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1 Introduction

This document describes the technical aspects of the hybrid implementation of the Risk_OMT model. The
Risk_OMT offers two modelling approaches. The full-BBN (Bayesian Belief Network) approach utilize BBN
modelling both for the soft influences between risk influencing factors (RIFs) and the formal probabilistic
relations described by fault- and event trees. The hybrid implementation of the Risk_OMT model uses a
BBN specification of the relation between the RIFs but uses ordinary processing of the fault- and event
trees.

In the fault and event trees failure of an activity is divided into failures of omission and failure of execution.
Failure of omission denotes whether or not the prescribed activity is carried out. Failure of execution
denotes inadequate actions that may cause failures, e.g., acts performed in a wrong sequence, at wrong
time, without required precision etc. Failure of execution is seen as results of human errors and violations.
Human error is further divided into mistakes and slips & lapses, where mistakes involve actions that are
based on failure of interpretation of procedures, and/or failures of judgemental/inferential processes
involved in the prescribed activity. This category does not distinguish between whether or not the actions
directed by this judgement activities run according to the actor’s plan. Typical mistakes are inadequate
judgement/conclusion due to intrinsic conditions such as competence, fatigue, mode etc, and extrinsic
conditions such as communication, information, work load, time pressure etc. Slips & lapses involve actions
that represent unintended deviation from those practiced represented in the formal procedures. This is
deviation due to error in execution and/or the storage stage of an action sequence. For our purpose, this
category represents only actions where there is no intended violation, failure of interpretation of
procedures and judgement failures prior to the action carried out. In the Risk_OMT model separate BBNs
are developed for the RIF structure for (i) mistakes, (ii) slips & lapses, and (iii) violations. For failures of
omission currently no RIF model is derived.

2 Risk influencing factors

A Risk Influencing Factor (RIF) represents a condition or a situation that influences the risk in a risk model.
In this presentation we always assume that the RIFs are influencing the risk through parameters used in the
risk model. In the Risk_OMT we mainly focus on different organisational conditions that have a theoretical
and/or empirical grounded influence on the possible deviations from required actions, and hence should be
reflected in probability assignment of errors or failures. Further, Risk_OMT operates with 2 levels of RIFs
which links the organisational conditions (RIF Level 1) to strategic management decisions (RIF Level 2). In
the current Risk_OMT implementation it is only RIFs on level 1 that directly influence the basic event
probabilities. Note that the term risk is interpreted differently within the society of risk analysis. In a
classical risk analysis framework risk is seen as a property of the system being analysed. Further



probabilities in a risk model are considered to represent some true likelihood of e.g., component failures
and human errors. With such an interpretation we may think of the RIFs as a way to establish a true causal
link between some conditions and the basic event probabilities. In an epistemic interpretation of risk the
main focus is on uncertainty. Risk is essential uncertainty regarding the occurrence and severity of
undesired events. In such a framework basic event probabilities are not considered as some true values,
but are expressions of our uncertainty regarding the occurrence of the basic events. The RIFs will then
represent conditions that we take into account when assigning probabilities (expressing uncertainty) to the
basic events, but we do not consider any causal link as for the classical interpretation.

The Risk_OMT modelling framework is an extension of the BORA release model (Aven et.al. 2006). There
are two major changes in the Risk_OMT model compared to the BORA release model. Whereas the BORA
release model combined the RIFs on the same level, the Risk_ OMT model introduces a hierarchy between
the RIFs. Further the BORA release model considered the RIFs to be known without any uncertainty. In the
Risk_OMT model RIFs are still considered to be theoretical constructs that influences the risk, but we do
not have exact knowledge regarding the value of the RIFs, and hence they are treated as stochastic
variables (random quantities).

