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Grouping and opportunity maintenance

Introduction

In classical maintenance optimization the objective is to find the optimum
frequency of maintenance of one component at a time. However, in the multi-
component situation there exist dependencies between the components, e.g.,
they may share a common set-up costs (economy of scope), the costs may
be reduced if the contract to a maintenance contractor is huge (economy of
scale), etc.

In this presentation we will introduce some rather simple approaches for
maintenance grouping and opportunity maintenance. We basically consider
the following cost elements:

• Man-hour costs and material costs related to preventive maintenance
of each component

• Set-up costs to get access to the components to be maintained, and by
paying the set-up costs access to several components is obtained. We
limit the scope to consider a one level structure of set-up costs, meaning
that the set-up cost is the same for all components. In a multi level
structure the set-up cost could be split into a general set-up cost for
accessing e.g., a location/cite, and further into set-up cost for a group of
components related to e.g., preparing of the work for these components.

• Costs of taking a component out of service. These costs are included in
the set-up costs from a modelling point of view.

• Man-hour costs and material costs related to corrective maintenance.
Typically set-up costs can not be shared by other components unless
preventive maintenance is advanced (opportunity maintenance).

• Costs related to the effect of a failure, i.e., punctuality, unavailability,
safety and material damage costs
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We often distinguish between the static and the dynamic planning regimes.
In the static regime the grouping is fixed during the entire system lifetime,
whereas in the dynamic regime the groups are re-established over and over
again. The static grouping situation may be easier to implement than the dy-
namic, and the maintenance effort is constant, or at least predictable. The ad-
vantage of the dynamic grouping is that new information, unforeseen events,
etc., may require a new grouping and changing of plans.

The presentation here discusses how we can formalize the optimization
of maintenance grouping. I.e., we seek to group maintenance tasks so that
total costs are minimized. To summarize the difference between static and
dynamic grouping we have:

• Static grouping where the groups are fixed

– It is always the same maintenance task that are included in the
same group, and each maintenance group is performed at a fixed
interval.

– In the work order system one group is specified as one work order
repeating every τi unit of time.

• Dynamic grouping where we create the groups “on the fly”

– The time of next maintenance is recalculated in principle contin-
uously

– The set of maintenance tasks going into a group is varying form
time to time

– In principle we can plan for several groups ahead, but often we
only consider the first group of tasks

– We can update the plan if we get new information, or there are
additional opportunities to carry out maintenance

– The downside is significantly more administrative work and chal-
lenges in relation to staff planning.

For an introduction to maintenance grouping we refer to Wildeman (1996)
who discusses these different regimes in detail.

Maintenance tasks are here preventive tasks where the base interval is
calendar controlled or controlled by runtime. At the end of the presentation
we also discuss condition-based maintenance.

The costs of disassembling and re-assembling are here included in the
set-up cost. In the model presented we also assume that the set-up costs are
the same for all activities. It is further assumed that there is one and only
one maintenance activity related to each component. This simplifies notation
because we then may alternate between failure of component i and executing
maintenance activity i where there is a unique relation between component
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and activity. The basic notation to be used is below. The terms maintenance
task and maintenance activity are used interchangeably. Table 1 shows the
notation used. Note that t is used to represent calendar/global time or accu-
mulated mileage for a car or a train. x is used to represent local time, i.e.,
time since last maintenance.

Static grouping

For static grouping, we distinguish between indirect and direct grouping:

• Indirect grouping means that the groups are not established by a di-
rect rule, but that the groups are established based on a principle. This
principle is that an activity can be executed on each maintenance op-
portunity, every second opportunity and so on. How often to be executed
is then the optimization challenge.

• Direct grouping means that the groups are established by investigating
the intervals one by one and form groups of activities activities having
approximately the same interval.

Indirect static grouping

The indirect grouping principle is that the time of each activity is determined
indirectly by specifying how often the task is performed relative to a fixed
repetitive time of maintenance. The situation now is as follows:

• There is a possibility to do preventive maintenance at point of times
T,2T,3T, . . .

• For component i this opportunity is utilized every l i ’th time, i.e., the
interval between maintenance for this component is l iT

• The challenge is to determine T and l i, i = 1,2, . . .

For a given value of T and l1, l2, . . . the expected cost per unit time is:

C(T, l1, l2, . . .)= S/T +
n∑

i=1

[
cP

i +Mi(l iT)
]

/(l iT)

= S/T +
n∑

i=1

[
cP

i /(l iT)+ cU
i λE,i(l iT)

]
(1)

where Mi(x) is the total failure related cost in a period of length x since last
maintenance.
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Table 1: Notation
cP

i Planned maintenance cost, exclusive set-up cost for activity i. Typ-
ically the costs of replacing one unit periodically

cU
i Unplanned costs upon a failure of component i. These costs include

the corrective maintenance costs, safety costs, punctuality costs,
unavailability costs and costs due to material damage.

