is therefore introduced. To define the ROCOF we need to have a stochas-
tic process perspective, i.e., we consider what is happening in a time interval
rather when things are happening in this interval. Let N(t) be the number
of failures that occur in (0, t] and let W(t) = E[N(t)]. The ROCOF at time t is
now defined by

w(t)= lim
∆t→0

E[N(t+∆t)−N(t)]
∆t

= lim
∆t→0

W(t+∆t)−W(t)
∆t

= d
dt

W(t)
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Consider an item which is repaired to as good as new after each failure. The
average length of a failure/repair “cycle” is then MUT+MDT, hence the ex-
pected number of failures per time unit will asymptotically approach:

w = 1
MUT+MDT

Repairable systems

We have seen that the structure function is the basis for calculating system
reliability. In the same way as we did for system reliability we obtain system
availability by replacing all the xi ’s with the corresponding component avail-
abilities A i = MUTi/(MUTi +MDTi). In the following we will also obtain the
ROCOF, MUT and MDT at system level. We use similar notation as previ-
ously but now we replace “reliability” with “availability”, where A is a vector
of the component availabilities.

ROCOF for repairable systems

A system failure “caused” by component i will occur if:

• Component i is critical (“the other components”)

• Component i is functioning, and then

• Component i fails

The probability that component i is critical was found to be h (1i,A)−h (0i,A)
and the failure frequency (ROCOF) of component i was found to be wi =
1/(MUTi +MDTi). The ROCOF could be used as an approximation for the
combination of the component is functioning, and then failing, but we can be
more explicit by multiplying the component failure rate with the component
availability If failure times and repair times are exponentially distributed
with rates λi and µi respectively the system failure frequency caused by com-
ponent i is then given by:

w(i)
S =λi

µi

λi +µi
[h (1i,A)−h (0i,A)]

Summing over all components gives the total system failure frequency:

wS =
n∑

i=1

λiµi

λi +µi
[h (1i,A)−h (0i,A)]
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MUT and MDT for repairable systems

It follows from AS = h(A) = MUTS/(MUTS +MDTS) and wS = 1/(MUTS +
MDTS) that mean system uptimes and downtimes are given by:

MUTS = AS

wS

MDTS = [1− AS]MUTS

AS

respectively.

Fault tree analysis

Introduce

Yi(t)=
{

1 if basic event i occurs at time t
0 otherwise

(1)

Further introduce the structure function of the fault tree, ψ(Y(t)):

ψ(Y(t))=
{

1 if the TOP event occurs at time t
0 otherwise

As for the reliability block diagram we are working with binary variables,
hence

qi(t)=E(Yi(t))=Pr(Yi(t)= 1)= Basic event probability

Q0(t)=E(ψ(Y(t))=Pr(ψ(Y(t))= 1)= TOP event probability

Fault tree with a single AND-gate

Consider a fault tree with n basic events under a single AND-gate. Since an
AND-gate requires all basic events to occur (yi(t)= 1), the structure function
is:

ψ(Y(t))=Y1(t) ·Y2(t) · ... ·Yn(t)=
n∏

i=1
Yi(t)

hence

Q0(t)=E(ψ(Y(t))=E

(
n∏

i=1
Yi(t)

)
=

n∏
i=1

E[Yi(t)]=
n∏

i=1
qi(t)

if the basic events are independent.
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Figure 2: Example cut set structure

Upper Bound Approximation, Q0(t)

Assume that we have found the minimal cut sets of the fault tree, i.e., K j.
Further assume that the minimal cut sets do not contain common compo-
nents, hence they are independent (also provided that the components are
independent). We may now arrange the cut set in a series structure as indi-
cated in Figure 2: Let E j denote the event that cut set number j is occurring.
The probability that cut set number j is occurring is found by:

Pr(E j)= Q̌ j(t)=
∏

i∈K j

qi(t)

We now have

Q0(t)=Pr(TOP event occurs at time t)= 1−Pr(TOP event does not occur at time t)

= 1−Pr(No cut set occurs at time t)

Since the cut sets are independent, and the probability that cut set number j
is occurring is given by Q̌ j(t), we have:

Q0(t)= 1−
k∏

j=1
(1− Q̌ j(t))

where

Q̌ j(t)=
∏

i∈K j

qi(t)

Generally there might be some basic events that occur in two or more cut
sets, hence the cut sets are dependent, and it may be proven that the formula
represents an upper bound for the TOP event probability:

Q0(t)≤ 1−
k∏

j=1
(1− Q̌ j(t))

Hence, we may use:

Q0(t)≈ 1−
k∏

j=1
(1− Q̌ j(t))

9



which is referred to as the upper bound approximation and is usually consid-
ered to be a good approximation when the qi(t)s are small.

