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Markov State Model - An introduction

Introduction

Consider a stochastic process {Y (t), t ∈Θ}, where Y (t) describes the state (de-
terioration level) of an item at time t. In the following we will assume that
the state variable only takes a finite number of states. We first present the
model when no maintenance is carried out, i.e., we start at time t = 0 and
observe the system until failure. Let:

Y (0)= y0

Y (T)= yr (1)

where T per definition is the time of the first failure. Between y0 and yr there
are r−1 intermediate sates. By choosing a large value of r we could obtain
a very good approximation to a continuous process if this is required. We
will now let T̃i, i = 0, . . . , r−1 be sojourn times, i.e., how long the system stay
in state i. Notationally we will typically denote the states by their number
rather than by the value to simplify notation.

For the initial model we assume that the sojourn times are independent
and exponentially distributed with parameter λi. Later on we will investi-
gate how sojourn times may be modelled by arbitrary distributions. We also
assume that the process runs through all states chronologically from y0 to yr
without “stepping back” at any time.

Before we present the modelling framework for this simple situation we
introduce the maintenance model. Figure 1 depicts the development of Y (t)
as a function of time. On the x-axis it is indicated that the system is inspected
at period of times τ,2τ,3τ, . . .. If the system is found in state Y (t) ≥ yl at an
inspection, the system is renewed to an as good as new state, i.e., y0.

We now go back to the simple situation where maintenance is not consid-
ered. Let Pi(t) denote the probability that the system is in state i at time t.
By standard Markov considerations we obtain the Markov differential equa-
tions:

Pi(t+∆t)≈ Pi(t)(1−λi∆t)+Pi−1(t)λi−1∆t (2)
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Figure 1: Markov transition diagram

where ∆t is a small time interval and and we set λ−1 = 0 per definition. Fur-
ther the initial conditions are given by:

P0(0)= 1

Pi(0)= 0 for i > 0 (3)

Equation (2) could easily be integrated by a computer program, for example
VBA in MS Excel. It is now easy to find MTTF by another integration, i.e.,

MTTF=
∫ ∞

0
R(t)dt =

∫ ∞

0
[1−Pr(t)]dt (4)

and we should verify that we get MTTF =∑r−1
i=0 λ

−1
i . Note that the transition

rates, λi ’s, are assumed to be known, that is either they are estimated from
data, or found by expert judgement exercises.

Exercise 1

Assume r = 5 and λi = 0.01, i = 0,1, . . .. Integrate the Markov differential
equations and obtain the expected value and variance of the time to failure.
Hint: Use partial integration for the variance similar to MTTF= ∫

R(t)dt. □

Equation (2) may be used in situations where we only allow transitions from
state i to state i+1. In more general situations there could be transitions in
principle from any state i to any state j. In this situation we need to work
with matrices. Let A be an (r+1)× (r+1) matrix where element (i, j) repre-
sents the constant transition rate from state i to state j. The indexing here
starts at 0, e.g., A(0,1)= a0,1 is the transition from state 0 to state 1.

Further, let P(t) be the time dependent probability vector for the various
states defined in A. We now let P(t = 0) = [1,0,0, . . . ,0] to reflect that the
system starts in state 0. From standard Markov theory we now need the
Markov differential equations, i.e., P(t) ·A= Ṗ(t), from which it follows:

P(t+∆t)≈P(t)[A∆t+I] (5)
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where ∆t is a small time interval. Equation (5) is now used repeatedly to
find the time dependent solution for the entire system. This corresponds to
integrating Equation (2).

We now outline the main principle for working with matrices to find the
time dependent solution and other relevant quantities. Assume we have ac-
cess to a small library of matrix routines:

Function mMult(A,B) -> Returns a matrix equal to A * B

Subroutine fixA(A) -> Fill diagonal of A such that sumrow=0

Function getIntMatrix(A, DeltaT) -> [A * DeltaT + I]

In the following we assume that the matrix library is defined by standard
indexing, i.e., the first row is denoted row number 1 and so on. A warm up
exercise to find MTTF is now:

Function getMTTF(A)

fixA A

MTTF = initial guess

DeltaT = MTTF / 1000

hlp = 0

t=0

P=[1,0,0,....]

