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Numerical integration of stochastic processes

Introduction

A stochastic process {X (t), t ∈Θ} is a collection of random variables. The set
Θ is called the index set of the process. For each index t in Θ, X (t) is called
the state of the process at time t. In this memo we only consider the situation
whereΘ is a continuum, that is we have a continuous-time stochastic process.

Increments

An increment of a stochastic process is the difference between two random
variables of the same stochastic process. We assume that the index set (Θ)
represents time, and an increment is how much the stochastic process changes
over a certain time period. Let {X (t), t ∈Θ} be a stochastic process and con-
sider two non-negative numbers t1 ∈ [0,∞) and t2 ∈ [0,∞) such that t1 ≤ t2,
then the difference S = X (t2)− X (t1) is defined as the increment and is a
stochastic variable.

Motivation

In maintenance modelling we often describe the state of a component with a
state variable. Let t denote the time axis, and Y (t) the state of an item at time
t. Due to many common failure mechanisms such as wear, fatigue, corrosion
it is reasonable to believe that the component deteriorates over time. The
deterioration in a time period from t to t+∆t is usually considered to be asso-
ciated with some randomness. It is therefore natural to consider {Y (t), t ∈Θ}
as a stochastic process where:

Y (t+∆t)=Y (t)+∆Y (1)

and where ∆Y is the deterioration in the interval from t to t+∆t. Typically
∆Y depends on the time t, the interval length ∆t and the state Y (t) at time t.
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Failure

In the following we assume that high deterioration corresponds to a high
value of Y (t). Further we assume that there is a deterioration limit L corre-
sponding to an unacceptable deterioration level. We now define the failure
time of the stochastic process by:

T = inf{h : Y (h)≥ L} (2)

Although not realistic, we often assume that L is fixed and known.

Positive increments

Physically there are arguments supporting that increments are positive, since
a component can not improve unless it is maintained in one way or another.
This calls for positive increments. If we have positive increments it follows:

FT (t)=Pr(T ≤ t)=Pr(Y (t)≥ L) (3)

To obtain the mean time to failure we may use:

E(T)=
∫ ∞

0
(1−FT (t))dt =

∫ ∞

0
Pr(Y (t)≤ L)dt (4)

Note that we so far only consider a system which is not maintained, and just
runs to failure.

The gamma process

Background: X is said to be gamma distributed with shape parameter α, and
rate parameter λ if the PDF is given by:

Ga(x|α,λ)=αλxα−1e−λx/Γ(α) (5)

Let Y (t) be the state of the process at time t. Y (t) follows a stationary gamma
process if:

• Y (0)= 0

• Y (s)−Y (t)∼Ga([s− t]v,u), s > t

• Y (t) has independent increments

We observe that the increment only depends on the length of the time inter-
val, not the actual time.

Assume that the component fails as soon as the state exceeds the value
L. Let T denote the time to failure. It then follows:

FT (t)=Pr(T ≤ t)=Pr(Y (t)≥ L)=Γ(vt,Lu)/Γ(vt) (6)

where Γ(a, x) is the incomplete gamma function.
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“Overshooting” in the gamma process

One should expect that E(T)= Lu/v.

Exercise

Show by numerical integration that E(T) ≈ Lu/v + 1/(2v). Also show that
Var(T)≈ Lu/v2 −1/(12v2). Hint: E(T)= ∫ ∞

0 R(t)dt, and E(T2)= ∫ ∞
0 2tR(t)dt.

This phenomenon is denoted “overshooting”. Actually the gamma process
can be seen as a process with an infinite countable number of small jumps.
Just before the threshold we may jump slightly “above” the limit. This is
called “overshooting”. This means that at the time of the failure, Y (t) > L,
hence it takes “a bit longer” to reach the limit than one should “expect”.

Non-stationary gamma process

The gamma process could be extended to a non-stationary process by letting
the shape parameter be a function of time, i.e., v(t) is the shape function, and
we have:

• Y (0)= 0

• Y (s)−Y (t)∼Ga(v(s)−v(t),u), s > t

• Y (t) has independent increments

The CDF now reads

FT (t)=Pr(T ≤ t)=Pr(Y (t)≥ L)=Γ(v(t),Lu)/Γ(v(t)) (7)

Note that the expected increment (deterioration) in the period from time t to
s is [v(s)− v(t)]/u. In maintenance modelling it is common to use a form for
the shape function like v(t)= atb, where b > 1. If this is the case, the expected
increment in a fixed length interval increases with time. This means that the
deterioration goes faster and faster as the component is ageing. It should be
mentioned that it is the age that determines the deterioration, not the state
in terms of the deterioration level.

