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Chapter 10 - Counting processes

This memo is based on the book: System Reliability Theory - Models, Sta-
tistical Methods, and Applications by Rausand, Barros and Hoyland (2021).
John Wiley & Sons, and in particular on Chapter 10.

A stochastic process {X (t), t ∈Θ} is a collection of random variables. The
set Θ is called the index set of the process. For each index t in Θ is , X (t)
is called the state of the process at time t. In this chapter we only consider
the situation where Θ is a continuum, that is we have a continuous-time
stochastic process.

In Chapter 11 we say that a stochastic process has the Markov property
if:

Pr(X (t+ s)= j|X (s)= i∩ some history up to time s)=Pr(X (t+ s)= j|X (s)= i)

In Chapter 10 we basically consider a repairable system that is put into
operation at time t = 0. Repair times are assumed to be small compared
to failure times, and are considered negligible. In Chapter 6 and we also
considered the repair times.

This means that we in Chapter 10 are considering a sequence of failure
times. The main quantity of interest is N(t) which is the number of failures
in the time interval (0, t]. This means that we are primarily focusing on the
number of failures in a time period rather than the actual failure times.

The process {N(t), t > 0} is called a counting process. We use the notation
Ti to denote the time between failures or inter-arrival times. The notation Si
is used to denote the (calendar) time of the individual failures. This means
that Si = ∑i

j=1 Ti, and Ti = Si −Si−1 where S0 = 0. We use t to denote time,
whether this is calendar time or local time.

Counting process

Definition: A stochastic process {N(t), t > 0} is said to be a counting process if:

1. N(t)≥ 0
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2. N(t) is integer valued

3. If s < t then N(s)≤ N(t)

4. For s < t, [N(t)−N(s)] is the number of failures in (s, t].

Some basic concepts

The following concepts are introduced, some frequently used:

• Independent increments. A counting process has independent incre-
ments if the number of failures in non-overlapping intervals are stochas-
tically independent.

• Stationary increments. A counting process has stationary increments if
the number of failures in a time interval only depends on the length of
the interval and not on where the interval is on the time axis. Such a
process is said to be homogeneous.

• Non-stationary process. The number of failures in an interval depends
both on the length of the interval and where the interval is on the time
axis. Such a process is said to be non-homogeneous.

• Regular process. A counting process is said to be regular if the proba-
bility of two or more failures in a small interval, say ∆t, is very small,
i.e., o(∆t).

• Rate of the process. The rate of a counting process at time t is defined
as:

w(t)=W ′(t)= d
dt

E[N(t)]

where W(t) is the expected number of failures in the interval (0, t].

• ROCOF. w(t) is denoted the rate of occurrence of failures. We have that
for a small time interval, say ∆t, w(t)∆t is approximately equal to the
probability of a failure in (t, t+∆t].

Types of counting processes

Several types of counting processes exist, and we will elaborate on the follow-
ing four:

1. Homogeneous Poisson processes

2. Renewal processes

3. Non-homogeneous Poisson processes

4. Imperfect repair processes.
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Homogeneous Poisson Processes - HPP

A counting process is said to be an HHP with rate λ if:

1. N(0)= 0

2. The process has stationary and independent increments

3. Pr(N(∆t)= 1)=λ∆t+ o(∆t)

4. Pr(N(∆t)≥ 2)= o(∆t).

It may be shown that for an HPP the inter-arrival times are independent and
exponentially distributed with parameter λ. Alternatively this fact could be
used as a definition of the HPP. The following features apply for a HPP:

1. The ROCOF of the HPP is time independent i.e., w(t)=λ

2. The number of failures in the interval (t, t+ v) is Poisson distributed
with mean λv

3. The mean number of failures in the interval (t, t+v) is W(t+v)−W(t)=
E[N(t+v)−N(t)]=λv

4. The inter-arrival times are independent and exponentially distributed
with parameter λ The time of the nth failure Sn = ∑n

i=1 Ti is gamma
distributed with parameters (n,λ).

Compound HPPs

We consider a HPP where there is a cost, say Vi associated with each failure.
Assume that all Vi ’s are independent and identically distributed with some
distribution function FV (v). The cumulative cost at time t is given by

Z(t)=
N(t)∑
i=1

Vi

The process {Z(t), t > 0} is denoted a compound Poisson process.
To find the expected value and variance of the accumulated cost in a time

interval (0, t] we may apply Wald’s formula and the Blackwell–Girshick equa-
tion respectively.

Wald’s formula states the following: Let Vi be independent an identically
distributed stochastic variables with expected value and variance E(V ) and
Var(V) respectively. Further pick a random number, say N(t), of V ’s. The
expected sum of the V ’s picked is given by:

E

(
N(t)∑
i=1

Vi

)
=E[N(t)]E(V )
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where E(N(t)) is the expected number picked, i.e., the number of failures in
the time interval.