IM = getIntMatrix(A, DeltaT)

Do While t < 5*MTTF

P = mMult(P, IM)

hlp = hlp + (1-P(r+1)) * DeltaT

t = t + DeltaT

Loop

getMTTF = hlp

End Function

To get higher precision we could increase the integration to e.g., 10MTTF.
Note the motivation for this approach is given by:

MTTF=
∫ ∞

0
R(t)dt =

∫ ∞

0
[1−Pr(t)]dt (6)

where 1−Pr(t) is the probability that we are not in state r at time t.
So far the maintenance regime is not reflected in the approach. Let

λE(τ, l) be the effective failure rate, i.e., the expected number of failures per
unit time if the system is inspected every τ time unit, and renewed whenever
Y (t) ≥ yl at an inspection. In the integration of Equation (5) we start with
t = 0 and whenever t coincides with τ, 2τ etc., special actions are taken:

Function lambdaEffective(A,tau,l)

fixA A
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MTTF = getMTTF(A)

DeltaT = MTTF / 1000

hlpF = 0

t=0

localTime=0

P=[1,0,0,....]

IM = getIntMatrix(A, DeltaT)

Do While t < 10*MTTF

P = mMult(P, IM)

hlpF = hlpF + P(r + 1) Add to effective failure rate

P(1) = P(1) + P(r + 1) If system is failed, it is assumed to be renewed

P(r + 1) = 0 Clear probability

If localTime >= tau Then

sumP = 0

For i = l+1 To r

SumP = SumP + P(i)

P(i)=0

Next i

P(1) = P(1) + SumP

localTime = 0

Else

localTime = localTime + DeltaT

End If

t = t + DeltaT

Loop

lambdaEffective = hlpF / t

End Function

Note the indexing, i.e., the failed state is r+1 and the maintenance limit is
l+1.

In the If localTime = tau part of the script above we have used a loop
to simulate what is happening during an inspection. A more efficient way to
do this would be to create an “inspection matrix”, say M defined by:

M=



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
1 0 0 · · · 0
1 0 0 · · · 0
...
1 0 0 · · · 0


(7)

where the starting point is an identity matrix, but where we from the row
corresponding to state l shift the “ones” to the left.
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:

If localTime >= tau Then

P = mMult(P, M)

localTime = 0

Else

:

Such an inspection matrix could also be used to specify that an inspection
is not perfect. For example if q is the probability that an inspection fails to
reveal that the actual state is l or higher, the corresponding leftmost “one” is
replaced by 1− q and the diagonal element is replaced by q for rows corre-
sponding to states l, l +1, . . . , r−1. A inspection matrix could also be used to
specify that upon an inspection it might be decided to repair to a state which
is not as good as new. For example in 80% of the cases we repair to state 0, in
15% of the cases we repair to sate 1 and in 5% of the cases we repair to state
2.

Exercise 2

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system
is inspected with intervals of length τ = 26. If the system is found in state
r = 4 the system will be renewed. Renewal takes place immediately. The
probability that a inspection reveals that the system is in state r = 4 is 70%
when this is the case. Find the effective failure rate for this situation. □

Significant repair times

So far we have assumed that repair times could be neglected. If we can not
neglect repair times we need to model repair times in the transition matrix
A. For example if at an inspection we with some probability q will decide
to repair from state i to state j with constant repair rate µ a first approach
would be to modify the A-matrix, i.e., A(i, j) = ai, j = qµ. However, this would
imply that a repair starts immediately after the system has reached state j.
In reality, a repair can first start after the coming inspection.

To handle the situation we now introduce “virtual” states. A virtual state
is a state in the A-matrix representing the situation where a maintenance
action has been decided and the repair is actually started. For each pair
(i, j) where there could be a repair from physical state i to physical state j
a virtual state ki, j is defined. Then the associated transition rate is set to
aki, j , j = µ. The row and column representing the virtual state ki, j can be any
ones larger than those already “occupied”. The inspection matrix M will also
get an additional row and column representing the virtual state ki, j, where
M(i,ki, j) = q, where we in addition need to ensure that the row sum equals
one.
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Figure 2: Markov transition diagram with potential repairs

Note that while repairing from state i to state j represented by aki, j , j = µ

there might be a “competing” transition from for example state i to state l,
thus we also need to specify aki, j ,l = λi,l . Such transitions are not shown in
Figure 2.

Figure 2 illustrates the Markov diagram for a situation with r = 4. Here
λi j is the transition rate from state i to state j representing degradation.
Further µki, j , j is the repair rate from virtual state ki, j to state j. When a re-
pair is initiated as a result of a proof-test, virtual states are introduced. For
example the state (2.1) represent that after a test it is decided to repair from
state 2 to state 1. The doted lines represent transitions that instantaneously
take place after a proof-test. The probabilities given by the q-values repre-
sent maintenance decisions. For example q3,3.0 = 1 represents that if a state
3 is revealed by a proof-test, we always initiate a repair to state 0. q2,2.0 is
representing the probability that we after revealing a state 2 on a proof-test
we initiate a repair to state 0. The q-values are entered into the inspection
matrix, M.