Positive and negative increments

Although we from physical arguments would believe that increments are al-
ways non-negative, we often observe negative increments. This points to the
fact that what we measure is not necessary the real underlying deteriora-
tion level. What we could do would be to establish two stochastic processes,
{X (t), t ∈Θ} and {Y (t), t ∈Θ} where X (t) is the actual state at time t and Y (t)
is what we measure or calculate at time t. This idea is not pursued here,
instead we will for the time being focus on only {Y (t), t ∈Θ}, and then allow
increments also to be negative.
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Brownian motion and the Wiener process

Brownian motion is the random motion of particles in a fluid where collisions
between particles result in a rather chaotic behaviour. The phenomenon was
first described by Robert Brown in 1827. In mathematics, Brownian motion is
described by a continuous-time stochastic process named the Wiener process.

The Wiener process {W(t), t ∈Θ} is characterized by:

• W(0)= 0

• {W(t)} is almost surely continuous

• {W(t)} has independent increments

• W(s)−W(t)∼N (0, s− t) (for 0≤ s ≤ t)

where N (µ,σ2) denotes the normal distribution with expected value µ and
variance σ2.

The Wiener process defined above is fluctuating around zero. A related
stochastic process is defined by:

Y (t)=µt+σW(t) (8)

This process is called a Wiener process with drift µ and infinitesimal variance
σ2.

For the Wiener process with drift we have:

Y (t)−Y (s)∼N (µ(s− t),σ2(t− s)) (9)

Note that since the increments could be negative, the relation FT (t)=Pr(T ≤
t) = Pr(Y (t) ≥ L) does not hold for the Wiener process. However, it may be
shown that the time to failure, i.e., the time to the first passage of the limit L
is inverse-Gauss distributed. That is:

FT (t)=Φ
(p

λ

ν

p
t−

p
λ

1p
t

)
+Φ

(
−
p
λ

ν

p
t−

p
λ

1p
t

)
e2λ/ν (10)

and

E(T)= ν (11)

Var(T)= ν3/λ (12)

where ν= L/µ and λ= L2/σ2. In terms of the original parameters this means
that we have E(T)= L/µ and Var(T)= Lσ2/µ3.

Now, assume that we at time t observe Y (t)= yt. Let T̃t be the time from
t until a failure occurs. It then follows that T̃t is inverse-Gauss distributed
with parameters ν̃t = (L− yt)/µ and λ̃t = (L− yt)2/σ2.

Later on we will use the notation remaining useful lifetime (RUL) rather
than T̃t.
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Using Monte Carlo simulation to obtain the distribution of T

Since we know that T is inverse-Gauss distributed it seems meaningless to
find the distribution by Monte Carlo simulation (MCS). However, we will
later see that we do not have an easy expression for T in many cases, and
MCS might be an easy way out. A pseudo code for the simulation is given
below:

nSim = 1000

dt = some small time step, e.g., 1/1000 of E(T)

mu = some value

sigma = some value

L = some value

For n = 1 To nSim

Y = 0

T = 0

Do While Y < L

Y = Y + rndNormal(mu*dt,sigma*sqr(dt))

T = T + dt

Loop

Tvector(n) = T

Next n

makeHistogram(Tvector)

...we are done

where rndNormal() returns a pseudo normal distributed variable with the
given mean and standard deviation.

Integrating the Wiener process to find the first passage CDF

The use of MCS is usually not recommended if we are able to apply numerical
approaches for obtaining e.g., the PDF or CDF of a quantity of interest.

Let Y (t) denote the state (deterioration level) of an item at time t, t ≥ 0,
and let f (y|t) be the probability density function (PDF) of the deterioration
level at time t. In a small time interval from t to t+dt it is assumed that the
item deteriorates, where the deterioration is a random quantity, say Sy,t,dt,
i.e.,

Y (t+dt)=Y (t)+Sy,t,dt (13)

Now let g(s|y, t,dt) be the PDF of Sy,t,dt in a small time period from t to t+dt,
given that the degradation level at time t is y.