Formally we use the term score to denote the summarized information regarding the RIFs form interviews,
surveys etc. A score is thus treated as a realization (observation) of the true underlying RIF. In the BBN this
corresponds to an arrow from the RIF to the corresponding score. The scoring system is based on
characters A to F, where A corresponds to best industry practice, and F corresponds to an unacceptable
state with respect to the actual RIF.
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Figure 1 RIFs on two levels with scores and relation to basic events in a fault tree

Figure 1 shows an example of a RIF structure. Level 1 RIFs point to the basic events in the fault tree showing
that level 1 RIFs influences the basic events. Level 2 RIFs influence the level 1 RIFs, and there is an arrow
from the RIFs to the scores to indicate that the scores are treated as realizations (observations) of the true
underlying RIFs.

Examples of level 1 RIFs are technical documentation and time pressure. Corresponding level 2 RIFs are
management of information and management of tasks respectively.



3 Impact of the level one RIFs on the basic events

In the hybrid Risk_OMT model the impact of the RIFs are explicitly modelled via the probability of
occurrence of a basic event or a barrier in the fault or event tree. We now consider basic event number i.
Three quantities span the sample space for the basic event probability for this event:

g,s = average basic event probability corresponding to average industry practice, i.e., all RIFs equal to the
character C.
g;. = lowest basic event probability corresponding to the best practice in the industry, i.e. all RIFs equal to

the character A.

g, = highest basic event probability corresponding to the an unacceptable industry practice, i.e. all RIFs
equal to the character F. It is not expected to observe RIFs of character F.

Often g;,, and g, are specified indirectly by error factors EF;; = q;n/ q;4 and EF;; = g;a/ g;;. In the modelling
it will be convenient to represent the RIFs by numeric values rather than character values. It is convenient
to map the character values on the interval [0,1]. Splitting this interval into 6 sub intervals, and mapping
the character value into the centre gives the value 1/12 for an A, the value 1/6+1/12 = 3/12 for a B, the
value 2/6 + 1/12 =5/12 for a C up to 11/12 for a value F. etc. In the following we will always use this
mapping in the numeric quantifications. In some situations we may use a more differentiated labelling than
the pure characters, i.e., we may succeed the characters with extra plusses (+) or minuses (-). For example
we may use that A++ corresponds to a value 0, A+ corresponds to a value 1/24 etc. If we use r as a value of
a weighted sum of the RIFs influencing the basic event probability we now introduce g;(r) to describe the
functional relationship between the RIF value (r) and the basic event probability. We have that g{(0) = g;,
qi(5/12) = g;» and g{1) = g;u- In between these values we may either use linear or geometric interpolation.
For high error factors it is recommended to use a geometric interpolation.

We will now assume that there are totally J RIFs that are influencing basic event i. Let R = [Ry,R,,...,R)] be a
vector of stochastic variables to represent these (standardized) RIFs, and let pg(r) = Pr(Ry=ry Ry=r5,...,R;=1)
be the joint probability distribution over these RIFs. Each RIF might have different weight with respect to
the influence on the basic event probability. Now let w; be standardized weight for RIF j. A first
approximation for the total impact of the RIFs on the basic event probability is given by:

gi= Pr(Failure of basic event /) = 2:q;(Z;w;r;) pr(r) (1)

where X, represents the sum over all possible values of r. Equation (1) is then used to establish the basic
event probabilities to use in the fault and event tree part of the hybrid risk analysis.

4 The beta distribution to describe uncertainty regarding the RIFs

A mathematical convenient probability distribution to use for continuous variables on the interval [0,1] is
the beta distribution. Although the scoring of the RIFs are on an ordinal level, a continuous ratio scale
seems appropriate for the modelling. The probability density function of the beta distribution is given by:

f@ =rt1-r""1/B(ap) (2)
where B(e, ) = T(a)['(0)/T (a + f) is the beta function, and T'( ) is the gamma function. ¢ and Sare
parameters in the distribution.