In Figure 2 there are three nodes representing that the system is in a
"small degradation" state, i.e., physical state 2. State 2 in the diagram is a
hidden state, we are not aware of any transition from state 1 to state 2. The
states (2.0) and (2.1) are evident states, we know that we are in main state 2
(small degradation), a maintenance request has been issues (to state 0 and
state 1 respectively).

Note that in Figure 2 we use the notation aFrom,To without indicating the
actual row and column numbers in the transition matrix. The notation aki, j ,l
on the other hand, is used to identify a row and column number in a matrix
in the code when we do the programming.

In previous sections we have focused on the effective failure rate, but we
might also be interested in the average portion of time we are in each state.
For example we may use:

:
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Do While t < 10*MTTF

P = mMult(P, IM)

Pavg = Pavg + P

If localTime >= tau Then

P = mMult(P, M)

localTime = 0

Else

localTime = localTime + DeltaT

End If

t = t + DeltaT

Loop

Pavg = Pavg * DeltaT / t

:

Exercise 3

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system
is inspected with intervals of length τ= 26. If the system is found in state r =
4 the system will be renewed. There is a logistic delay of in average 4 weeks
before the repair takes place. Delay time is assumed to be exponentially
distributed. The probability of revealing state r = 4 is still 70%. Find the
effective failure rate for this situation. □

Least Square Estimation - Covariates

In this section we present a least square approach for parameter estimation.
The main idea is to compare the actual transitions taking place between ob-
servations with the expected transitions given the parameters in the model.
The approach allows for also treating systems operated under various loads,
i.e., with different values of explanatory variables (covariates).

Assume that the system is in state s at time t and we consider a later
point of time t+ u where no maintenance has been conducted in the period
between. We have

Ps(t)= 1

Pi(t)= 0 for i ̸= s (8)

The expected system state at time t+u is then given by:

E(Y (t+u)|Y (t)= s)=
r∑

i=s
iPi(t+u) (9)

Note that we sum over states larger or equal to s since we assume that the
system cannot improve during the period from t to t+u. In the more general
situation where we also would like to estimate repair rates we need to sum
over all possible states.
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For a given set of parameters in the Markov transition matrix we may find
the expected value by integrating the Markov equations u time units from t
and then use Equation (9). For the integration, i.e., finding the Pi(t+u)’s we
need to repeatedly use Equation (5). In our LS approach later on we need
numerical methods implying that the numerical integration of the Markov
equations will be repeated very many times for different parameter values.
To save computational time we propose a more efficient approach. A similar
approach is in fact used in many algorithms for calculating the exponential
of matrices. We have:

P(t+u)≈P(t)[A∆t+I]2n
(10)

where ∆t = u/2n and n is sufficient large to get a low value of ∆t. Typically
n = 10. To raise [A∆t+I] to the power 2n we first calculate E= [A∆t+I], and
then we repeat n times: E=E2.

Obvious, if we have a library function that takes exponential of matrices,
we may directly use P(t+u)=P(t)eAu as an alternative.

Also note that for our data which typically is sampled with fixed intervals,
say τ, we only need to calculate [Aτ/2n + I]2n

once for all observation for a
given combination of the parameter vector to speed up the process. In other
situations we have data sets where the observation period varies, then it is
convenient to save several “multiplication matrices", i.e., [Aτi/2n +I]2n

.
To estimate parameters in the Markov State model we assume the follow-

ing data is available:

• Several systems are observed, each system has one or more observa-
tions

• An observation, say j, from one system comprise

– The state, s j, of the system at time t j and the state, s j− , of that
system at the previous time, t j− , the system were observed

– A vector of explanatory variables (stressors) z j = [z1, z2, . . .] for the
time interval between t j and t j−

• We let j be an index running through the all observations, i.e., j =
1,2, . . . , J for all systems

We assume that each transition rate in the Markov matrix could be written
on the form

λ= eβ0+β1z1+β2z2... (11)

A least square approach to estimate β= [β0,β1,β2, . . .] is now given by mini-
mizing Equation (12):

Q(β)=
J∑

j=1

[
s j −E(Y j(t j)|Y j−(t j−)= s j−)

]2 (12)
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where we need Equation (9) to find E(Y j(t j)|Y j−(t j−)= s j−).
The procedure simplifies if we assume β1,β2, . . . are the same for all tran-

sition rates, and that only β0 varies between the various transition rates.