S Set-up cost, i.e., costs for preparations, access etc which can be
“shared" by several PM activities

λE,i(x) Effective failure rate for component i. Here the argument x repre-
sents local time since last maintenance

Mi(x) = xcU
i λE,i(x) = Accumulated expected costs due to failures in a pe-

riod [0, x) for component i maintained at time 0, exclusive planned
maintenance cost

Φi(x,k) = [cP
i + S/k + Mi(x)]/x = Expected total costs per unit of time for

component i for a maintenance cycle of length x if setup costs are
shared by k activities

x∗i,k Maintenance interval that minimizes Φi(x,k) if setup costs are
shared by k activities

Φ∗
i,k Minimum cost for a component i maintained at optimal interval

ki Average number of components sharing the set-up costs for the i’th
component, i.e., the i-th component is in average maintained to-
gether with ki −1 other components

Φ∗
i Average minimum costs per unit time over all k-values

x∗i Optimum value of xi over all k-values. x∗i is measured since last
maintenance on component i

t0 Point of time when we are planning the next group of activities.
Initially t0 = 0. t0 is measured in running time since t = 0.

xi Age of component i at time t0, i.e., time since last preventive main-
tenance activity

t∗i t∗i, = t0 + x∗i − xi = optimum time for execution in the average situa-
tion

G(g) Candidate group, i.e., the set of the first g components to be main-
tained according to individual schedule with t∗i,Av as the basis for
due time

l i How often a component is utilizing the maintenance opportunity in
static indirect grouping

N Number of activities/components
T For dynamic grouping T is the end of planning horizon, i.e., we are

planning from t0 = 0 to T. For indirect static grouping T is used as
the lowest interval.

T j Interval for group j in static direct grouping.
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Heuristic for indirect static grouping

Minimizing Equation (1) is a mixed-integer optimization problem. Generally
such problems need to be solved by heuristics when N becomes large. The
following heuristic is suggested to find a reasonably good solution:

1. For each activity i we find the value of τi which minimizes C(τi) =(
S+ cP

i
)
/τi + cU

i λE,i(τi)

2. An initial value of T is set equal to the lowest value of the τi-values

3. Chose l i ≈ τi/T (nearest integer)

4. Keep the l i ’s fixed, and minimize C(T, l1, l2, . . .) with respect to T

5. GoTo 3 and change the l i ’s ±1 one by one to search for better solutions

6. An approximate optimal solution is found when the iteration scheme
does not improve the solution, i.e., we do not find a solution with a
lower expected cost

Exercise 1

Consider a situation where we have 4 components. We will establish a stan-
dard indirect static grouping strategy.

The following data is provided: S = 2, cP
1 = 2, cP

2 = 1, cP
3 = 3, cP

4 = 1.cU
1 =

5, cU
2 = 50, cU

3 = sU
4 = 10.MTTF1 = 4,MTTF2 = 3,MTTF3 = 3,MTTF4 = 5,α1 =

α2 =α3 =α4 = 3.
Find tentative optimal intervals for each component if they are main-

tained individually and where we assume that we do not have to pay the
set-up cost. Use this to find tentative values for l i and T. Then try some
iterations to see if a better solution can be found. Note, in the heuristic we
proposed to find the individual solutions assuming we pay the entire set-up
cost. In this exercise a slightly different approach was proposed, i.e., that we
do not have to pay the set-up cost. The two approaches should converge to
the same result, i.e.,

Exercise 2

Consider the situation in Exercise 1. Repeat the analysis if you in the initia-
tion assume that we have to pay the set-up cost.

Direct static grouping

By direct grouping, the groups are selected directly by inspecting individ-
ual intervals. Tasks are now split into m non-overlapping groups, G1,G2, . . ..
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Activities in a group are maintained at the same time. The groups are estab-
lished so that activities in a group have approximately equal intervals. For
group j, we let T j denote the interval for this group. Total expected costs per
unit time is given by

C(T1,T2,T3, . . . ,Tm)=
m∑

j=1

(
S/T j +

∑
i∈G j

[
cP

i /T j + cU
i λE,i(T j)

])
(2)

Heuristic for direct static grouping

The following heuristic is proposed for obtaining a reasonable good solution:

1. For each activity find the value τi which minimizes C(τi)= (S+ cP
i )/τi+

cU
i λE,i(τi)

2. Sort in increasing order, i.e., τ(1) ≤ τ(2) ≤ . . .

3. Look for natural clusters in the intervals, and let these forms groups
G1,G2, . . .

4. Given a split into groups, i.e., G j, j = 1,2, . . . ,m, minimize the cost Equa-
tion (2) with respect to T1,T2, . . . ,Tm

5. GoTo 3 and varying the groups to look for better solutions, for example
moving one activity from one group to another group, merge two groups,
or split one group into two groups

6. An approximate optimal solution is found when the iteration scheme
does not improve the solution.

Exercise 3

Consider the situation in Exercise 1. Propose

Dynamic grouping

In dynamic grouping there are no fixed group. At a given point of time, t0,
we start forming the next group based on “individual” due dates. Figure 1
illustrates the situation for four components maintained at t1, t2, t3 and t4
in the past, where the due dates t∗1, t∗2, t∗3 and t∗4 are based on the individual
optimal intervals x∗1 , x∗2 , x∗3 and x∗4 .