If R is beta distributed with parameters « and fthe expected value and variance are given by:



E(R) = — (3)

a+p
a

Var(R) = (a+ﬁ)2(§z+ﬁ+1) (4)
Note that the beta distribution represents a conjugate prior distribution for the binomial distribution. Thus
if the beta distribution is used to describe the parameter r in a binomial distribution with prior parameters
o and f, then the posterior distribution is also beta distributed with parameters aq+x and f+n-x where
x is the number of successes and n is the number of trials of an experiment provided to update the prior
distribution, i.e., the posterior distribution is a beta distribution with parameters

a=00+x (5)

p=po+n-x (6)

5 Updating the RIF distributions based on the scores

The above results in equations (5) and (6) do not apply directly to our situation since we will not get
observations from a binomial trial but rather one observation considered to be a realisation of the true RIF.
Let o 0g S be the parameters in the prior distribution of the RIF prior to observing the score S. Given the
true value of the RIF, say r, it is reasonable to assume that E(S|r) = r, and further we assume that it is
possible to specify Var(S|r) = Vs. We now make the following argument: We will use the value of the score,
say s, by translating the information to a binomial situation, e.g., finding x and n. This is done due to the
simple result that exists for the binomial situation. Since X/n is an estimator for r in the binomial situation,
and the score S is the estimator for r in our situation, it seems reasonable to require:

Var(X/n) = r(1 —r)/n =Var(s) = Vs (7)

Thus, if we know V and replace r with it’s estimate s, we should have:

n = s(1—s)/Var(S) = s(1—15s)/Vs (8)

further since x/nand s both are estimates of r, we set x = s-n. Utilizing the result from the binomial
situation where the posterior distribution is beta distributed with parameters aq+x and fy+n-x we will in
our situation approximate the posterior distribution with a beta distribution with parameters:

o= oo+ s2(1-5)/ Vs ©)]
B=po+s5(1-5)/Vs- s2(1-5) [ Vs=po + s (1-5)%/ Vs (10)
Exercise 1

Find the expected value and the variance of the posterior distribution with the parameters obtained by
equations (9) and (10). Compare this result with the expected value and variance of the weighted sum of
the prior mean and the score where the reciprocal variances are used as weights.

5.1 Level 2 RIFs

For level 2 RIFs it is straight forward to use the result in equations (9) and (10) to find posterior distributions
for the RIFs. Various principles may be used for specifying the prior distribution. In order to have a method
that is data driven as far as possible, it seems reasonable to apply ap = £ = 0.5 corresponding to Jeffreys
prior (Jeffreys, 1946).



Exercise 2

Apply Jeffreys prior together with equations (9) and (10) in order to find the expected value and the
variance of the posterior distribution for scores corresponding to the characters A, B, ..., F. Present the
result in a table for Vs equal to 0.2%, 0.1° and 0.05° respectively.

5.2 Level 1 RIFs

We will start by assigning the posterior distribution of level 1 RIFs given the value of the parent RIF, i.e., the
corresponding level 2 RIF denoted P (i.e., parent). Given the value of the level 2 RIF, say P=p, it is
reasonable to specify a prior distribution of the RIF, say R, with expected value E(R/P=p) = p. Thus the
structural dependencies between the parent RIF and the child RIF is considered to give the same
expectation. But how strong is the structural dependency, i.e., the influence of the parent RIF on the child
RIF. Such a structural dependency may be expressed by the variance of the child RIF, i.e., Var(R|P=p). To
make the model simple we assume that Var(R|P=p) = Var(R) = V, where it is possible to specify V,
independent of the actual value of the parent. V, may be considered as a measure of the structural
dependence in the model. Proposed values for the structural dependency are V, = 0.2 (low dependency),
Vp = 0.1% (medium dependency) and V, = 0.05% (high dependency). Prior to observing the score, it seems
reasonable to express the prior distribution of the RIF with a beta distribution with expected value p and
variance V.

Exercise 3

Use equations (3) and (4) to show that we may obtain the prior parameters in this situation by:

Bo= (5 2-1)(1-»p) (11)
o= % (12)

Conditional on the value of the parent level 2 RIF; i.e., P=p, and the structural influence between these RIFs,
the prior distribution may be obtained by applying the parameters in equations (11) and (12). Given the
score S=s of the level 1 RIF we apply equations (9) and (10) to find the conditional posterior distribution,
i.e., given the parent value. In order to find the unconditional posterior distribution, we may integrate over
the posterior distribution of the parent node.