Exercise 4

Assume we have 4 systems each with with states 1,2, . . . , r where λi+1 = (1+
v)λi+1. The systems are proof-tested every τ time units.

Numerical values are given by r = 5,λ1 = 0.0001,v = 0.2, and τ= 730. The
maintenance limit is l = r−1. Upon a proof test nothing is done for states
1,2, . . . , l −1. If a system is in a state ≥ l at a proof-test, an instantaneous
repair takes place bringing the system back to state 1.

Use Monte Carlo simulation to simulate the observation set. Assume you
simulate over 60 months (5 years).

Exercise 5

In this exercise we will use the data from the previous exercise. There are
only two parameters to estimate, i.e., λ1 and v. To get an initial guess for λ1
we may do the following:

1. Count the number of situations in the data set where there is a tran-
sition from state 1 to another state, and let this number be denoted
n1

2. Count the number of occurrences where one system remains in state 1
from one inspection to the next inspection, or jumps from state 1 to an-
other state from one inspection to the next inspection. Let this number
be denoted t1

3. An initial guess for λ1 is now given by λ̂1 = n1/t1

We can repeat for λ2,λ3, . . . ,λl−1. Note that we cannot estimate the transi-
tion rate into the fault state, i.e., λl by this procedure because there are no
observed jumps from state l to state r due to our maintenance strategy.

We may now get an initial guess for v by v̂ = λ̂2/λ̂1 − 1. We could also
use v̂ = λ̂3/λ̂2 − 1 and so forth, so an average of these v-values could be a
reasonable approach to obtain an initial estimate, v̂.

a) Calculate initial estimates for λ1 and v as indicated above for your sim-
ulated dataset

b) Keep v fixed, find the LS-estimate for λ1 according to the procedure de-
scribed. Use any numerical routine for minimizing a univariate func-
tion.

c) Keep λ1 fixed, i.e., the estimate from b), and find the LS-estimate for v
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d) Keep v fixed, i.e., from c), and find the LS-estimate for λ1 according to
the procedure described.

e) Keep λ1 fixed, i.e., the estimate from d), and find the LS-estimate for v

f) Compare the result with using a minimization routine that allows for
several variables.

Phase type modelling

So far we have assumed that the sojourn times are exponentially distributed.
This assumption could be questioned if there are failure mechanisms like
wear, fatigue, corrosion etc. that drives the degradation of the system. Phase
type modelling is an approach where we may approximate a stochastic vari-
able with a multi state Markov model. The more states we use the better will
the approximation be. In the following we do not discuss the explicit fitting of
model parameters for the approximation. Several statistical packages exist
for this. We will also assume that each random variable is approximated by
a two-state Markov model in order to reduce the total number of states.

Model

Consider a system having three main states, 1 = new, 2 = degraded, and F
= failed. With main state we here mean what the categorization used by the
maintenance department.

We assume that sojourn times in state 1 and state 2 could be approxi-
mated by a phase type distribution, i.e., T̃1 ∼ F1(t) and T̃2 ∼ F2(t). The so-
journ times are assumed to be stochastically independent.

For T̃1 the phase type model comprises two sub states, i.e., 1a and 1b. A
acyclic phase type model is used where:

• The probability that the system starts in sub state 1a is p1, and the
probability that the system starts in sub state 1b is 1− p1

• There is a constant transition rate, λ1a from state 1a to 1b

• There is a constant transition rate, λ1b from state 1b to an absorbing
state outside the system

A similar model exist for sojourn time 2.
Note that given F1(t) and F2(t) we may in principle find the distribution

of the time to failure for this system by the convolution theorem. This will
not be pursued here.
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System modelling

The phase type models for the two sojourn time enable easy integration by
use of the Markov equations P(t+∆t)≈P(t)[A∆t+I] when each sojourn time
is treated independently.

In order to have a complete model we need to link the two phase type
models.

Proposition: For the phase type distribution approximating the first sojourn
time there is a rate λ1b from state 1b to an absorbing state outside the sys-
tem. This transition is split into two transitions, one to state 2a and one to
state 2b. The corresponding rates are λ1b_2a = p2λ1b and λ1b_2b = (1− p2)λ1b
respectively. The situation is shown in the figure below:

The dashed ellipses represent the physical or main states “new” and “de-
graded” as observed by, e.g., maintenance personnel. The states 1a, 1b, 2a
and 2b are artificial or sub states used for modelling, but have no physical
interpretation.

Let PF (t) be the probability that the system is in state F at time t. PF (t)
can easily be obtained by integration the Markov equation for the compound
system yielding the cumulative distribution function for time to system fail-
ure.

