
TPK4161 - VALUE CHAIN ANALYTICS
Discrete event simulation
Jørn Vatn/September 2020



Motivation

I There are many systems for which it is not easy to do probabilistic
assessment

I Repair times, failure times, service times etc. are not exponentially
distributed

I Resources depend on spare parts, weather window and so on
I Prioritization rules determine which component should be repaired first
I etc.

I Stochastic simulation is one way to establish system performance
I Discrete event simulation is a sub-set of stochastic simulation which is
very flexible from a modelling point of view

1



What is Discrete-Event Simulation?

I In discrete-event simulation, the operation of a system is represented as a
chronological sequence of events

I Each event occurs at an instant in time and marks a change of state in the
system

I For example, if the up- and down times of a system of components are
simulated, an event could be “component 1” fails, and another event could
be “component 2” is repaired

I A third event could be that a customer arrives to a service desk
I Rather than explicitly assessing the performance of a system by the laws
of probability, we just “simulate” the system, and calculate the relevant
statistics to get the performance

2



Components of a Discrete-Event Simulation engine

I Clock: The simulation must keep track of the current simulation time.
Time advances in discrete jumps, that is, the clock skips to the next event
start time as the simulation proceeds

I Event: A change in state of a system
I PES = pending event set: The simulation maintains a list of simulation
events to happen in the future. The pending event set is typically
organized as a priority queue, sorted by event time. That is, regardless of
the order in which events are added to the event set, they are removed in
strictly chronological order.

3



Components of a DES, continued

I Event notice: An element in the PES describing when an event is to be
executed. In our VBA the EventNotice(time,code,parameters) is used

I Activity: A pair of events, one initiating and the other completing an
operation that transform the state of the entity. Time elapses in an
activity. We usually assume that no continuous changes are taking place
during the activity.

I Random-Number Generator
I Statistics: The simulation typically keeps track of the system’s statistics
I Ending Condition

4



Example

Consider a system with two components
I Failure times of component 1 in days: 8, 4, 10
I Failure times of component 2 in days: 7, 6, 4
I Repair times of component 1 in hours: 4, 6, 2
I Repair times of component 1 in hours: 26, 3, 6

5



Visualization
I We may think of a “blackboard” as the container holding the pending
event set

I We use “Post-It” sheets to hold the individual events
I The function eventNotice() is used to place one event to the blackboard,
i.e.,

I The timestamp for this event is given
I An onEvent() function to call is given

I The function getNxtEvent() is used to retrieve events from to the
blackboard, i.e., the onEvent() function

I The events are retrieved in chronological order
I The clock is updated
I The onEvent() function is executed
I Required status variables are updated

6



Visualization
I We may think of a “blackboard” as the container holding the pending
event set

I We use “Post-It” sheets to hold the individual events
I The function eventNotice() is used to place one event to the blackboard,
i.e.,

I The timestamp for this event is given
I An onEvent() function to call is given

I The function getNxtEvent() is used to retrieve events from to the
blackboard, i.e., the onEvent() function

I The events are retrieved in chronological order
I The clock is updated
I The onEvent() function is executed
I Required status variables are updated

6



Required built-in functions

Function onFailure(compNo)

compNo.Status = Down

eventNotice clock + rndRepTime(), onRepair(compNo)

End Function

Function onRepair(compNo)

compNo.Status = Up

eventNotice clock + rndFailureTime(), onFailure(compNo)

End Function

7



Required built-in functions

8

System status:

Initially, and empty blackboard, i.e., no events in PES

Comp1 = Up
Comp2 = Up
System = Up
Clock = 0



Required built-in functions

9

System status:

t = 8*24=192

onFailure(1)

Comp1 = Up
Comp2 = Up
System = Up
Clock = 0

Initializing, eventNotice: first failure component # 1



Required built-in functions

10

System status:

t = 8*24=192

onFailure(1)

t = 7*24=168

onFailure(2)

Comp1 = Up
Comp2 = Up
System = Up
Clock = 0

Initializing, eventNotice: first failure component # 2, inserted prior to failure of
component # 2



Required built-in functions

11

System status:

t = 8*24=192

onFailure(1)

t = 7*24=168

onFailure(2)