The Blackwell-Girshick equation applies in the same situation, but gives
the result for the variance:

Var

(
N(t)∑
i=1

Vi

)
=E[N(t)]Var(V )+E2(V )Var[N(t)]

where Var(N(t)) is the variance in the number picked, i.e., the variance in
the number of failures in the time interval. Since N(t) is Poisson distributed,
E(N(t))=Var(N(t))=λt.

The result is intuitive for the expected accumulated costs, whereas the
result for the variance is not that obvious.

Renewal process - RP

A renewal process is a counting process {N(t), t > 0} with independent and
identically distributed inter-arrival times. The observed events are here the
failure times (or more precisely the times of repairs after each failure). Let
FT (t) be the distribution function of the inter-arrival times, i.e., the underly-
ing distribution of the renewal process.

Of main interest will be to obtain the distribution function of Sn =∑n
i=1 Ti

and the expected number of renewals, W(t) at time t.

The distribution of Sn

Let F (n)(t) denote the distribution function of Sn. From the convolution theo-
rem it follows:

F (n)(t)=
∫ t

0
F (n−1)(t− x) fT (x)dx

For small values of n, say 2 and 3, we may use this result to find the distri-
bution function for S2 and S3 by numerical integration. For large values of n
this would be tedious.

The renewal function, W(t)=E(N(t))

The renewal function, W(t) is the expected number of failures in the time
interval (0, t]. To obtain W(t) we use that = E(N(t)) =∑∞

n=1 Pr(N(t) ≥ n). This
result is similar to E(T)= ∫ ∞

0 t f (t)dt = ∫ ∞
0 R(t)dt. We have:

W(t)=E(N(t))=
∞∑

n=1
Pr(N(t)≥ n)=

∞∑
n=1

Pr(Sn ≤ t)=
∞∑

n=1
F (n)(t)

By some manipulation and inserting F (n)(t) = ∫ t
0 F (n−1)(t− x) fT (x)dx we ob-

tain the following integral equation referred to as the fundamental renewal
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equation:

W(t)= FT (t)+
∫ t

0
W(t− x) fT (x)dx

It is not easy to solve the fundamental renewal equation. But if we have
a reasonable approximation for W(t), say W0(t) we may use the following
iteration scheme:

Wi(t)= FT (t)+
∫ t

0
Wi−1(t− x) fT (x)dx

to obtain better and better solutions. This will be discussed in relation to
Chapter 9.

Bounds and limiting values for W(t)

It may be shown that a general renewal process is bounded by:

t
µ
−1≤W(t)≤ t

µ
+ σ2

µ2

where µ and σ2 are the expected value and variance of the individual inter-
arrival times. For a distribution of type “new better than used” somewhat
stricter bound by be obtained:

t
µ
−1≤W(t)≤ t

µ
+ σ2

µ2

When t becomes large we have the obvious result:

lim
t→∞W(t)= t

µ

When using the iteration scheme Wi(t)= FT (t)+∫ t
0 Wi−1(t−x) fT (x)dx we need

an initial approximation for W0(t). For small t values F(t) would be a good ap-
proximation. For larger values of t we could use some of the bounds described
above.

Numerical methods for W(t)

The NumLibTPK4120.xlsm MS-Excel file available on Blackboard contains
some Visual Basic code (VBA) for an iterative solution of the renewal equa-
tion. The basic code is given below. On the W(t) sheet an example is given.

' Calculate initial W(), F1=CDF and f=PDF

For i = 0 To MaxDim

W(i) = 1# - Exp(-(lambda * i * dt) ^ alpha) ' W_0 = CDF

5



F1(i) = 1# - Exp(-(lambda * i * dt) ^ alpha) ' CDF

f(i) = alpha * lambda * (lambda * i * dt) ^ (alpha - 1) * (1 - F1(i)) ' PDF

Next

prev = W(MaxDim)

Do

cnt = cnt + 1

prev = W(MaxDim)

For i = MaxDim To 1 Step -1

W(i) = F1(i) + TrapezConv(0, i, dt, W, f) 'integrate W(t-x)*f(x)

Next

Loop While Abs(prev - W(MaxDim)) / prev > eps Or cnt < 2

RenewalWeibull = W(MaxDim)

Monte Carlo methods for W(t)

The NumLibTPK4120.xlsm MS-Excel file available on Blackboard contains
some Visual Basic code (VBA) for Monte Carlo simulation for obtaining the
renewal equation. The basic code is given below. On the W(t) sheet an exam-
ple is given.