In the optimization we consider the time from now on, t0, up to the end
of planning horizon, T. Given the information we have at time t0 we can
form the next group and when to execute the corresponding maintenance
activities. We can also form the second group, the third group etc. But then
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T = planning horizon

x1
*

t1 t0 t1
*

(now)(last mtnce)

t2
*

t4
*

t3
*

t3t2 t4

x2
*

x3
*

x4
*

Figure 1: Grouping - Due dates. The ti ’s are the point of time of last main-
tenance, the x∗i ’s are the individual optimal intervals, and the t∗i ’s are the
corresponding due dates.

we should realize that we might get new information later on, and hence have
to reschedule some future groups.

In this situation there is no single cost equation to optimize. We will
structure the cost elements and then propose a heuristic for forming groups.

For each component i there is an expected time dependent cost which is a
function of the time since the last preventive maintenance activity, i.e., Mi(x).
In order to establish Mi(x) we need (i) to establish the accumulated expected
number of failures in the period [0, x), (ii) we need to specify the expected cor-
rective maintenance costs for the repair of each failure, and (iii) we have to
specify the impact of the failure on safety, production, etc., and quantify these
into cost figures. In the model presented here we assume that the effective
failure rate, λE,i(x) may be established for the different failure character-
istic, and maintenance strategies (e.g., periodic replacement and condition
monitoring). Next the costs associated with a failure of component i may in
principle be found by risk modelling, reliability modelling. The result of such
modelling is one figure for the expected unplanned cost of failure, i.e., cU

i . We
have

Mi(x)= xcU
i λE,i(x) (3)

The planned costs comprise the costs of executing the maintenance on com-
ponent i (cP

i ) and set-up costs (S) of getting access to the component. The
set-up costs may in general be shared with k−1 other activities. The average
contribution to the total costs for component i per unit time is given by:

Φi(x,k)=
[
cP

i +S/k+Mi(x)
]

/x (4)

If the grouping was fixed, i.e. static grouping, the optimization problem would
just be to minimize Φi(x,k) wrt x for all k components maintained at the
same time. For dynamic grouping the mathematical challenge is now to es-
tablish the grouping either in a finite or infinite time horizon. In addition
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Figure 2: Marginal cost consideration

to the grouping, we also have to schedule the execution time for each group
(maintenance package). The grouping and the scheduling can not be done
separately. Generally, such optimization problems are NP hard (see Garey
and Johnson, 1977, for a definition), and heuristics are required. Before we
propose our heuristic we present some motivating results.

LetΦ∗
i,k be the minimum average costs when one component is considered

individually, and let x∗i,k be the corresponding optimum x value. It is rather
easy to prove that

mi(x∗i,k)= M′
i(x

∗
i,k)=Φ∗

i,k (5)

meaning that when the instantaneous expected unplanned costs per unit
time, mi(x), exceeds the average costs per unit time, maintenance should
be carried out. The way to use the result is now the following. Assume we
are going to determine the first point of time to execute the maintenance, i.e.,
to find t∗i,ki

starting at t = 0. Further, assume that we know the average costs
per unit time, Φ∗

i,ki
but that we have for some reason “lost” or “forgotten” the

value of the optimal interval, x∗i,ki
. What we then can do is to find t such

that mi(t)= M′
i(t)=Φ∗

i,ki
yielding the first point of time for maintenance, see

Figure 2 for an illustration. Then from time t and the remaining planning
horizon we can pay Φ∗

i,k as the minimum average costs per unit time. This is
the traditional marginal costs approach to the problem, and brings the same
result as minimizing Equation (4).

The advantage of the marginal thinking is that we now are able to cope
with the dynamic grouping. Assume that the time now is t0, and xi is the age
(time since last maintenance) for component i in the group we are considering
for the next execution of maintenance. Further assume that the planning
horizon is [t0,T). The problem now is to determine the point of time t(≥ t0)
when the next maintenance is to be executed. The total costs of executing the
maintenance activities in a group is

CP = S+∑
i

cP
i (6)
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which we pay at time t. Further, the expected unplanned costs in the period
[t0,T) is

CU =∑
i

[Mi(t− t0 + xi)−Mi(xi)] (7)

where xi is the (local) age of component i at time t0. Note that Mi(t− t0 +
xi) is the expected cost from the last maintenance of component i until it
will be preventively maintained at time t. From this value we subtract the
expected cost Mi(xi) already “paid” at time t0. Note that at time t0 we know
the “history” of component i since the last maintenance, i.e., xi time units
ago. We might use this information to get a more correct expression for the
expected cost in the interval [t0, t). It is not always easy to obtain such an
expression, hence we often approximate with Equation (7).