It is, however, important to stress that we do not need the unconditional posterior distribution of the child
RIFs, i.e., the level 1 RIFs. In equation (1) we need the joint distribution over the level 1 RIFs that directly
influences the basic event probability. From the theory of BBN, we know that the level 1 RIFs are
independent given their parents, i.e, the level 2 RIFs. This means that we may multiply the conditional
posterior distributions for level 1 RIFs to find the required p(r) in equation (1) and then integrate over the
joint posterior distribution of the level 2 RIFs.



In equation (1) we did assume that the RIFs were made discrete, i.e., each RIF takes a finite number of
values. This is done in order to simplify calculations. Since the scores are measured on six different values,
it seems reasonable to use 6 values for each RIF both on level 1 and level 2. Then we may for the posterior
distribution of the level 2 RIFs calculate a point probability for each interval, i.e., [0,1/6], [1/6,2/6] etc.
Similar, given the (discrete) values of the level 2 RIFs, we may calculate point probabilities for the level 1
RIFs, and p(r) is then found by applying the law of total probability.

Exercise 4

Write a simple code (visual basic, matlab, fortan or C) to find the point probabilities for each interval
[0,1/6], [1/6,2/6], .., given the parameters in the posterior distribution.

Exercise 5

Consider a situation with one level 2 RIF, two level 1 RIFs influenced by the level 2 RIF. Write a simple code
to find the unconditional distribution over the weighted sum of the level 1 RIFs. Make the code flexible
such it is possible to specify the weights, the scores, the structural influences V,'s and the variances of the
scores Vs's.

Exercise 6

Discuss extension of the model in the previous exercise where there are more than two level 1 RIFs for
each level 2 RIF, and where there are more than one level 2 RIF. Hint: Since each level 1 RIF is influenced by
one and only one level 2 RIF, the subset of level 1 RIFs with common parent level 2 RIF may be treated
separately. Discuss why this will reduce the number of combinations to run through. Also discuss how to
implement the solution if this savings should be obtained.

Exercise 7

Assume that you have n RIFs where each RIF may take m different values. Propose an algorithm to generate
all possible combinations of the n RIFs.

6 Interactions between RIFs

The influence of one RIF on the basic event probabilities is assumed to be independent of the value of the
other RIFs in the basic Risk_OMT model. In many situations it might be reasonable to believe that for
example the negative influence of a very bad RIF is higher if the one or more of the other RIFs also have a
very bad value compared to more moderate values of these RIFs. It might also be argued that the positive
influence of a very good RIF is higher if one or more of the other RIFs are good, compared to these RIFs
having average or bad values. Finally, three might be cases where a good value of one or more RIFs



balances or neutralizes the bad values of other RIFs. In this study we will only treat negative effects where
bad values of two or more RIFs strengthened the negative influence on the basic event.

The arguments in the modelling of interaction effects are as follows. Interaction effects are only modelled
between the level 1 RIFs due to the fact that no level 1 RIFs are influenced by more than one level 2 RIFs in
the current model, hence it make no sense to introduce interaction effects between the level 2 RIFs.
Further the influence of the level 1 RIFs on the basic event probabilities are essentially in the basic
Risk_OMT model determined by a weighted sum of the Level 1 RIFs, i.e.,

r=,wil (13)

where r;is a value of RIF number j on level 1, and where we assume that the RIFs values are measured in
numerical units and not by letters in the quantification part. In the modelling the RIFs are treated as
random variables, hence we need to integrate over equation (13) over the simultaneous distribution to the
RIFs. But as is seen from equation (13) no interaction effects are introduced. In the modelling of interaction
effects sub sets of the total set of RIFs are uuconsidered to represent a potential for interaction. However,
we have assumed that interaction effects only come into play when all the RIFs in a subset have a value
worse than the average value, i.e., a C. In the Risk_OMT project we only consider sub sets of two or three
RIFs. In order to simplify the modelling of interaction effects we assign a weight, w, of the interaction effect
which is relative to the weight of the various RIFs in the interaction sub set, say /. For each RIF in the sub set
I we then may find a total weight of the RIF in addition the original weight of the RIF, i.e.,