In the Wiener process the increments are independent both on time and
state, so therefore we will here simplify and use the notation g(s), where we
also assume that we have determined the integration step length dt.
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Now, if the PDF of the degradation level at time t is known, i.e., f (y|t),
the law of total probability gives the PDF of the deterioration level at time
t+dt:

f (y|t+dt)=
∫ ∞

−∞
f (y− s|t)g(s)ds (14)

Since we assume a failure occurs the first time the deterioration level ex-
ceeds the threshold L, we need a modified expression to use in the numerical
integration:

f (y|t+dt)=
∫ ∞

y−L
f (y− s|t)g(s)ds (15)

If we are able to integrate Equation (15) numerically, we can also obtain at
any point of time:

FT (t)=Pr(T ≤ t)= 1−
∫ L

−∞
f (y|t)d y (16)

In a numerical implementation it is convenient to store f (y|t) in an array
which is denoted f. Indexing starts from a negative number so low that
we never go below that value. The upper value could be e.g., n = 1000.
The “points” are now defined such that f(i) = f (yi|t), where yi = idy and
d y = L/n is the interval length. To find the numerical solution for each step
Equation (15) is now rewritten:

f (yi|t+dt)=∑
j

∫ jdy

( j−1)d y
f (yi − s|t)g(s)ds (17)

where we in the sum only include “valid” values.
Note that when s runs from ( j−1)d y to jdy, the argument in f (yi−s) runs

from (i− j+1)d y down to (i− j)d y. If f (y) is approximated by the linear func-
tion f (y) = a′y+ b′ in this interval, this yields f (yi − s) = −a′s+ (b′+ a′yi) =
as+ b. The parameters a′ and b′ forming the linear interpolation are cal-
culated from the values f(i-j) and f(i-j+1) obtained from the previous
iteration of Equation (15).

This means that we approximate f (yi − s|t) with a linear function on the
form as+ b and g(s) is the probability density function of the normal distri-
bution.

In many situations we are interested in calculating the “truncated expec-
tation”

∫ β
−∞ xf (x)dx. This is also the case here where we need

∫ β
α sg(s)ds. For

the normal distribution the following result may be used:
If X is normally distributed with parameters µ and σ then:∫ β

−∞
xf (x)dx =µΦ

(
β−µ

σ

)
−σφ

(
β−µ

σ

)
(18)

where Φ() and φ() are the CDF and PDF for the standard normal distribu-
tion respectively. Since efficient numerical routines exist for Φ() and φ() it is
should be rather easy to implement Equation (17).
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Exercise

Assume a Wiener process with L = 100, µ = 1 and σ = 0.3. Implement the
numerical approach indicated above to find CDF for the first passage time
(failure time). Compare with the inverse-Gauss analytical result.

Increments depending on time and/or deterioration level

In the Wiener process with constant drift the increments are independent on
both current time and current state. Some mechanisms may develop with
time. For example we could imagine that the corrosion rate increases with
time because the steel has been exposed to more and more corrosive medium.
Further Paris’ law (also known as the Paris-Erdogan equation) is a crack
growth equation stating that crack growth during one load cycle depends on
the crack length. Therefore the assumptions behind the Wiener process is
not matching our physical understanding of the failure mechanism.

In the modelling it is therefore required to investigate relevant failure
mechanism and propose a model for the increments (deterioration) based on
our physical understanding where focus on time and deterioration level are
important to consider. The geometric Brownian motion is a stochastic process
taking the deterioration level into account when the next time interval is
considered.

Geometric Brownian motion

A stochastic process {S(t)} is said to follow a GBM if it satisfies the following
stochastic differential equation (SDE):

dS(t)=µS(t)dt+σS(t)dW(t) (19)

where W(t) is a normalized Wiener process and the notation d is denoting
the increment in a small time interval of lengty dt. µ is “the percentage
drift” and σ is “the percentage volatility”. Note the slightly different nota-
tion here. We use dS(t) rather than St,dt as used in Equation (13) for the
increment. The term µS(t)dt is used to model deterministic trends, while
the term σS(t)dW(t) is used to model the stochastic behaviour. The model
has gain popularity in mathematical finance to model stock prices. The fact
that deterioration in this model is proportional to the deterioration level also
makes the model appropriate for many physical failure mechanisms.

Note that if we start with a perfect system, i.e., S(0) = 0 there will be no
development of this process! This corresponds to a situation where a perfect
piece of material will not suffer fatigue cracks! In order to use the GMB we
need to assume that the initial state is positive. Further, if the volatility
is large compared to the drift, the process might go “backwards”, and being
absorbed at zero. In fact, if µ> 0.5σ2 it seems like the process never reaches
zero. This has to be investigated further! Find some references!
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There is no known easy way to find the CDF for the first passage time.
But we may rewrite Equation (15):

f (y|t+dt)=
∫ ∞

y−L
f (y− s|t)g(s|y− s)ds (20)

where g(s|y−s) is the PDF of the increment in a small time interval of length
dt when the sate of the process at time t is y− s. From dS(t) = µS(t)dt+
σS(t)dW(t) it follows that the PDF is the normal density function with mean
value µ(y− s)dt and standard deviation σ(y− s)

p
dt.