For the remaining time of the planning horizon the total costs are

C∞ = (T − t)
∑

i
Φ∗

i,ki
(8)

provided that each component i can be maintained at “perfect match” with
ki −1 activities the rest of the period. Since Φ∗

i,k depends on how many com-
ponents that share the set-up cost, which we do not know at this time, we use
some average value Φ∗

i . We assume that we know this average value at the
first planning. To determine the point of time for maintaining a given group
of components, say G(g) with the g first activities we thus minimize:

c1(t; g)= S+ ∑
i∈G(g)

[
cP

i +Mi(t− t0 + xi)−Mi(xi)+ (T − t)Φ∗
i

]
(9)

The costs in Equation (9) depend on which components to include in the group
of activities to be executed next. The more activities we include, the higher
the costs will be. For some activities it might thus be cheaper to include
them in groups to be executed later. For activities we do not include in this
first group we assume that they will be maintained at their “optimum” time
t∗i ,> t. The total contribution to the costs related to these activities in [t0,T)
is:

c2(t; g)= ∑
i∉G(g)

[
cP

i +S/ki +Mi(x∗i )−Mi(xi)+ (T − t∗i )Φ∗
i

]
(10)

provided they can be maintained at “perfect match” with other activities, i.e.,
the set-up costs are shared with ki−1 activities, and executed at time t∗i . The
total optimization problem related to the next group of activities is therefore
to minimize:

c(t; g)= S+ ∑
i∈G(g)

[
cP

i +Mi(t− t0 + xi)−Mi(xi)+ (T − t)Φ∗
i

]
+ ∑

i∉G(g)

[
cP

i +S/ki +Mi(x∗i )−Mi(xi)+ (T − t∗i )Φ∗
i

]
(11)
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The idea is simple, we first determine the best group to execute next, and the
best time to execute it. Further we assume that subsequent activities can
be executed at their individual optimum. It is expected to do better by tak-
ing the second grouping into account when planning the first group, and not
only treat the activities individually. See e.g., Buday et al (2005) for more ad-
vanced heuristics in similar situations to those presented here. The heuristic
is as follows:

Step 0 - Initialization

This means to find initial estimates of ki and use these k-values as basis for
minimization of Equation (11). This will give initial estimates for x∗i and cor-
responding and Φ∗

i . Finally the time horizon for the scheduling is specified,
i.e., we set t0 = 0 and choose an appropriate end of the planning horizon (T).

Step 1 - Prepare for defining the group of activities to execute next

Calculate tentative due dates t∗i = x∗i + t0 − xi for all activities, and sort in
increasing order. See Figure 1 for an illustration.

Step 2 – Establish the candidate groups

For g = 1,2, . . . , N we use the ordered t∗i ’s to find a candidate group G(g) of
size g to be executed next. If t∗g > mini<g(t∗i + x∗i ) this means that at least
one activity in the candidate group needs to be executed twice before activity
g is scheduled which does not make sense. Hence, in this situation the last
candidate group, G(g) is dropped and we are not searching for more candidate
groups at the time being.

Step 3 - Find optimum execution time for each candidate group

For each candidate group G(g), g = 1,2, . . ., minimize c(t, g) in Equation (11)
with respect to execution time t. Next choose the candidate group G(g) that
gives the minimum cost. This group should then be executed at the corre-
sponding optimum time t.

Step 4 – Prepare for subsequent groups

We assume that all activities in the chosen candidate group are executed at
time t. This corresponds to setting xi = 0 for i ∈G(g), xi = xi+ t− t0 for i ∉G(g)
and then update the current time, i.e., t0 = t. If t0 < T GoTo Step 1, else we
are done.

There are several ways to improve the algorithm. One intuitive improvement
is to improve the estimates of ki and corresponding x∗i and Φ∗

i to be specified
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in Step 0. This is easy, since we in Step 4 get a new value of k for those activ-
ities included in the candidate group, and when the algorithm terminates we
simply set ki as the average for each activity i in the period [0,T). We may
then start over again at Step 0 with these new values of ki.

Opportunity based maintenance

The dynamic scheduling regime presented above is a good basis for oppor-
tunity based maintenance. The scheduling we have proposed may be used
to set up an explicit maintenance plan for the time horizon [0,T). But even
though the plan exists, we may consider changing it as new information be-
comes available, either in terms of new reliability parameter estimates, or if
unforeseen failures occur. In operation, for any time t0 we may update the
scheduling of preventive maintenance.

Now assume that the due date t for the next scheduled maintenance of
group G(g) is larger than the current time t0. Assume that a failure has oc-
curred or there is another event occurring at time t0 giving an opportunity to
save the setup-cost S if we execute some preventive maintenance activities.
Some, or all of the activities in G(g) should now be considered for execution
given the opportunity at time t0. If t∗i ≤ t0, i ≤ g this means that these ac-
tivities have individual due dates in the past, hence it is obvious that these
activities should be executed at this given opportunity.