wyi = w; wif (14)

where w; is the original weight of the RIF, and fis a correction factor. If one or more of the RIFs have a value
better than the average RIF-value (C) we set f = 0. If all the RIF values in | have the worst value (F), we set f =
1. For values between we apply a linear transformation:

f': (EI'- Z"C”)/ (anu _ E”C”) (15)

where Xr is the sum of RIF values in I, £”C” is the sum of the same RIFs if they all equal “C”, and Z"F” is the
sum if they all equal ”"F”. It is then easy to verify that if all RIFs take the value “C” we get f =0, and if all RIFs
take the value “F” we get f = 1 corresponding to our assumptions. The total impact of the RIFs on the basic
event probability is now found:

r=2iWili+ 2iciWiili (16)

where we have summed the interaction effects for one sub set of interactions. In principle there might be
more than one sub set of interaction effects, and we need to add these also.

Since we have added more terms in equation (16) we might consider to reduce the original weights to
prevent the weighted sum to exceed the worst possible value (corresponding to an F). But since we do not
open for a similar “positive” interaction effects, such a change in the RIFs will also result in a situation
where only RIF values equal to the average (C) will mot result in the average failure probability in the fault
tree. Therefore, we rather accept that the model becomes more conservative for very bad values of the
RIFs included in the sub set of interactions, i.e., we do not adjust the weights.



7 Common cause modelling

Podofolini et. al. (2009) have reviewed decision tree models for assessing human reliability analysis
dependency. They refer to the common practice to introduce dependence levels, say zero, low, moderate,
high and complete. For each of these levels it corresponds a ffactor which is the conditional probability of
a subsequent failure given a first failure. Further they report that the literature fails to be consistent with
respect to which factors affect the dependence levels, and to which strength. Podofolini et. al. (2009)
summarizes the literature both with respect to factors included, and their importance. Note that common
cause failures seem to be a more important issue after a critical event compared to our situation where we
are modelling what is happening prior to the leak. Therefore we will assume lower common cause influence
than found in the literature. The following factors are considered most important, see Podofolini et. al.
(2009) for further elaboration and discussion related to the literature:

e Closeness in time

e Similarity of crew/performer(s)
e Stress

e Complexity

To simplify the modelling we introduce a scoring regime for each of the factors. Let S; denote the score of
the i factor. It then seems reasonable to introduce a relation between the Bfactor and the scores:

B =Bo ], (7)

Where f is a baseline common cause factor, and w; is the weight of factor i. Table 1 shows the principles
for setting scores, and the weights used for each of the factors.



Table 1 Weights and principles for setting scores in the CCF model

Dependency factor Weight Scores
Best = -1 Worst =1

Closeness in time 2 The closeness in time is assumed to depend on the type of tasks
considered. The following scores are proposed for the relevant
situations.

Control planning | Planning, S=1
Control | Execution, S=-1
Execution | Execution, S=%

Note, we assume there are no dependencies between planning activities
and execution activities.

Similarity of crew 3 Different crew, S=-1 Same crew, S=1

Stress 2 The stress level is based on the RIF for time pressure. Let r denote the
linear mapping of the RIF on the interval (0,1) where A corresponds to O,
and F corresponds to 1. The score of the stress dependency factor is then
given by

S=2(r-%)

Complexity 1.5 The Risk_OMT model does not include any RIF explicitly used to describe
complexity. The RIF for design and HMI are considered to be the most
relevant RIFs indicating complexity. If the values of these are denoted r;
and r, respectively, the score of the complexity dependency factor is
then given by

S=(ri+r,-1)

The baseline dependency level is set to f = 0.05 for failure types “violation”, “omission”, and “mistake”.