To argue for the less or equal sign we realize that cut sets are “positive
dependent” if they have common components. For two cut sets we have

Pr(EC
1 ∩EC

2 )=Pr(EC
1 |EC

2 )Pr(EC
2 )>Pr(EC

1 )Pr(EC
2 )

and

Q0 = 1−Pr(EC
1 ∩EC

2 )< 1−Pr(EC
1 )Pr(EC

2 )= 1− (1− Q̌1)(1− Q̌2)

and we may give similar arguments for more two or more cut sets.

The Inclusion-Exclusion Principle

Referring to Figure 2 it is also obvious that we may write:

Q0(t)=Pr(∪ jE j)

A challenge here is to find the probability of the union of events. For two
events A and B we have Pr(A∪B)=Pr(A)+Pr(B)−Pr(A∩B). For more than
two events (cut sets) this becomes more complicated, and we have to use the
general addition theorem in probability:

Q0(t)=Pr(∪ jE j)=
∑

j
Pr(E j)−

∑
i< j

Pr(E i ∩E j)+
∑

i< j<k
Pr(E i ∩E j ∩Ek)− . . .

To find Pr(E i ∩E j), Pr(E i ∩E j ∩Ek) is straight forward since these intersec-
tions of events are in fact intersection of a set of basic events, and we may
multiply the corresponding probabilities as we have done for a single mini-
mal cut set. The challenge is the number of terms we have to calculate. As
a starting point we can only take the first sum, i.e., adding the cut set oc-
currences for each cut set. A slightly better approach would be to subtract
the next sum. There are some ways we can optimize the calculations, and
finding bounds for the answer to use as a stopping rule, see the textbook.
Very often the inclusion-exclusion principle is used by only adding the cut set
probabilities:

Q0(t)≈
k∑

j=1
Q̌ j(t)

which is faster than the upper bound approximation, but less accurate.
The next challenge is to find the basic event probabilities, qi(t). Three

situations are often considered:
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Non-repairable components

If a component cannot be repaired, the probability that it is in a fault state at
time t equals 1−R(t), and provided that the component has an exponentially
distributed life time, we therefore have:

qi(t)= 1− e−λi t

where λi is the constant failure rate of the component.

Repairable components

To derive qi(t) for a repairable components we may use Markov analysis. The
probability that the component is in a fault state at time t is then shown to
be (according to eq. 8.22):

qi(t)= λi

µi +λi

(
1− e−(λi+µi)t

)
where λi is the constant failure rate of the component, and µi = 1/MTTRi

is the constant repair rate. When t is large compared to 1
λi+µi

we have

qi(t)≈ λi

µi +λi
≈λiMTTRi

if repair times are short compared to failure times. If this holds, it is safe to
use this approximation when t > 3MTTRi, where MTTRi is the mean time to
restoration for the component.

Periodically tested components

For components with a hidden function, it is usual to perform a functional
test at fixed time intervals, say τi, to verify that the component is able to
carry out it’s function. In Chapter 10 it is shown that the (on demand) failure
probability of such a component is given by:

qi(t)≈λiτi/2

TOP event frequency, wTOP

wTOP denotes the expected number of occurrences of the TOP event per unit
time. The arguments are as follows:

• We know the minimal cut sets

• If one cut set should be the “contributor” to the TOP event to occur, the
other cut sets cannot be occurring
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• For a basic event in one cut set to bring the cut set to occur, requires
that all other basic events in that cut set are occurring

Let CK denote a minimal cut set, then the cut set occurrence frequency is
given by:

w̌K = ∑
i∈CK

wi
∏

`∈CK ,` 6=i
q`

where wi is the ROCOF of basic event i, and ql is the probability that basic
event l is occurring.