Activities not scheduled in G(g) should not be executed since they were
not even included in a group to be executed later than t0. The basic question
is thus which of the remaining activities in G(g) should be executed. Assume
that we have found that it is favourable to execute the first i−1 < g activi-
ties on this opportunity. The procedure to test whether or not activity i also
should be executed is as follows:

• First we assume that all activities up to i are executed on this oppor-
tunity , i.e., we set x j = 0, j ≤ i, and for activities above activity i, i.e.,
j > i, we set x j = t0− t j, and will evaluate the next group to be executed
at some time t′ ≥ t:

• Let C1 = cP
i +mint′,g′ c(t′, g′), i.e., the best we can do if we decide to

execute activity i at time t0

• Next, we assume that only activities up to i−1 are executed at time t0,
i.e., x j = 0, j ≤ i−1, and x j = t0 − t j, j ≥ i, where we also evaluate the
next group:

• Let C2 = mint′,g′ c(t′, g′), i.e., the best we can do if we decide not to exe-
cute activity i at time t0

• If C1 > C2 is it not beneficial to do activity i.

11



T = planning horizon

x1
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t1 t0 t1
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t2
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t3
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t3t2 t4

x2
*

x3
*

x4
*

t

G(3)

Figure 3: Opportunity maintenance. There is an opportunity at time t0,
where group G(3) was scheduled for execution at time t.

If it was beneficial to do activity i at t0 we should test for i = i+1 and repeat
as long as i ≤ g.

Figure 3 illustrates the situation. Assume that at the time of the oppor-
tunity we had already scheduled G(3) was scheduled for execution at time t.
The individual due date for activity 2 has been passed, hence activity 2 will
be executed. The we consider if it pays of to execute also activity 1. If so,
typically activity 3 and 4 will be a new group, say G(2) to be executed at some
time t′ > t.

1 Synchronization of maintenance and production

We introduce a simple example to motivate for synchronization of mainte-
nance and production. In a production line a packing machine is critical for
the production. To simplify we only consider one activity, but the ideas could
be combined with the theory of grouping discussed above.

In the example the mean time to failure is estimated to MTTF = 600
hours (≈ one month) if the machine is not preventively maintained. Failure
times are assumed to be Weibull distributed and the ageing parameter is es-
timated to α= 4. The cost of a preventive maintenance activity is cPM = 5 000
NOKs. If the machine fails the total cost of corrective maintenance and lost
production is cU = 35 000. In the example we assume 24/7, i.e., continuous
production using several shifts. The effective failure rate is approximated by:
λE(τ)=

(
Γ(1+1/α)
MTTF

)α
τα−1, the cost function to minimize is thus:

C(τ)= cPM/τ+λE(τ)cU ≈ cPM/τ+
(
Γ(1+1/α)

MTTF

)α
τα−1cU (12)

The optimal interval for predictive maintenance is found to be:

τ∗ = MTTF
Γ(1+1/α)

(
cPM

cU(α−1)

)1/α
≈ 600

0.906

(
5000

35000×3

)1/4
≈ 309 hours (13)
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The optimal interval is found to be 309 hours which is 12.9 days. The pro-
duction manager is not very happy with closing down production in order to
perform preventive maintenance of the machine. However, every week there
is a small production stop required for reconfiguration of the production setup
to account for variants in the production. The production manager therefore
proposes to utilize every second of these stops for carrying out the mainte-
nance. Figure 4 shows the cost as a function of the maintenance interval,
and it is rather obvious that shifting the interval from 309 hours to 336 (14
days) is not making much difference. In fact the yearly cost increases from
189 000 per year to 191 000 per year which is only an increase of 1%. The
maintenance manager is not very happy since he did all the calculations and
claims that 2 000 NOKs here and 2 000 NOKs there makes money. When
the production manager puts the argument that the PM cost in fact would
increase with at least 1 000 NOK’s each time due to the interference with
production, it is quite obvious that synchronization pays off.

Figure 4: Cost per hour split into PM and unplanned (U) maintenance cost

In an intense production period the production manager is reluctant to
carry out the scheduled maintenance that takes place every fourteen days.
The machine has been operated for t = 14 days= 336 hours and it is due time
for maintenance. But, rather than executing the PM activity on the due date,
the production manager proposes to wait another week, i.e., to synchronize
with the weekly production stop at the next occurrence. The maintenance
manager hesitate to this proposal. The question is what are the arguments?

Since the challenge now is a “once in a life time" situation, the long term
consideration does not apply. The approach is therefore to analyse the in-
crease in maintenance related cost for this shift in maintenance and compare
to the original strategy.

It will be sufficient to compare the first week, since for both the original
strategy and the situation with the proposed postponing of maintenance from
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next week on the average cost is given by C(τ∗) = cPM/τ∗+λE(τ∗)cU = Φ∗ ≈
3 660 NOKs per week. For the original strategy the average cost for the
coming week is also 3 660 NOK. When considering deferred maintenance we
are facing a higher risk of failure since we are “climbing" on the increasing
failure rate function. We will now assess the failure related cost from now on
until the next PM. More generally we assume that t time units has elapsed
since last preventive maintenance, and that we are considering to run the
system for another x time units before the next PM activity is performed.
The total unplanned failure cost in this entire time period [0, t+ x) is:

CU (0, t+ x)=λE(t+ x) · cU · (t+ x)= M(t+ x) (14)

but we have already “paid" unplanned cost up to time t equal to CU (0, t) =
λE(t) · cU · (t), hence the cost in the coming x time units will be:

CU (t, t+ x)= CU (0, t+ x)−CU (0, t)= M(t+ x)−M(x)

=λE(t+ x) · cU · (t+ x)−λE(t) · cU · t (15)

In the example t = 2 weeks= 336 hours and x = 1 week= 168 hours yielding

CU (t = 336, t+ x = 336+168)= CU (0,504)−CU (0,336)

=λE(504) · cU · (504)−λE(336) · cU · (336)

≈ 11 760−2 320= 9 438 NOKs (16)

This cost may be treated as a cost of a “high risk strategy" in the meaning
that we are postponing a maintenance activity that in the optimal case should
be executed at time t but we continue to “climb" on the increasing failure rate
function. The cost of 9 438 NOKs should then be compared with the base
case of Φ∗ = 3 660 NOK. The increase in cost is almost 6 000 NOKs and
this amount should then be compared to the value of not interrupting the
production with maintenance.

Note that when calculating the unplanned failure cost in the period of
deferred maintenance we have assumed that cU = 35 000. This figure is an
average cost of a failure including production interruption. In this case with
intense production it is reasonable to assume that cU could be even higher,
causing the deferred maintenance strategy even more risky. The production
manager therefore has to argue that the "production value" of deferred main-
tenance is at least 6 000 NOKs.

Predictive maintenance

The idea of predictive maintenance is to utilize the condition of a component
and the future expected loads in order to judge the correct time for “hard"
maintenance such as overhaul, replacement of worn parts, calibration and so
on. Sensor technology is usually used to capture the condition of components
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or a system, and the term ‘condition monitoring’ is often used to describe
the collection and analysis of state data relevant for predictive maintenance.
It should be noted that manual inspection and use of “human sensors" to
capture noise, smell, vibration could also be treated as condition monitoring.
Concepts like digital twin and cyber physical systems are used to describe
the situation where computerized system models interact with the physical
systems in real time often by means of internet of things (IoT) and internet
of services (IoS).

Cyber-physical systems (CPS) refers to smart systems that include engi-
neered interacting networks of physical and computational components. The
term digital twin refers to a digital replica of physical assets, processes and
systems that can be used in real time for control and decision purposes. The
digital twin representation is seen as a prerequisite for effective synchroniza-
tion of operation and maintenance within the manufacturing industry as well
as in other industries.

The relation between production plans and activities and actual produc-
tion can to some extent be described deterministically. The relation between
maintenance plans and activities and the production system availability on
the other and requires probabilistic representation. The term stochastic dig-
ital twin is introduced whenever probabilistic models are required to repre-
sent the physical assets, processes and/or systems.

A wide range of mathematical models exist for predictive maintenance. In
this presentation only two models will be presented to illustrate the relation
between maintenance and production. Assume that we at a given point in
time t0 observe the state of a component. Let y be the vector describing the
state at time t0. Let T denote the point of time when the component fails.
Let t denote running time from t0. Given y assume that it is possible to
describe the probability distribution of T. For simplicity we will as a starting
point assume that T is Weibull distributed with shape parameter α and scale
parameter λ. We assume that E(T|y) is relatively small, in the range days,
weeks or months since we are in the condition monitoring situation. For
example assume that we measure vibration in the bearing of a motor. An
experienced maintenance engineer suggest that the mean time to failure, i.e.,
E(T|y) = 2 months = 60 days. When challenging him further and ask about
the chances of failing earlier, after some discussions, he assess the probability
that the component will fail within one month to be 10%. We will later on see
how these assessment may be used to estimate α and λ.

Since the component is likely to fail rather soon it is obvious that a pre-
ventive maintenance activity should be conducted. For example replacing
the bearing with a new one. The production manager, is however, not very
happy with shutting down the production for maintenance. After rethinking,
the production manager opens for using the weekly production shutdown for
maintenance purpose. The first shutdown will come in τ1 = 3 days, the next
in τ1 +τ days where τ = 7 days, and so on. The cost of the preventive main-
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tenance action will decrease the longer we can wait because planning may be
improved. We assume a very simple cost structure where

cPM(t)= cPM,0e−t/θ (17)

where θ is a characteristic time for the decrease in the sense that for t = θ the
cost has dropped to e−1 ≈ 37%.

The challenge is to determine which opportunity to apply, i.e., t = τ1,τ1 +
τ,τ1 +2τ, . . . . The cost function to minimize is:

C(t)= cPM,0e−t/θ+ cUFT (t) (18)

Assuming that θ = 30 days, cPM,0 = 10 000 NOKs, and cU = 35 000 NOKs we
are just to start the minimization. The only challenge is to find the parame-
ters α and λ.

For the Weibull distribution we have that E(T) = Γ(1+1/α)/λ and FT (t) =
1− e−(λt)α . Let x be such that FT (x) = px where both x and px are known.
Further since E(T) also is known we may in principle determine α and λ. A
closed formula solution is not possible to obtain, but the following iteration
scheme may be applied to obtain α:

αi+1 = ln(− ln(1− px))
ln(xΓ(1+1/αi)/E(T))

(19)

and then we resolve for the second parameter, i.e., λ=Γ(1+1/α)/E(T).