7

For “slips & lapses” the common cause problem is considered slightly lower, and the value 4 = 0.03 is used.

There are two feasible ways to include the common cause effects in the modelling. One way is to model
explicitly the common cause effects by introducing additional basic events in the fault and event trees. For
a full BBN model this is the only way to represent such common cause effects. If the hybrid approach with a
mixture of BBN models and event and fault trees is used, we may also introduce common cause failures in
the post-processing of the minimal cut sets. The challenge then is to describe the possible dependencies for
various classes of basic events, and then add common cause terms when the minimal cut set contributions
are calculated. For example if a minimal cut set comprises the following basic events: {P=Planning error,
CP=Control Planning error, E=Execution error, CE=Control Execution error} and we introduce fcpjp and feeje
as common cause factors for controlling the plan, and controlling the execution respectively, we may use
the following approximation to find the failure probability contribution from this minimal cut set:

Q= [qr Gce + Lerip Min(gr,qce)] [Ge Gce + Peeje Min(Gegce)] (18)



Where we according to Table 1 assume that there are no common cause effects between planning and
execution, and the fvalues are found by equation (17).

8 Importance measures

There are a number of importance measures in the literature, where the Birnbaum’s measure of reliability
importance (see e.g., Rausand & Hgyland, 2004) is one of the most commonly used. For a fault tree model
Birnbaum’s measure, %(i), is defined as the change in the TOP-event probability, Qo as a function of the
change in unreliability, g; for component i, i.e., 1B(i) = 0Qy/0gi. In an event tree this is more complicated

III

since there might be more than one “critical” end consequence. However, in the Risk_OMT project each of
the event trees only has one critical end consequence, i.e., the leakage scenario. Thus the ordinary
definition for /%(i) applies. The next challenge in the Risk_OMT project is that we have developed the model
below the basic event level, i.e., the RIF structure. We then need to develop a Birnbaum like measure on
the RIF-level. If we have a deterministic relation between a RIF, say RIF number j, and g; we may apply the
chain rule to find the importance measure. However, in the Risk_OMT model the RIFs are considered as
random variables where observations (scores) and structural dependencies between the RIFs are used to
express the uncertainty distribution regarding the RIFs. Since the RIFs are random variables and not
parameters as in an ordinary fault tree or event tree, we need another definition of a “small change” in the
value of the RIF. We propose to define a change in a RIF in terms of a shift in the expected value of the RIF.
Let 7 be the posterior distribution of RIF j, and let AE; be a (small) change in the expected value of 7.
Further assume that it is straight forward to establish a modified posterior, say 7rjA, given the shift in the
expectation. Further, let F be the frequency of the critical end consequence, i.e., a leakage, where F
depends on the posterior distribution of the RIFs, and in particular RIF j. A Birnbaum like measure for the
importance of RIF j is then given by:

Pre()) = [R7)-Rm)] | AE; (19)
In order to implement the measure in equation (19) several aspects need to be considered. Shifting the
posterior distribution of a RIF is not straightforward. The simplest situation is when we are considering first
level RIFs, i.e., those influencing the parameters in the fault trees directly. It is rather easy to find the
posterior distribution, 7, from the BBN structure over the RIFs. If we next, approximate this distribution
with for example a beta distribution, with some parameters we may rather easily find a new beta
distribution (representing 7z,-A) such that the expected value has changed by 4E;, and where we maintain the
same variance in the distribution. In order to find F(;sz) we now just “disconnect” any parents of RIF j in the
diagram to take complete control of the distribution of RIF j and then proceed with the quantification in a
straight forward manner. Note that we need to make ﬁjA discrete, which represents another approximation
critical for the model in equation (19). In order to reduce the impact of this approximation it is therefore
recommended to “disconnect” any parents of RIF j both when calculating F(;r,—A) and F(7;). The next
challenge to treat is when we are working with the second level RIFs, i.e., those that only indirectly
influences the fault tree parameters through the first order RIFs. We may still establish a shifted posterior
distribution, ﬂjA, but this will not have any impact on the scores for the first level RIFs. In the current
implementation of the Risk_OMT model there is one, and only one second level RIF that influence each of
the first level RIFs. Hence, it seems reasonable to shift the score of all the first level RIFs influenced by RIF j
by a value 4E;. In this manner we get rid of the “momentum of the historical scores” in the model which
would have damped the change in F as a function of AE; for the second level RIFs.



