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Lead-time model and marginal cost approach

In this memo we will investigate a predictive maintenance model where we
assume that we can observe the health of a component in real-time, and we
will order maintenance when the maintenance limit is reached. There is a
lead-time from a maintenance order is placed until it is executed.

Theoretical background for the probability modelling is described else-
where...

The Wiener process

The Wiener and gamma processes are popular stochastic processes used to
model degradation. Both processes assume that the change in degradation
level in a small time interval can be described by a stochastic variable. In the
Wiener process these changes can be both positive and negative, whereas in
the gamma process the changes are always positive, i.e., positive increments.
There are various pros and cons for these two processes. The gamma process
is more intuitive, since increments (degradation) is always positive which is
true for man failure mechanism, i.e., we can not improve unless some mea-
sures are taken. On the other side, measurements of the degradation often
show that the change in degradation level from one point of time to the next
may be negative. This could then be caused by measurement errors (noise).
In this memo only the Wiener process is considered.

Wiener Process with Linear Drift

Before we define a Wiener process with drift we define the Wiener process
{Wt, t ≥ 0} by:

1. W0 = 0

2. W has independent increments: for every t > 0, the future increments
Wt+u −Wt,u ≥ 0, are independent of the past values Ws, s ≤ t.
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3. W has Gaussian increments: Wt+u −Wt is normally distributed with
mean 0 and variance 0u,Wt+u −Wt ∼N (0,u).

4. W has continuous paths: Wt is continuous in t.

We now define the stochastic process:

X t =µt+σWt

as a Wiener process with linear drift µ and infinitesimal variance σ2.
It follows that X t = X (t) is normally distributed with mean µt and vari-

ance σ2t. Further X has Gaussian increments: X t+u − X t is normally dis-
tributed with mean µ and variance σ2u, X t+u − X t ∼N (µu,σ2u).

It is well known from the theory of stochastic processes that the time T
when the process for the first time reach the level ℓ is inverse-Gauss dis-
tributed with parameters α= ℓ/µ and β= (ℓ/σ)2.

For the inverse-Gauss distribution, i.e., X ∼ IG(α,β) we have:
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The expected value and variance are given by:

E(X )=α
Var(X )=α3/β

In the Wiener process with parameters µ,σ the time, T to first passage of the
threshold ℓ is then

T ∼ IG(ℓ/µ, (ℓ/σ)2)

and the expected value and variance are given by:

E(T)= ℓ/µ

Var(T)=σ2ℓ/µ3

Maintenance decision problem

We consider the following situation:

• Assume that we can observe the degradation process continuously with-
out any uncertainty
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• A failure occurs if X (t)≥ ℓ for some time t

• When degradation approaches the failure limit, ℓ, we will place a re-
quest to replace the component with a new component

• We assume that there is a deterministic lead-time, say TL

• The objective is to determine the maintenance limit, m < l, i.e., how
close to the failure limit we dear to go

The objective function, or cost equation to minimize is:

C(m)= cR + cFF(TL|m)+ cU
∫ TL

0 f (t|m)(TL − t)dt
MTBR(m)

(3)

where

• cR = cost of renewal/replacement

• cF = cost of failure (additional cost for corrective maintenance and extra
cost for the failure event)

• cU = cost per hour down time

• F() and f () are CDF and PDF for remaining useful lifetime (RUL), given
we are at the maintenance limit m at some point

• MTBR(m) = Mean Time Between Renewals, given the decision rule to
request a maintenance at m

We now consider one maintenance cycle:

• Assume that we at time t in this cycle observe Y (t)= m

• Let RULm be the time from t until a failure occurs

• RULm is inverse-Gauss distributed with parameters αm = (ℓ−m)/µ and
βm = (ℓ− m)2/σ2, where µ and σ2 are the parameters in the Wiener
process, and ℓ is the failure threshold

• Thus, F() = F(t;αm;βm) = and f () = f (t;αm;βm) are given by equations
(2) and (1) respectively, and the nominator of C(m) may be obtained by
numerical integration

• MTBR(m)= m/µ+TL

In Equation (3) the lead-time is assumed to be fixed. In some cases we can
influence the lead-time, and it is reasonable that shorter lead-times means
higher cost of renewal, i.e., cR = cR(tL), where tL now is a decision variable.
In this case we rewrite Equation (3):

C(m, tL)= cR(tL)+ cFF(tL|m)+ cU
∫ TL

0 f (t|m)(tL − t)dt
MTBR(m)

(4)
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Marginal approach

Minimizing Equation (3) wrt m represents a situation where we search the
long run minimum under static conditions. In many situations there will be
local variation in cost structures, and lack of opportunities for execute the
maintenance. We will demonstrate the use of the marginal approach in this
situation. For the marginal approach we start with the following assump-
tions:

• We minimize Equation (3) wrt m

• Denote the optimal maintenance limit by m∗, and the corresponding
minimal cost is denoted C∗

• For some reason, we have lost the numerical value of m∗, but still we
have kept the numerical value of C∗

• Assume we at some time, say t observe the degradation level X (t)= x

Essentially this means that we know the long run average cost per unit time,
but we do not exactly now what is the best “here and now” decision to make.
To solve the marginal approach problem We know that if x < m∗ it is bene-
ficial to wait with placing the maintenance order. Thus if we calculate the
expected cost of two strategies

1. Place an order at time t

2. Place an order at time t+∆t

then strategy 2 should be cheaper if x < m∗. The expected cost of strategy 1
from now on until TL +∆t is:

C(S1|x)= cFF(TL|x)+ cU

∫ TL

0
f (t|x)(TL − t)dt+C∗∆t (5)

and the expected cost of strategy 2 from now on until TL +∆t is:

C(S2|x)= cFF(TL +∆t|x)+ cU

∫ TL+∆t

0
f (t|x)(TL +∆t− t)dt (6)

Thus, given that the current state is x, the change in cost by postponing
placing the order by ∆t from now on is given by C(S2|x)−C(S1|x). It is thus
beneficial to postpone maintenance as long as C(S2|x)−C(S1|x)< 0.