For n = 1 To nSim

nFail = 0#

i = 0 ' Current pointer to W-array

t = 0# ' Current time

Do While t < maxT

t = t + rndWeibull(alpha, lambda) ' Next failure time

Do While i * step < t

If i > nTimes Then Exit Do

W(i) = W(i) + nFail / nSim ' W(i) will hold avg # failures at time i*step

i = i + 1

Loop

nFail = nFail + 1

Loop

Next n

Non-Homogeneous Poisson processes - NHHP

A counting process is said to be an NHHP with rate function w(t) if:

1. N(0)= 0

2. The process has independent increments

3. Pr(N(t+∆t)−N(t)= 1)= w(t)∆t+ o(∆t)
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4. Pr(N(t+∆t)−N(t)≥ 2)= o(∆t).

The basic “parameter” of the NHPP is the ROCOF function, w(t). There are
many similarities with the HPP, but we have to use w(t) rather than λ. We
have:

1. W(t)=E(N(t))= ∫ t
0 w(u)du

2. The number of failures in a time interval (v, t+v) is Poisson distributed
with mean value W(t+v)−W(v)

3. The expected number of failures in a time interval (v, t+ v) is given by
W(t+v)−W(v)= ∫ t+v

v w(u)du.

Note the difference between the failure rate function, z(t) and the ROCOF,
w(t). z(t) is the conditional probability of a failure in a small time interval
given that no failures has occurred up to current time, whereas w(t) is an
unconditional probability of failure in a small time interval.

Further note that since the probability of failure in a small time interval
only depends on w(t), we have that the probability of a failure just after a
failure is the same as it was just prior to that failure. This corresponds to
a so-called minimal repair, or an as-bad-as-old situation. This is in contrast
to the renewal process where we assume perfect repair, or an as-good-as-new
situation after repair.

The Nelson-Aalen Estimator

The Nelson-Aalen estimator is appropriate if we have observed one ore more
NHPP and we would like to look for trends in the data. Rather than visual-
izing w(t) we estimate W(t). The procedure is as follows:

1. We observe data for n processes, and for system i the observation period
is (ai,bi] relative to the global age of the process.

2. Let Ti j denote the (calendar) time of the jth failure of process i

3. Merge all Ti j ’s and sort them in increasing order. Denote the result Tk,
k = 1,2, . . .

4. For each k,let Ok denote the number of processes observed immediately
before Tk

5. Let Ŵ0 = 0

6. Calculate Ŵk = Ŵk−1 +1/Ok, k = 1,2, . . .

7. Plot (tk,Ŵk), i.e., the Nelson-Aalen plot.
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What actually is taken place by this procedure is that the value on the y-axis
is incremented by 1/Ok for each failure time. If we only have one process the
procedure simplifies, we just increment the plot by 1 for each failure time.
The interpretation of the plot is as follows:

• If the plot is concave this indicates that we have a set of improving
processes where the failures become more and more seldom

• If the plot is convex this indicates that we have a set of deteriorating
systems where the failures become more and more frequent

• If the plot is more or less a straight line there is no indication of trend,
this means that a renewal process could be more appropriate than a
NHPP

• If the plot is concave in the beginning and then turns to be convex we
have a bathtub like ROCOF.

Generally a cumulative plot such as the Nelson-Aalen plot is more appropri-
ate for trend identification than a plot estimating the underlying rate func-
tion w(t).

Parametric NHPP models

The most used parametric NHPP models are:

1. The power law model with ROCOF function: w(t)=λβtβ−1

2. The log-linear model with ROCOF function: w(t)= eα+βt.

The power law process is deteriorating for β > 1 whereas the log-linear pro-
cess is deteriorating for β > 0. It may be proven that the first inter-arrival
time, T1 in the power law model is Weibull distributed. This is not surprising
since z(t)= w(t) for the power law process.

Imperfect repair processes

We have seen that the renewal process corresponds to an as-good-as-new situ-
ation after a repair (renewal), whereas the non-homogeneous Poisson process
corresponds to an as-bad-as-old situation after a repair. In many situations
it is natural to consider something between. A wide range of models exist
for modelling imperfect repair. Some of these are listed in Section 7.5 in the
textbook. Most of the models may be classified in two main groups: (i) models
where the repair actions reduce the ROCOF, and (ii) models where the repair
actions reduce the (virtual) age of the system.
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Learning objectives, Chapter 10

• Understand what is a counting process, and basic terms like the num-
ber of failures in a time period, the expected number of failures in a
time period, W(t), and the ROCOF = w(t)

• Understand the relation between the inter-arrival times and the num-
ber of failures at a given point of time

• Understand that we basically focus on the number of failures, and not
the point of time of the individual failure times

• Understand the difference between the HPP, RP and NHPP

• Use the Nelson-Aalen estimator to check a dataset for trend

• For the RP know that the renewal function, W(t) could in principle be
found by a the fundamental renewal equation, but that it is not easy to
use in order to calculate W(t)

• For the HPP and the NHPP know that the number of failures in a time
interval is Poisson distributed with mean value equal to the integral of
the ROCOF function over that interval. For the RP is in not easy to find
the distribution of number of failures in a time interval.
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