Proof

The idea behind the proof is to first find the cumulative distribution function
for the time to system failure without making any assumption regarding how
to link the two phase type distribution. Then we repeat the procedure when
the two phase type distributions are linked in the proposed manner. If this
gives the same result, our proposition is valid.

First define T̃2a and T̃2b to be the sojourn times for states 2a and 2b
respectively. It follows that

Pr(T̃2 ≤ t)= p2 Pr(T̃2a + T̃2b ≤ t)+ (1− p2)Pr(T̃2b ≤ t) (13)

Let T be the time to failure. Now assume that the first sojourn time T̃1 = x.
It follows that:

Pr(T = T̃2 + x ≤ t|T̃1 = x)= p2 Pr(T̃2a + T̃2b + x ≤ t)+ (1− p2)Pr(T̃2b + x ≤ t) (14)
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Equation (14) does not make any assumption regarding how the two phase
type models are linked. It just prescribes a way to obtain the cumulative
distribution function (CDF) for the system failure time, given that the first
sojourn time is x. To obtain the unconditional CDF we integrate over all
possible x-values, i.e.,

Pr(T ≤ t)=
∫ ∞

0
Pr(T̃2 ≤ t− x)P1b(x)λ1bdx (15)

where P1b(x) is the time dependent probability that the first phase type sys-
tem is in state 1b at time x. Using equation (14) we get:

Pr(T ≤ t)=
∫ ∞

0
p2 Pr(T̃2a + T̃2b ≤ t− x)P1b(x)λ1bdx+∫ ∞

0
(1− p2)Pr(T̃2b ≤ t− x)P1b(x)λ1bdx (16)

Now, consider the compound model shown in the figure. In the compound
model there are to ways we may leave state 1b, i.e., there is a transition
from the “physical” state 1 to the “physical” state 2. These to possibilities are
either going from state 1b to state 2a or going from state 1b to state 2b.

Assume there is a transition from state 1b to state 2a at time x. Let this
event be denoted Ax, giving the conditional CDF:

Pr(T ≤ t|Ax)=Pr(T̃2a + T̃2b ≤ t− x) (17)

Similarly, let Bx be the event that there is a transition from state 1b to state
2b at time x, giving the conditional CDF:

Pr(T ≤ t|Bx)=Pr(T̃2b ≤ t− x) (18)

Since Ax and Bx are disjoint we integrate over all possible values to get the
unconditional CDF:

Pr(T ≤ t)=
∫ ∞

0
Pr(T̃2a + T̃2b ≤ t− x)P1b(x)λ1b_2adx+∫ ∞

0
Pr(T̃2b ≤ t− x)P1b(x)λ1b_2bdx (19)

which is the same as equation (16) provided λ1b_2a = p2λ1b and λ1b_2b = (1−
p2)λ1b.

This means that we have proven the following:

• Given that we approximate two independent sojourn times with two
phase type distributions having the structure presented above:

• The two phase type models can be combined as illustrated in the figure

• Yielding the correct CDF for the sum of these two sojourn times which
has been the objective to prove
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It should be rather straight forward to prove this for the general case with
more than two “physical” states.

For the model with the artificial states, the Markov property holds. How-
ever, if we consider the three main states (1=new, 2=degraded, and F=failed),
the Markov property does not hold. Given that we have stayed in main state
2 for some time, the probability of escaping that state will typically increase
as time goes by. The explanation is that given we entered state 2 at time
x, we either went to the artificial state 2a with probability p or to state 2b
with probability 1− p, which is exactly matching the phase type model we
use for the “physical” state 2 when the “failure rate function” for state 2 is
increasing.

Varying intervals for inspection

The idea of having fixed lengths between inspections may be questioned. Ob-
vious it would be some administrative advantages if we could stick to the
same inspection intervals independent on the system state. On the other
hand it seems reasonable to reduce the inspection intervals as we approach
the maintenance limit. To obtain the total failure rate, number of inspections,
and number of repairs for a general inspection and maintenance strategy is
almost impossible. In the following we present an approach where we make
some assumptions which would be reasonable to handle from an administra-
tive point of view, and which also should not be far from the optimal solution:

• The time intervals between inspections are either τL (long), τM (medium),
or τS (short). Further kL and kM are integers such that τL = kLτS and
τM = kMτS.

• LL is a set of states which require inspection interval τL, LM is a set
of states which require inspection interval τM and LS is a set of states
which require inspection interval τS. For all other states, LR, it is
required to repair the system to a good as new state.

• If a failure occurs at time t in between inspections the system will be
repaired to a good as new condition immediately, and the first inspec-
tion of length τL will take place at the smallest value of kτS where k is
an integer and kτS > t+τL.