Example - Synchronization only age information only

For the example with x = 30 days, px = 10% and E(T) = 60 days we obtain
α ≈ 2.78 and λ ≈ 0.0148. Table 2 shows the result when applying Equation
(18) for the calculations.

Table 2: PM-, unplanned failure (U)-, and total cost for the example
t PM U Total
3 9 048 6 9 054

10 7 165 173 7 339
17 5 674 752 6 426
24 4 493 1 928 6 421
31 3 558 3 815 7 373

This means that the optimal time for performing the PM task will be the
third or forth opportunity. □
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Predictive maintenance and cyber physical systems

Predictive maintenance is about utilizing information regarding the condi-
tion of a component and the future expected loads in order to judge the cor-
rect time for intervention. In the previous section a simple model was derived
but the current condition of the component and the future expected loads
were not explicitly used. Some formalism is required for such a utilization.
This will be crucial for cyber physical systems (CPS) where a computerized
mathematical model of the system is established where real time information
regarding state, production profile and plans etc are connected via IoT.

A reasonable simple extension of the model used in the previous section
will be derived. The starting point is the failure rate function, z(t). We stick
to the Weibull distribution where the failure rate function is given by z(t) =
αλαtα−1. We observe that z(t) does not contain neither the current state nor
the future loads. The so-called Cox-proportional hazard model is often used
to incorporate the current state in the failure rate function. Let y be the
vector of current relevant state information for the component, for example
temperature, vibration level and so on. Next let x(t) be the vector of average
loads in the time period [0, t). The failure rate function may be written on the
form:

z(t|y,x(t))= z0(t)eβ1yeβ2x(t) (20)

where β1 and β2 are regression coefficient vectors established by for example
statistical analysis of data. z0(t) is a baseline failure rate function, typically
on the form z0(t)=αλαtα−1

Now assume that the parameters α, λ, β1 and β2 are all known. Further
assume that the current component state, y, is known and that we have an
estimate of future load x(t). The cost equation to minimize is:

C(t)= cPM,0e−t/θ+ cUFT (t|y,x(t)) (21)

where the cumulative distribution function is given by:

FT (t|y,x(t))= 1−exp
(
−

∫ t

0
z(u|y,x(u))du

)
(22)

A main objective for cyber physical systems is to set up a regime for data
collection and analysis. It is beyond the scope of this presentation to describe
relevant statistical methods. Typically a partial likelihood approach is rec-
ommended where the impact of the regression coefficient is estimated, and
then a separate approach is used for estimation of the failure rate function.

If no data is available we might use expert judgements for elicitation of
the relevant model parameters. The so-called PF-model is used as a basis for
the elicitation. In the PF-model we assume that up to sompe point of time P
there is no indication of a failure. But then starts failure progression until

17



the failure progression exceeds the failure limit at point of time F. The point
of time P is often referred to as a potential failure whereas the point of time
F is a real failure. The time interval between the points P and F is denoted
the PF-interval. The PF-interval is treated as a stochastic variable.

In the assessment FT (t|y,x(t)) corresponds to the cumulative distribution
function of the PF-interval. The procedure for the elicitation is as follows:

1. Assess the expected length of the PF-interval under the assumption of
insignificant future load x(t). Denote this value by ξ.

2. Asses the consistency of the PF-interval by the shape parameter α in
the Weibull distribution. As a rule of thumb use

• α = 2 corresponds to a variety of failure mechanisms and causes
leading to a failure.

• α= 3 corresponds to a few failure mechanisms and causes leading
to a failure.

• α = 4 corresponds to a rather specific failure mechanism / failure
cause leading to a failure.

3. Calculate the scale parameter by λ=Γ (1/α+1)/ξ.

4. For each yi in y let yi = 0 correspond to the condition at the point of
time P in the PF-model. This corresponds to no significant degradation
for the actual regression variable.

5. For each yi in y let yi,C be a critical value for that particular regression
variable. Under the assumption that all other regression variables yj =
0, j ̸= i assess the reduction in ξ by some factor, say ki. Note that there
is no specific “rule” to determine yi,C, and the higher value chosen, the
lower value will be assessed for ξ.

6. Calculate the corresponding regression parameters by βi =−(lnki)/yi,C,
i.e., for the elements in β1.

7. Repeat the procedure for each xi(t) in x(t) to find the elements of β2.

Using vibration data and expected average loads

The example above is now slightly modified to take into account explanatory
variables. Let y be the vibration level measured by the so-called “RMS" value
(Root Mean Square) which is an ISO convention. Technically the RMS value
is calculated by multiplying the peak amplitude by 0.707. For machines of
medium size the vibration level is mapped into zones where zone A is the
normal level which we here assume corresponds to y= 0, zone B which still is
considered acceptable ranges from y = 1.8 to y = 4.5, zone C which is critical
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ranges from y= 4.5 to y= 11.2 and zone D corresponds to y> 11.2. A machine
in zone D is considered to have serious damages within very short time and is
therefore often protected by a protection system causing the machine to shut
down (TRIP). Further let x measure the portion of time the machine is run
on more than 90% of maximum capacity.