9 Parameter estimation in the RISK_OMT model
The hybrid RISK_OMT model has several parameters that we need to specify:

qu Lowest value for the basic event probability, i.e., when all RIFs have state A
OH Highest value for the basic event probability, i.e., when all RIFs have state F
W Standardized weight of level 1 RIF number j influencing the basic event

Vpij Structural importance of parent of level 1 RIF number j

Vs Variance of the score of RIF number j given the true underlying RIF value r

In the analysis we distinguish between observations on the RIFs and observations on success or failure on
the basic event level. The observations on the RIFs are typically scores assessed by interviews, surveys etc.
These observations typically represent one installation for a period of time. Note that following one
installation over time, the underlying true values of the RIFs are expected to change due to improvement
projects etc. For a given period of time where the underlying RIFs are assumed to be more or less constant,
we may have several observations related to the success or failure of the basic event considered. In
principle, each time a maintenance activity is executed, we will have a new observation with respect to
success or failure of the basic event.

9.1 Estimating Vs;j and Vp;
In order to estimate Vs;and Vp; we will utilize the values of the scores both for level 1 RIFs, and level 2 RIFs.
We now recall the main assumptions and relations specified above:

e Thereis one and only one parent RIF (level 2 RIF) that points towards each child RIF (level 1 RIF)

e The score, S, of RIF number j is beta distributed with expected value r and variance Vs; given that
the true underlying RIF value is r.

e Given the true underlying vale p of the parent of level 1 RIF number j, this level 1 RIF is beta
distributed with expectation p and variance Vj;.

Figure 2 RIF structure for estimation

Figure 2 illustrates the principal situation for the estimation. To simplify the analysis, a first approach for
the estimation would be to assume that the score of level 2 RIF represents the true underlying RIF. Now, let
sp,i denote the value of the parent score of observation i. An observation here means that we have got a set
of scores for one installation for a period of time where the RIFs are assumed to be relatively stable. Since
we believe that the level 2 RIF is known, we may estimate parameters related to each level 1 RIF



independent of the other level 1 RIFs. Let S.; denote the score of the level 1 RIF number j we are
considering for observation i. Given the true value of the corresponding underlying level 1 RIF R.; = rc;, S is
beta distributed with expectation r.; and variance Vs;. Next, R.; is beta distributed with expected value s,;
and variance V. We now apply the double expectation rule for the variance:

Var(X) = E(Var(X|})) + Var(E(X| D)) (20)
where X corresponds to the score of the child, S.;, and Y corresponds to the underlying level 1 RIF, R, ;. Since
Var(X[Y) = Var(S;|R) = Vs;, we have E(Var(X/Y)) = V. Further E(X|Y) = E(S./|R.i) = R.;, hence Var(E(X|Y)) =
Var(R.;) = Vp;. Note that Var(R.;) = Vp; only if we know the value of the parent node, say r,;. Thus we have:

Var(Sci| 1p.= sp) = Vsj+ Ve, (21)

Equation (21) may now be used to estimate ¢* = Vs;+ Vp;. A natural estimator for o is:

52 = L E " (Sei—s02)’ (22)
- -1 . C,i P,
n i=1

Note that we are not able to separate Vs; and V;; from each other by using the empirical data. Hence, we
need to utilize some expert judgements information. Note the different nature of the two variance terms.
Vs;is a measure of how accurate the score is reflect the true underlying RIF. Vj; is a structural measure
indicating how strong the influence the influence from the parent node on the child node is. It might be
reasonable to assume that the variability of the score is less than the variability of the level 1 RIF as such,
hence. i.e., Vs; < Vp ;. Pragmatically we set if no other information is available Vs; =% V; ;. Also note that we
in the estimation have assumed that the score of the parent RIFs equals the true underlying RIFs. We are
also not able to extract the effect of this assumption in the model. In fact, we need to distribute 62 not only
to Vs; Vi, but also to Vs, where index p here points to the parent node. Here, several child nodes might
have the same parent node, hence a consistence check is required.

9.2 Estimating qi, qu and w;

In order to estimate q;, gy and w; we will only use the scores on the first level RIFs. A better approach would
have been to insert the expected values of the underlying RIFs based on a combination of the score and the
parent RIF, but for simplicity we just stick to the scores. The functional relation between the RIFs and the
basic event probability is given by:

q =4 (Z_Z)ijjsj (23)

We will first present a simple approach to estimate q,, g, and w;by a transformation that brings equation
(23) to a linear model by taking logarithms:

Ing = Inq; + z “w;s;In (Z—’Z) =Ly + z Bjsj (24)
J J

where % =In g, and £ = w; In(gu/q.). For one combination of the score vector s = [sy,5,,... 5,] there may be
one or more observations. Typically there will be several observations if we have data on the basic event
over a period of time where the score vector is assumed to remain constant, typically between surveys
executed to assess the scores. We use i as an index to run through the relevant combinations of the score
vector, and s; is the corresponding value of the score for level 1 RIF number j. Let x; be the number of
failures and n; the number of “trials”, i.e., execution of the “basic” event. In the regression model of



equation (24) we would replace g with it’s estimate x;/n;. However, taking the logarithm on the left hand
side will cause problems. This might be overcome with an empirical Bayesian approach where the prior
distribution over g is set as the posterior distribution assuming all scores were the same, i.e., a beta
distribution with oo =% + Zx; and 3% =% + Zin;- Zx; (Jeffreys non informative prior). For observation number
i the posterior distribution over g is then given by a beta distribution with parameters o; = ao+ x; and %= %
+ n; - x;. The posterior mean is given by o,/(o+7) which may be inserted in the logarithm in the left hand
side of equation (24). We are now able to perform a standard linear regression. In the post processing we
use that £ = In g, to find g,. From the relation £ = w; In (gn/q.) we easily find standardized weights, w;=
G./%,6 and also In (qu/q.) = Z,5 such that an estimate for g, might be obtained. The procedure is then as
follows:

1. Find a prior distribution for g by either a direct approach, or use an empirical Bayesian approach
where the parameters in the prior distribution are given by oy =% + Zx; and % =% + Zin;- Zx;.

2. For each observation find the Bayes estimate for g; by calculating o; = oo+ x; and %= % + n; - x;, and
then calculate ou/(o+%).

3. Calculate the left hand side of equation (24) by Y; = In g; = In o/(ou+ ).

4. Let x; be equal to thejth level 1 RIF for observation i.

5. Equation (24) now reads Y; = [ + Bixi + X + ..+ Pixi; + &, Where g is the error term in the
regression model.

6. Find the estimates by standard LS. Denote the estimates by ﬂj*.

7. Find corresponding standardized weights wj* = /3,»*/2,» j*,j>0, q. = exp(,Bo*), and g, = qL*exp(Zjﬂj*)

The procedure above may be conducted by simple calculation and a standard program for multiple linear
regression (for example MS Excel or any statistical package). A standard maximum likelihood approach will
require use of numerical methods for maximization of the likelihood function. The likelihood function is
found by inserting g from equation (23) into the binomial probability distribution function for each
observation yielding

n;{—xi
L(qL,qH,Wl,...,Wr) = (Z:) [q QH Z W]Sl]] [ qH Z w;js lJ] (25)
i

The maximization should be carried out under the constraint that the weights sum up to one.
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