In the modelling we assume that we at any time, t ̸= kτS, have:

• The current inspection regime is governed by τL, τM or τS

• Let tC be the starting point of the current inspection interval, i.e., tC >
kτS and tC < (k+1)τS for some integer k

• If the current inspection regime is governed by τL, the next inspec-
tion will take place at one of the following point of times: tC +τS, tC +
2τS, . . . , tC +kLτS
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• If the current inspection regime is governed by τM, the next inspec-
tion will take place at one of the following point of times: tC +τS, tC +
2τS, . . . , tC +kMτS

We may now define different P-vectors to hold the time dependent state prob-
abilities as we integrate the solution. Let PS(t) be defined such that

Pi,S(t)=Pr(Y (t)= yi ∩ current regime is τS) (20)

For the medium and long intervals we also need to take into account the
“starting point” of these, and we define:

Pi,L,m(t)=Pr(Y (t)= yi ∩ current regime is τL ∩ cycle is m) (21)

With “cycle” m we mean that the inspection will take place at point of times
τL + (m−1)τS,2τL + (m−1)τS,3τL + (m−1)τS, . . .. We can imagine that these
cycles are running in parallel. In reality it will be only one cycle that could
be active, but which one is actually active depends on when the system is
renewed. Similarly we define:

Pi,M,n(t)=Pr(Y (t)= yi ∩ current regime is τM ∩ cycle is n) (22)

In total we have one PS(t)-vector, kM PM,n(t)-vectors and kL PL,m(t)-vectors.
As we integrate the Markov differential equations for t ̸= lτS we update all
the P(t)-vectors according to Equation (5).

Here it should be noted that a more efficient approach would be to use:

P(t+τS)≈P(t)[A∆t+I]2n
(23)

where ∆t = τS/2n and n is sufficient large to get a low value of ∆t. Typically
n = 10. This means that we may calculate [A∆t+ I]2n

once, and use this
matrix for all integrations. An alternative is to use matrix exponentials if we
have the numerical routine available, i.e., P(t+τS)=P(t)eAτS .

Exercise 6 - Numerical precision

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the sys-
tem is inspected with intervals of length τ = 26, i.e., not varying intervals.
Assume that the system is in state 0 at time t = 0. Find P(τ) by using Equa-
tion (23) by using n = 4,6,8 and 10. What would be a reasonable value of n. □

Initially we have P0,L,1(t = 0), and all other probabilities are equal to zero.
We now apply Equation (23) for t = 0,τS,2τS,3τS, . . . for all the P(t)-vectors.
At each step we investigate each P(t)-vector with respect to:

• Count the “number” of failures, to update the effective failure rate λE
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• Count the “number” of repairs, i.e., update the renewal rate ρE

• Move “probability mass” to reflect repairs and change of inspection
regime

For each P(t)-vector we investigate the element corresponding to the failed
state. These probabilities are added to a variable holding the accumulated
expected number of failures. A failure could have occurred anywhere in the
interval we integrate by Equation (23), and we assume an immediate repair.
However, according to our assumptions, the system will not change the point
of times where inspections are possible. Now consider time t = lτS, then there
will be a maintenance regime, say m with inspection interval τL which also
has an inspection at time t = lτS. Let p j be all the probabilities representing
failures in the set of P(t)-vectors. The probabilities are now moved according
to:

P0,L,m(t+)= P0,L,m(t−)+∑
j

p j (24)

where we assume that τL is small. Since the failure could have taken place
some time before t, it is a probability that the system was reset to an as good
as new state, and then jumped to the next deterioration level if τL is large. If
this is the case we could split

∑
j p j to state 0 and 1.

We now proceed to handle the change of maintenance regime. As before
we identify the integer value m which is such that the regime τL with cycle
m has due date for an inspection at time t = lτS. Similarly we identify the
integer value n which is such that the regime τM with cycle n has due date
for an inspection at time t = lτS.

To understand the situation, consider τL = 6,τM = 3 and τL = 1. Assume
we are considering an inspection at time t = lτS = 13 · 1 = 13. m will now
be 2 since the second τL cycle will have an inspection at times 1,7,13,19. . ..
Further n = 2 because the second τM cycle will have an inspection at times
1,4,7,10,13,16. . ..