Exercise

Write a computer program to calculate the CDF of the first passage time.
Compare the result with what you get from MCS.

RUL = Remaining Useful Lifetime

There exist many definitions of RUL, framing something like RUL is the use-
ful life left on an asset at a particular time of operation or RUL of an asset
or system is the length from the current time to the end of the useful life. For
definitions it is required to define what is meant by useful. A system may still
function, but it is considered not useful any more because the risk of complete
breakdown is considered high, the performance is low etc. To be formal, we
introduce SL as a set of unacceptable states of an item or a system. In many
cases we may define an explicit threshold, say L describing some failure limit,
or “stopping rule” for the operation of the item. Further we define Y (t) as the
condition, or health indicator of the system at time t. RUL is now defined as
a stochastic variable:

RUL(t j)= inf
{
h : Y (t j +h) ∈ SL|y(s) 6∈ SL,0≤ s ≤ t j

}
(21)

Often we consider SL as a fixed set corresponding to an explicit failure limit
for the health indicator Y (t). In other cases SL could be seen as a “moving”
set of states. For example we might use the vibration level measured in deci-
bel as a stopping rule for operation of a rotating machinery. On the other
hand, the vibration level would not necessarily be the best predictive health
indicator. For example the kurtosis of the signal is often considered as a very
good predictor. Hence, there will be no fixed set of unacceptable state for the
kurtosis which corresponds to the decibel limit. In such a case SL needs to be
considered as a stochastic set of states. In a simplified situation with only a
limit, say L, we may model this L as a stochastic variable.

Note that RUL(t j) is a stochastic variable. The terms ‘prediction’ and
‘estimation’ is therefore not straight forward. In statistics we usually use
the term ‘estimation’ in relation to model parameters, hence we should avoid
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the term ‘RUL estimation’. Also ‘RUL prediction’ is a challenging word since
there is no unambiguous interpretation. To be precise we rather define:

Pr(RUL(t j)≤ τ)= FRUL(t j)(τ) (22)

If we use the term ‘RUL prediction’ we mean E(RUL(t j)), i.e., the expected
remaining useful lifetime of the item.

When assessing Pr(RUL(t j) ≤ τ) or ‘predicting RUL’ we need to treat the
following:

• Information regarding the operational condition up to time t j

• The historical values of the health indicator, y(s),0≤ s ≤ t j

• Future operational conditions.

In most cases we assume some Markovian properties, i.e., it is only the cur-
rent value of the health indicator, y(t j), that matters. Historical and future
operational conditions will be ignored. This will be the case for the Wiener
process and the geometric Brownian motion.

We will, however, make the following comment: The uncertainty in the
remaining useful life is caused by aleatory uncertainty, epistemic uncertainty
and model uncertainty. Aleatory uncertainty is the variability, e.g., described
by σ in the above mentioned models. Epistemic uncertainty relates to the
lack of knowledge regarding the value of the model parameters, e.g., µ, σ
and SL. Model uncertainty relates to the fact that the applied model, e.g., a
Wiener process might be rather inappropriate.

In theoretical work and in exercises we often only consider aleatory un-
certainty and take for granted that we know the model parameters and the
model. In reality, when observing the health indicator of an item, we might
consider to update our knowledge regarding the model parameters. This calls
for adaptive methods. To be discussed later.

Bayesian approaches

In adaptive procedures we often update the model parameters, here µ and σ2

as we get evidence for the running process. To interpret this, assume that
we have some prior believe about the true underlying µ and σ2 before we
start observing a new system for which we would like to make decision based
on the condition. This prior believe could be established from analysis of
similar systems. When we get evidence from the actual system under consid-
eration we update this prior believe into what is denoted a posterior believe.
In the following we present some basic results from the Bayesian approach
that applies for the Gaussian distribution, see, e.g., [1] for proofs and further
explanations. For mathematical convenience it is common to work with the
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precision, η = 1/σ2 rather than variance. We thus assume that future devi-
ations, say X i ’s are ∼ N (µ,η−1). To specify our prior distribution we use a
conjugated prior denoted the normal-Gamma distribution:

NG(µ,η|µ0,κ0,α0,β0) Def= N
(
µ|µ0, (κ0η)−1)

Ga(η|α0,β0) (23)

This unusual way to describe a distribution is explained as follows. The pa-
rameter µ is unknown, and our prior knowledge regarding this parameter is
described by a normal distribution with mean value µ0 and precision given
as the product κ0η. µ0 and κ0 are numerical values, whereas η is the un-
known precision of the observations. Then next, the unknown precision η

is described by a gamma distribution with the parameters α0 and η0. The
interpretation of κ0 is then a precision factor relative to the precision in the
X i ’s. Note that µ is normally distributed conditional on the value of η. The
marginal distribution of µ is however not the normal distribution but the
student-t distribution.