To obtain the TOP event frequency we may now sum w̌K ’s. However, note
that w̌K will not contribute to the TOP event frequency if one of the other
cut set is already in a fault state, hence the TOP event frequency is better
approximated by:

wTOP ≈
k∑

K =1
w̌K

k∏
j=1, j 6=K

(1− Q̌ j)≈
k∑

K =1
w̌K

1−Q0

1− Q̌K

Redundancy

The only model considered in the lecture was Cold Standby. Further we
assume that all components are non-repairable. The aim of the modelling is
to assess the survivor function, R(t) of the system. The idea is now to split
into disjoint ways the system survives t. One way to survive, say I, is obvious
that there is no failure of the active item(s) up to time t. To find RI(t) in this
situation should be straight forward. Another way the system may survive t,
say II, is that (one of) the active item(s) fail at time τ, and then a cold stand
by unit is activated. Then there should be no failures in the period from τ

to t. In the modelling we need to take into account that the passive unit can
be started. We can do this by using a fixed or time dependent probability,
say p(t), that represents success in activating the cold standby unit, or we
may assume that the cold standby unit has a constant failure rate function
in cold standby, and we may find the probability of successful start as the
corresponding survivor function. Next we need to consider all possible τ-
values in [0, t] and integrate. This integral is typically given by:

RII =
∫ t

0
p(τ) f (τ)R(t−τ)dτ

where f (t) is the probability density function of the failure of the active
item(s), R(t) is the survivor function of the item(s) that has to keep the sys-
tem functioning after the first failure, and p(t) is the probability that we are
able to activate the cold standby unit.
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Example

Assume that the active and passive items have exponentially distributed life
times with failure rates λ1 and λ2 respectively. Further assume that p(t)= p,
i.e., constant over time. We have that RI = e−λ1 t, and:

RII =
∫ t

0
pf (τ)R(t−τ)dτ= p

∫ t

0
λ1e−λ1τe−λ2(t−τ)dτ

= pe−λ2 t
∫ t

0
λ1e−(λ1−λ2)τdτ= pλ1

λ1 −λ2
e−λ2 t − pλ1

λ1 −λ2
e−λ1 t

Hence, R(t) is given by:

R(t)= e−λ1 t + pλ1

λ1 −λ2
e−λ2 t − pλ1

λ1 −λ2
e−λ1 t

If p = 1 and λ1 =λ2 =λ we get:

R(t)= e−λt −λte−λt

which is recognized as the survivor function in the gamma distribution with
parameters k = 2 and λ as expected. �

The procedure may be extended if there could be more than one failures in
the interval considered. This will, however, be quite tedious.

Several examples are given in the textbook.

Main learning objectives: What to know from Ch 6

General approach utilizing the structure function

1. Map the physical system into a reliability block diagram or another
representation as a starting point

2. Use various approaches (series, parallels, bridges, k-out-of-n’s etc) to
derive the structure function

3. Multiply out any parentheses, collect terms, and remove any exponents,
yielding a structure function as a sum of products

4. Find component reliabilities, pi(t), depending on the situation, e.g.,
non-repairable, repairable, component periodically tested etc.

5. The system reliability, pS(t) is now found by replacing all the xi ’s with
corresponding pi(t)’s in the sum of product version of the structure
function.
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General approach fault tree analysis

1. Define the TOP event by asking “what”, “where” and “when’

2. Identify boundary conditions

3. Draw the fault tree by starting from the TOP and search for direct
causes, proceed until “basic events” are encountered

4. Find the minimal cut sets (MCS) by direct inspection or MOCUS

5. Analyse qualitative the MCS’s where MCS’s with low order are the
most important ones

6. Find component failure probabilities, qi(t) = 1− pi(t), depending on
the situation, e.g., non-repairable, repairable, component periodically
tested etc.

7. The TOP-event probability, Q0(t) is found by the upper bound approxi-
mation, or simply adding the cut set contribution cut by cut.
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