First consider PL,m(t), i.e., the vector representing cycle m for the regime
τL. For all states i ∈LL there will be no change in the inspection regime. For
all states i ∈ LM this will correspond to shifting from regime τL to regime
τM. The vector PM,n(t) is now representing the cycle which will “take over”.
Further, for all states i ∈ LS this will correspond to shifting from regime τL
to regime τS. Finally for all states i ∈LR this will correspond to a repair. We
thus have:

Pi,M,n(t+)= Pi,M,n(t−)+Pi,L,m(t−), i ∈LM

Pi,S(t+)= Pi,S(t−)+Pi,L,m(t−), i ∈LS

P0,L,m(t+)= P0,L,m(t−)+ ∑
i∈LR

Pi,L,m(t−)

Pi,L,m(t+)= 0, i ∉LL (25)
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The notation t− and t+ is used to denote time just before and just after an
inspection respectively.

Referring to the example this means that if there is an inspection at time
t = 13 there is a τL regime with cycle m = 2 which has an inspection at time
t = 13. If it during the inspection is observed that the system is in LM, i.e.,
we find positive probabilities for Pi,L,m=2(t−), i ∈ LM we shift to a τL regime
with cycle n = 2, i.e., inspection at time t = 13 and next inspection time at
t = 13+3= 16.

Next consider PM,n(t). For all states i ∈ LM there will be no change in
the inspection regime. For all states i ∈ LS this will correspond to shifting
from regime τM to regime τS. The vector PS(t) is now representing the regime
which will “take over”, i.e.,

Pi,S(t+)= Pi,S(t−)+Pi,M,n(t−), i ∈LS

P0,L,m(t+)= P0,L,m(t−)+ ∑
i∈LR

Pi,M,n(t−)

Pi,M,m(t+)= 0, i ∉LM (26)

Finally consider PS(t). For all states i ∈ LS there will be no change in the
inspection regime. For all states other states this will correspond to a repair
to an good as new state. Note that for this regime there is not possible to be
in LL or LM. The updating of probabilities is defined by:

P0,L,m(t+)= P0,L,m(t−)+ ∑
i∈LR

Pi,S(t−)

Pi,S(t+)= 0, i ∈LR (27)

Varying intervals for inspection - Alternative approach

In the previous section the Markov differential equations were integrated
having all possible combination of sequences in the various P(t) vectors. Al-
ternatively we could integrate the differential equations but when there is a
failure or a demand for a renewal we just remove the corresponding proba-
bility mass from the P(t) vectors. This will reduce the number of P(t) vectors
to consider.

We still assume that the time intervals between inspections are either τL,
τM, or τS. Further kL and kM are integers such that τL = kLτS and τM = kMτS.
The situation now simplifies because there is only one τL regime and one τM
regime, i.e., we are not considering the cycles any more. The time dependent
probability vectors for each regime is given by PL(t), PM(t) and PS(t).

In the integration we now define h to be a vector of probabilities of a
failure in each period of length τS. Similarly g is a vector of probabilities of
a request of a renewal in each period. Let j be an index running through all
intervals of length τS. The P-vector elements are defined by P0,L(t = 0) =
1 and 0 for all other elements in the set of P(t)-vectors. The integration
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procedure is now:
For j = 1,2, . . . integrate all P(t)-vectors according to:

P(t+τS)≈P(t)[A∆t+I]2n
(28)

where ∆t = τS/2n, and where we update t = t+τS. In the formulas that follow
t− represents the time just prior to t, and t+ represents the time just after t,
i.e., when adjusting for the decision to take at time t.

Collect failure probabilities etc.:

h( j)= ∑
k∈{L,M,S}

Pr,k(t−) (29)

g( j)= ∑
i∈LR

Pi,S(t−), if j ≥ kL (30)

If ( j−1) mod kM = 0 and j > kL then (“medium” maintenance):

g( j)= g( j)+ ∑
i∈LR

Pi,M(t−) (31)

Pi,S(t+)= Pi,S(t−)+Pi,M(t−), i ∈LS (32)

End If
If ( j−1) mod kL = 0 then (“long term” maintenance):

g( j)= g( j)+ ∑
i∈LR

Pi,L(t−) (33)

Pi,S(t+)= Pi,S(t−)+Pi,L(t−), i ∈LS

Pi,M(t+)= Pi,M(t−)+Pi,L(t−), i ∈LM (34)

End If
In the procedure listed above we have not explicitly “removed” the probability
mass corresponding to a “request” for renewal. This we have to do.