Comp1 = Up
Comp2 = Up
System = Up
Clock = 0

Ready to go: getNxtEvent -> onFailure(2)



Required built-in functions

12

System status:

t = 8*24=192

onFailure(1)

Comp1 = Up
Comp2 = Up -> Down
System = Up
Clock = 168

onFailure(2); (i) change status of component # 2



Required built-in functions

13

System status:

t = 8*24=192

onFailure(1)

t = Clock+26 =194

onRepair(2)

Comp1 = Up
Comp2 = Down
System = Up
Clock = 168

onFailure(2); (ii) eventNotice for next repair of component # 2



Required built-in functions

14

System status:

t = 8*24=192

onFailure(1)

t = Clock+26 =194

onRepair(2)

Comp1 = Up
Comp2 = Down
System = Up
Clock = 168

getNxtEvent -> onFailure(1)



Required built-in functions

15

System status:

t = Clock+26 =194

onRepair(2)

Comp1 = Up -> Down
Comp2 = Down
System = Up -> Down
Clock = 192

onFailure(1); (i) change status of component #1



Required built-in functions

16

System status:

t = Clock+26 =194

onRepair(2)

t = Clock+4 =196

onRepair(1)

Comp1 =Down
Comp2 = Down
System = Down
Clock = 192

onFailure(1); (ii) eventNotice for next repair of component # 1



Required built-in functions

17

System status:

t = Clock+26 =194

onRepair(2)

t = Clock+4 =196

onRepair(1)

Comp1 =Down
Comp2 = Down
System = Down
Clock = 192

getNxtEvent -> onRepair(2)



Required built-in functions

18

System status:

t = Clock+4 =196

onRepair(1)

Comp1 =Down
Comp2 = Down -> Up
System = Down -> Up
Clock = 194

onRepair(2); (i) Change state of component #2 etc.



Required built-in functions

19

System status:

t = Clock+4 =196

onRepair(1)

Comp1 =Down
Comp2 = Up
System = Up
Clock = 194

... add new failure events, get next events and so on...



Simulation Engine Logic
I Start of simulation
I Initialize Ending Condition to FALSE
I Initialize system state variables
I Initialize Clock
I Schedule one or more events in the PES

I While (Ending Condition is FALSE) then do the following:
I Get the nextEvent from the PES
I Set clock to nNextEvent time
I Execute the nextEvent code and remove nextEvent from the PES
I Update statistics

I Generate statistical report
I End of simulation

20



Simulation Engine Logic
I Start of simulation
I Initialize Ending Condition to FALSE
I Initialize system state variables
I Initialize Clock
I Schedule one or more events in the PES
I While (Ending Condition is FALSE) then do the following:

I Get the nextEvent from the PES
I Set clock to nNextEvent time
I Execute the nextEvent code and remove nextEvent from the PES
I Update statistics

I Generate statistical report
I End of simulation

20



Simulation Engine Logic
I Start of simulation
I Initialize Ending Condition to FALSE
I Initialize system state variables
I Initialize Clock
I Schedule one or more events in the PES
I While (Ending Condition is FALSE) then do the following:

I Get the nextEvent from the PES
I Set clock to nNextEvent time
I Execute the nextEvent code and remove nextEvent from the PES
I Update statistics

I Generate statistical report
I End of simulation

20



Programming issues

I We will only consider the situation where we do the “programming” our
selves

I An approach for VBA is presented
I We need some standard functions like eventNotice() and getNxtEvent()

I If you write in C++, Phyton etc, you need to write those yourself, or find a
library

I In all cases we need to write our own onEvent() functions

21



Programming issues - Callback’s

I In the eventNotice() we need to pass a function to be called when the
event is retrieved from the PES

I Such a function we would like to pass is often denoted a Callback-function
I In programs like C++ we may pass the (memory) address’ of the

Callback-function, and when the event is retrieved the function at this
address is used for the execution

I In standard VBA we cannot pass the address efficiently
I A workaround is to pass the function name of the Callback-function
I We should then use a dedicated Select Case construct for the execution