In the elicitation process the maintenance engineer assess the mean resid-
ual time to failure, i.e., the time until the protection system will trip the sys-
tem (PF-interval) to be ξ = 120 days when an anomaly situation occur, i.e.,
drifting into zone B. Since only vibration and excessive load is considered
as influencing factors of the PF-interval the shape parameter is assessed by
α= 4. This gives λ=Γ (1/α+1)/ξ=Γ(1.25)/120≈ 0.00775.

The critical value for the vibration is set to yC = 4.5 and the corresponding
reduction factor for the remaining time to trip is assessed to kY = 0.05 (only
6 days to failure in average). This gives βY = −(lnkY)/yC = −(ln0.05)/4.5 ≈
0.666.

A machine running with 90% of maximum capacity or more in xC = 0.25=
25% of the time is assessed to have a reduction factor of kX = 0.1 (12 days to
failure in average). This gives βX =−(lnkX)/xC =−(ln0.1)/.25≈ 9.2.

The relevant parameters to calculate the cumulative distribution function
for the PF-interval in Equation (22) have now been established. Now assume
that we have observed y= 3 and we assess future loads to be x = 0.1. Inserting
in Equation (22) and using the cost function in Equation (21) Table 3 indicates
that we should use the opportunity that comes after 31 days.

Table 3: Results
t PM U Total
3 13573 0 13573
10 10748 21 10769
17 8511 176 8687
24 6740 693 7433
31 5337 1894 7231
38 4227 4132 8358

Note that the cumulative distribution function calculated by Equation (22)
is the unconditional distribution function given we were at point of time P in
Figure ??. In reality since y = 3 it is reasonable to believe that some days
has elapsed since the potential failure was evident. A conditional distribu-
tion function is therefore more appropriate. This means that we also need
to assess the time since the potential failure occurred. Let t0 be the current
time, and assume that the time since the potential failure (P) is s time units.
Let t denote the running time from now on, i.e., t0 corresponds to t = 0. Us-
ing the rule for conditional probabilities we obtain the following modified cost
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function:

C(t)= cPM,0e−t/θ+ cU

[
1− 1−FT (t+ s|y,x(t+ s))

1−FT (s|y,x(s))

]
(23)

In the example calculation this conditional approach is not used. □

Example - Towards a real time model - The digital twin

The example is now used as motivation for developing a simple stochastic
digital twin. A digital twin may be viewed as a digital simulation model
with built in analytics, decision support, and self learning features. Learning
features will not be discussed in this example, and only glimpse of analytics
is provided.

The digital twin is represented by two models, one maintenance model
and one production model, where these models interact via the Internet of
Things. In the following the maintenance model is denoted the maintenance
twin and the production model is denoted the production twin. The physical
counterpart of the maintenance twin is the actual component state, the phys-
ical load on the machine, the actual maintenance carried out the actual time
the machine can not produce due to preventive and/or corrective maintenance
and so on. The physical counterpart of the production twin is what is actually
being produced, when the production takes place, the economic value of the
production, the cost of production, the various machines being used, the use
of personnel and resources and so on.

Let T be the operational windows for execution of a preventive mainte-
nance task of the packing machine, i.e., the point of times τ1,τ1+τ,τ1+2τ, . . . .
The decision support to be provided by the maintenance twin upon a potential
failure situation is now:

min
t∈T

C(t)= cPM,0e−t/θ+ cUFT (t|y,x(t) (24)

The maintenance twin represented by Equation 24 has to be implemented
on a digital platform, for example MS Excel. The maintenance twin needs
to be fed with data from the production twin. Here the production twin is
very simple, only a set of predefined scenarios combining different values of
cPM,0, cU,y,and x(t). Table 4 shows the data used in this simple MS Excel
representation of the two twins interacting. In a real life implementation the
data in Table 4 needs to be generated by the ERP system, the SCADA system
and so on.

In order to communicate with the maintenance twin, the production twin
needs to post data to the internet
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Table 4: Data used in the production twin
cPM,0 cU y x CPS message/Comment
15000 35000 3 0.1 Base line (from example)
15000 35000 3 0.3 High future loads
5000 35000 3 0.1 Cheap PM due to low production

15000 35000 2 0.15 Lower degradation
15000 35000 4 0.15 Very high degradation
15000 100000 3 0.15 Very high failure cost

Function postInternetData(data)

` Make the data available on internet

End Function

Similarly, the maintenance twin needs to get access to this data:

Function getInternetData(specification)

` Get data from internet with some specification of what to get

End Function

The maintenance twin is continuously reading data from the internet to
come up with maintenance decision support. This information should then be
posted on the internet and incorporated in the production twin for production
and maintenance planning. This has not been implemented in this very first
example. □
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