The vectors h and g represent the expected number of failures and the
number of requested renewals for each interval. Let w be the vector of the
total expected number of renewals in each interval. For interval number 1
we have w(1) = g(1), for interval number 2 the expected number of renewals
is w(2) = h(2)+w(1)g(1). To find the number of expected renewals in general
we could use the discrete version of the renewal density for period j:

w( j)= g( j)+
j−1∑
i=1

w( j− i)g(i) (35)

Since we already have calculated the values in g it is straight forward to
obtain w from Equation (35).
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Note that w( j− i)g(i) represents the probability that there was a renewal
at ( j− i)τS and then there is another renewal iτS later. Here we should also
account for the possibility that it was a failure at ( j− i)τS and then there is
another renewal iτS later, hence we more correct would be:

w( j)= g( j)+
j−1∑
i=1

[w( j− i)+ f ( j− i)] g(i) (36)

where f () is described below.
Let f be the vector of expected number of failures in each period. A failure

will occur in period j in two disjoint ways, either the initial system fails in
interval j, or there was a renewal or failure in a previous period j − i, and
then this system fails after another i periods:

f ( j)= h( j)+
j−1∑
i=1

[w( j− i)+ f ( j− i)]h(i) (37)

Equation (37) may now be used to find the average effective failure rate over
a given time horizon.

Exercise 7

Implement the model above, where r = 5, λi = 0.01, the maintenance rule is
τL = 52,τM = 26,τS = 18,LL = {0},LM = {1,2},LS = {3} and LR = {4}. □

Varying intervals for inspection when inspection causes dam-
age

In some situations an inspection may cause some damage to the system. Vatn
and Pedersen (2020) present a conceptual model for degradation caused by
inspections where we still may argue that the Markovian properties holds
between inspections. In their model the failure rate after the n’th inspection
is give by:

λn = ρ

1+m0e−αn (38)

where ρ is a rate of “external shocks”, m0 is an expression of the initial re-
sistance against such shocks, and α is a measure of relative internal damage
caused by each inspection.

There is no obvious way to extend this model to a multi-state model. Two
extreme approaches could be:

1. The accumulated number of inspections, n, influence the transition
rates independent on which states have been visited, i.e., λi,n = ρ i

1+m0,i e−αi n

2. It is the number of inspections, ni, conducted while being in state i
which determines the transition rate, i.e., λi,n = ρ i

1+m0,i e−αi ni
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In the following we will take the first approach as basis. Further the ap-
proach simplifies if ρ,m0 and α are the same for all states i. This means that
the transition matrix, A will depend on the number of inspections. After n
inspection the transition matrix is then given by An, and should be rather
easy to establish if we are able to specify ρ,m0 and α. If n is known, it is
straight forward to update the time dependent solution:

P(t+τS)≈P(t)[An∆t+I]2m =P(t)En (39)

where ∆t = τS/2m and m is sufficient large. Here En is an integration matrix
approximating eAnτS . When integrating the Markov equations according to
the procedure described in the previous section we used Equation (39) for all
P-vectors with the same integration matrix E. Now this is more complicated.
It is convenient to calculate En,n = 0,1, . . . in advance before the integration
process starts since these matrices are repeatedly needed. Then we need
to keep track of n for each P-vector. For PL this is straight forward since
n = int j/kL. For PM it is more challenging. For inspections following the
medium regime the number of inspections is a stochastic variable.

Introduce a vector q where element q( j) is the probability that the medium
regime was introduced in period j. As we integrate q( j) is given by q( j) =∑

i∈LM Pi,L(t−) following the notation in Equation (34). For a given j we may
process the q-vector up to element j to find the probability that it has been
exactly 0,1,2, . . . inspections up to the current period. Let these probabili-
ties be denoted π0,π1,π2, . . . respectively. The update of the time dependent
solution is now:

PM(t+τS)= ∑
i=0,1,2,...

πiPM(t)Ei (40)

For PS it is even more challenging to keep track of the number of inspections.
A shift to the “small” interval regime could either be a result of an inspection
from the medium regime or from the long regime. We therefore need to keep
track of both of these two shifts. Let r be a vector where element r( j) is the
probability that the short interval regime was introduced in period j directly
from the long interval regime, and s be a vector where element s( j) is the
probability that the short interval regime was introduced in period j from
the medium interval regime.

For a given j we may process the q,r and s vectors up to element j to find
the probability that it has been exactly 0,1,2, . . . inspections up to the current
period given we are in the small interval regime. Let these probabilities be
denoted π0,π1,π2, . . . respectively. The update of the time dependent solution
is now:

PS(t+τS)= ∑
i=0,1,2,...

πiPS(t)Ei (41)
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The entire procedure is now similar to the previous section. That is, Equa-
tions (29) to (37) are identical. The only difference is that the integration
of the solutions in Equation (28) is replaced by the integration procedures
described above.

Exercise 8

Work out the formulas for π0,π1,π2, . . . in the two situations above. □
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