22



CallbackLib-Simple

Below is an example of using the callBack()-function

Function Execute(onEvent As String)

Select Case onEvent

Case "onArrival"

onArrival

Case "onServiceCompleted"

onServiceCompleted

End Select

End Function

where onEvent is the name of the callBack()-function

23



CallbackLib-Refined

I Often we need to pass parameters to the callBack()-function. For
example in the reliability example, we need to pass which component
failed

I One way to accomplish this is to “wrap” both the name of the
callBack()-function and parameters

I Below we assume that we only need one parameter, and the “wrapping” is
typically:

I onEventData = Array("onFailure", CompNo)

24



CallbackLib-Refined
Function Execute(onEventData As Variant)

Dim onEvent as String

Dim compNo as Integer

onEvent = onEventData(0)

compNo=OnEventData(1)

Select Case onEvent

Case "onFailure"

onFailure compNo

Case "onRepair"

onRepair compNo

End Select

End Function

Note that we need to explicit state all callBack()-functions we are using

25



Library functions in: DiscreteEventSimulation.xlsm

InitPES()

eventID = eventNotice(time, onEventName, parameters)

onEventData = getNxtEvent()

releaseEventNotice(eventID)

Execute(onEventData) ' Customization required !

getClock()

rndExponential(Mean)

26



Example 1

I Customers are arriving to our service according to a Poisson process with
parameter λ

I The times between arrivals are then ∼ Exp(λ)

I We have one server that can treat the arriving customers
I The service rate is µ, we assume exponentially distributed service times
I Objective: Find the mean number of customers in the system
Solution in Excel VBA

27

http://folk.ntnu.no/jvatn/eLearning/TPK4161/Examples/DES_MM1.xlsm


Example 2

I Consider a workshop with three critical machines
I Each machine has a constant failure rate equal to λ and there is one
repair man that can repair failed machines

I The rate of repair is µmeaning that the mean repair time is 1/µ
I The system state variable represents the number of functioning machines
Solution in Excel VBA

28

http://folk.ntnu.no/jvatn/eLearning/TPK4161/Examples/DES_1oo3.xlsm


Example 3
In this example we consider a system with one active and one passive
(stand-by) pump

I The active pump has failure rate λA, where a failure will immediately be
detected

I Mean time to repair for the active pump isMTTR
I The passive pump may fail in stand-by mode with a failure rate λP. Proof
tests are carried out every τ time unit. If the stand-by pump is successfully
started upon a demand, we assume that it will not fail while the active
pump is being repaired

I When the active pump is repaired, the stand-by pump goes back to a
stand-by mode

I Repair time of stand-by pump = 0, but we cannot start the system before
the active pump is repaired

Solution in Excel VBA

29

http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/DiscreteEventSimulationActivePassive.xlsm


Example 4

In this example we consider on offshore wind turbine. If the turbine fails, we
have to wait for the weather window to open

I The wind turbine has failure rate λ = 1/MTTF, where a failure will
immediately be detected

I Mean repair time isMTTR
I Mean time for the weather window to open is gamma distributed, where
the parameters depends on the season

I Winter season = 8760/2, and summer season = 8760/2, but we may
change these...

Solution in Excel VBA

30

http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/DiscreteEventSimulationWeatherWindow.xlsm


Example 5

In this example we consider a component with a hidden function
I The failure rate is λ
I A proof test is carried out every τ time unit to reveal hidden failures
I If the component is in a fault state at the test, a repair action is initiated
I Mean time to repair is 1/µ

The objective is to find the probability that the system is in a fault state at a
random point of time, i.e., the PFD = Probability of Failure on Demand

Solution in Excel VBA

31

http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/DiscreteEventSimulationPFD1oo1.xlsm


Thank you for your attention


	Motivation
	What is Discrete-Event Simulation?
	Components of a Discrete-Event Simulation engine
	Components of a DES, continued
	Example
	Visualization
	Required built-in functions
	Simulation Engine Logic
	Programming issues
	Programming issues - Callback's
	CallbackLib-Simple
	CallbackLib-Refined
	CallbackLib-Refined
	Library functions in: DiscreteEventSimulation.xlsm
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