Exercise 1

Assume the following values: µ= 1,σ= 2, l = 100, cR = 1 000, cF = 10 000, cU =
5 000 and TL = 5. Use Equation (3) to obtain the optimal maintenance limit,
m∗
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Exercise 2

Assume the same model parameters as in Exercise 1, and assume that the
current condition is x = m∗−1. Calculate the change in cost by slightly post-
poning placing the order. Repeat for x = m∗+1. Does the example confirm
the marginal cost idea?

Example 1 - Opportunistic maintenance, first approach

Assume that maintenance opportunities are limited. Current time is t0 and
we are approaching the maintenance limit. Maintenance (renewal) has to be
planned in advance. We can either carry out the maintenance at the first
opportunity at time t1 or at the next opportunity at time t2. Which one to
choose? For the calculation we need to realize that the two strategies will
have slightly different “ending points”, i.e., the renewal in strategy 2 will
take place slightly later than in strategy 1. If we assume that both strategies
continue to “pay” C∗ from the time of renewal until some time T >max(t1, t2),
the cost of the two strategies are respectively:

C(S1|x)= cFF(t1 − t0|x)+ cU

∫ t1−t0

0
f (t|x)(t1 − t0 − t)dt+C∗(T − t1) (7)

and

C(S2|x)= cFF(t2 − t0|x)+ cU

∫ t2−t0

0
f (t|x)(t2 − t0 − t)dt+C∗(T − t2) (8)

Note that C∗ is calculated under the assumption that we always can main-
tain at the optimum value. Since opportunities are limited, we should use a
slightly higher value than obtained by Equation (3).

Example 2 - Opportunistic maintenance, uncertainty regard-
ing the future

In Example 1 we assumed that the two maintenance opportunities were al-
ways available. Both opportunities might be uncertain. Now, assume that
we still have to plan for one of the two opportunities in advance, the first
opportunity will be available with certainty, but there is a probability, say p,
that opportunity 2 will not be available, and we have to stick to opportunity 3
available at time t3 > t2. In this case the expected cost of the second strategy
is:

C(S2|x)= (1− p)
[

cFF(t2 − t0|x)+ cU

∫ t2−t0

0
f (t|x)(t2 − t0 − t)dt+C∗(T − t2)

]
p

[
cFF(t3 − t0|x)+ cU

∫ t3−t0

0
f (t|x)(t3 − t0 − t)dt+C∗(T − t3)

]
(9)

Example 2 could be generalized to take into account that also opportunity
3 will not be available. This will typically be the problem when weather
conditions will limit the opportunities for maintenance.
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Example 3 - Opportunistic maintenance, portfolio example

Now, assume that we have opportunities at time t1, t2, t3, .... Further we have
n components that are approaching their due date for maintenance. Assume
we do not need to plan in advance, so depending on the condition we can
utilize an opportunity immediately if this is the optimal choice. If we do
not have any restriction in terms of how many components that could be
maintained at each opportunity, a “greedy algorithm” seems reasonable, i.e.,
we have a rolling horizon where we at each point of time ti consider what is
best, i.e., to use the opportunity at time ti or utilize the subsequent one at
time ti+1.

In many cases there will be a limitation on how many components that
could be maintained at each opportunity. Assume the limit is K . The greedy
algorithm is now likely to fail. The greedy algorithm will be to check which
components would like to be maintained at time ti and which ones at ti+1. If
more than K components prefer the first opportunity, we will prioritize the
ones that would be most costly to postpone. Those not prioritized have to be
postponed, and we repeat the process at time ti+1. We see that the greedy
algorithm may result in activities being stacked in a queue, where waiting
time may be very costly. To avoid queuing, we could be more proactive, for
example if less than K components prefer maintenance at time ti, we should
advance some of the components that prefer ti+1 if the opportunity at time
ti+1 will be overbooked. There are two challenges here:

1. We need some dynamic programming approach, since also at ti+2 there
might be an overbooking

2. At time ti the future development of the degradation level for the vari-
ous components are random. Therefore it is hard to say how many com-
ponents that actually would require maintenance at the subsequent op-
portunities

An improved “greedy algorithm” would now be the following:

1. Calculate the number of components that prefer maintenance at time
ti

2. If the number is greater than K , prioritize the one that are most costly
to postpone, carry out the maintenance, and wait for the next opportu-
nity at time ti+1

3. If the number equals K , carry out the maintenance for these, and wait
for the next opportunity at time ti+1

4. If the number is less than K , identify those components that prefer
maintenance at time ti+1 or ti+2 according to the expected development
in the degradation level
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5. If the subsequent slots then will be overbooked, advance one or more
components from the opportunities at ti+1 and/or ti+2 till the opportu-
nity at ti.

Note that looking beyond the next opportunity at time ti+1 is a proactive
approach since components preferring the opportunity at ti+2 might deterio-
rate faster than expected, and hence contribute to extra overbooking at time
ti+1. A better solution is expected to be obtained by introducing stochastic
programming, but this is far more demanding, see Arif.
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