To assess the numerical values for µ0,κ0,α0 and β0 we my proceed as
follows. Assume that we have observed deterioration from say m systems.
These systems are consider to be a representative sample of actual systems
we will observe in the future. For each system, i, we estimate µi and ηi =σi

−2

by standard average and square sum formulas. We then let µ0 = 1
m

∑
µi be

the average of the mean values. A preliminary precision figure is calculated
by p0 = m/

∑
(µi −µ0)2. From the ηi ’s we use standard MLE to fit a gamma

distribution with parameters α0 and β0. Finally we set κ0 = p0β0/(α0−1). The
argument for α0 −1 rather than the intuitive α0 follows from the marginal
distribution for µ which is a student-t distribution.

Now assume we start observing the process, i.e., we get values for the day
to day deterioration, say x1, x2, . . . , xn. The posterior distribution is now also
normal-Gamma distributed with parameters µn,κn,αn and βn where

µn = κ0µ0 +nx̄
κ0 +n

κn = κ0 +n

αn =α0 +n/2

βn =β0 + 1
2

n∑
i=1

(xi − x̄)2 + κ0n(x̄−µ0)2

2(κ0 +n)
(24)

This means that we get better and better knowledge regarding the true un-
derlying parameters µ and σ. Given µ and σ we can find the PDF or CDF
of the RUL. Then, by integrating over all possible values µ and σ with the
posterior normal-Gamma distribution we may obtain the unconditional PDF
or CDF as we go along, i.e., get more and more data.

As an example, consider the Wiener process with drift. Assume that the
deterioration level at time t is yt. Further assume that we have updated the
posterior hyper parameters µn,κn,αn and βn according to Equation (24).
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Pr(RUL(t|yt,µn,κn,αn,βn)≤ τ)=∫ ∞

0

∫ ∞

−∞
FIG(τ|ν,λ) fN

(
µ|µn, (κnη)−1)

fGa(η|αn,βn)dµ,dη (25)

where FIG(τ|ν,λ) is the CDF of the inverse Gauss distribution given by Equa-
tion (10), where ν= (L−yt)/µ and λ= (L−yt)2η. fN

(
µ|µn, (κnη)−1)

and fGa(η|αn,βn)
are the PDFs of the normal and gamma distributions respectively.

If we also consider the threshold L to be uncertain, we could integrate the
solution in Equation (25) over the corresponding PDF, fL(l).

How to perform discretization?

Equation (25) involves several integrals where we integrate over the proba-
bility distributions. The integrals could be replaced by sums if we perform
discretization of the distribution.

[2] propose a standard approach for approximating a continuous distri-
bution by a discrete distribution where (i) the outcome region is divided into
intervals, then (ii) for each interval a representing point is chosen, and (iii) a
probability, pi is assigned to each point. Usually the intervals are found by
dividing the outcome region into k equally probable intervals, where the rep-
resentative point is the mean of the corresponding interval, and the assigned
probability is 1/k. When generating a limited number of discrete outcomes,
some statistical properties should be specified. It is common to include the
first four central moments as properties, i.e., the moments for the discrete
stochastic variable should be as close as possible to the moments of the vari-
able we are approximating.

[3] have used such an approach if the stochastic variable is normally dis-
tributed with mean value µ and standard deviation σ. Odd numbers of points
are used, and Table 1 presents standardized distances from the mid point.
The midpoint is always given by µ. If a k point approximation is required,
the two nearest points to the mid point are given by the (left and right) dis-
tance dk,1σ from the midpoint at µ, the second nearest points to the mid point
are given by the distance dk,2σ from the midpoint at µ and so forth.

Table 1: Standardized distances from mid point

k = # of scenarios dk,1 dk,2 dk,3 dk,4 dk,5

3 1.22474
5 0.87889 1.31436
7 0.16787 0.49042 1.79758
9 0.21902 0.60872 0.67431 1.90442
11 0.26459 0.43883 0.70498 0.89051 1.98681
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