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Chapter 12 - Preventive Maintenance

This memo is based on the book: System Reliability Theory - Models, Sta-
tistical Methods, and Applications by Rausand, Barros and Hoyland (2021).
John Wiley & Sons, and in particular on Chapter 12.

The objective of this chapter is to demonstrate aspects of maintenance as
part of a reliability analysis. In addition to passively treat maintenance as
part of the reliability, we will also investigate some models for maintenance
optimization.

Note that elements from Chapter 9 is included in the following presenta-
tion.

Maintenance

Definition: The combination of all technical and management actions during
the life cycle of an item intended to retain the item in, or restore it to, a state
in which it can perform as required.

Maintenance is important to achieve a high availability. Generally avail-
ability depends on the following factors:

1. Inherent reliability (e.g., quality, type of material used and design prin-
ciples)

2. Maintainability (how easy it is to perform maintenance)

3. Maintenance support (resources, spare parts etc)

Maintenance Categories

The maintenance is often categorized into:

1. Corrective maintenance (CM), i.e., tasks performed as a result of a de-
tected item failure or fault, to restore the item to a specific condition.
CM tasks may be carried out immediately or be deferred.
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2. Preventive maintenance (PM), i.e., planned maintenance tasks performed
prior to failures. The activities are carried out in order to reduce the
probability of failure, or increase the mean time to failure (MTTF).
There are several types of PM tasks:

(a) Age-based

(b) Clock-based (calendar based)

(c) Condition-based

(d) Opportunity-based

(e) Overhaul, e.g., as part of a turnaround

3. Predictive maintenance, i.e., maintenance based on prognoses for the
degradation of the item.

Note that the categorization varies from standard to standard, e.g., some
standards include predictive maintenance as part of condition-based mainte-
nance.

Preventive Maintenance Policies

A preventive maintenance policy is a strategy that aims at minimizing the
long run cost. A policy both deals with qualitative issues like replace an
item periodically at a given age, and quantitative issues like what age that
should be. The classical maintenance policies were basically considering age
or calendar time as the decision variable to use in the optimization. In light
of “predictive maintenance” the condition of an item and future operational
loads are becoming more important in order to minimize long run cost. Ex-
amples of both types of models will be investigated.

Preventive Maintenance

Definition: Maintenance carried out at predetermined intervals or accord-
ing to prescribed criteria and intended to reduce the probability of failure or
functional degradation of an item.

Terminology and Cost Function

• Maintenance task: A specific task to maintain an item determined by
“what, where, how and when”. A task is part of the task space, A , i.e.,
A = a1,a2,a3, . . .

• Maintenance decision: A process δ to select a specific maintenance task
ai ∈A . δ depends on available data D, cost, operating conditions etc.

2



• Maintenance strategy: An overall framework describing how the main-
tenance decision problem shall be approached. A strategy embraces an
objective function, often denoted the cost function:

• Cost Function: C = C(a,δ, t,D,DOC, tcal, . . .). In addition to the main-
tenance task and the data the cost function depends on the time t of
executing the maintenance, the operational context DOC, the calendar
time tcal, . . . (e.g., inside / outside working hours) and so on. A specific
note is made regarding the notation used for the time. In the textbook
the default notation is to use t or t0 for the time axis, but in many other
presentations we use τ to denote time, for example the length of a main-
tenance interval. Also note that time may be multi-dimensional, for
example if we carry out both a failure-finding-task and a replacement-
task.

To optimize maintenance we would like to minimize the cost per unit time.
In many situations this will be to minimize the expected maintenance cost in
a renewal period divided by the expected length of the renewal period:

C = E[C(TR)]
E(TR)

Age and calendar based policies

In this presentation the maintenance interval or replacement period is de-
noted τ whereas the textbook use the notation t0. However the arguments
are similar.

Age Replacement Policy - ARP

In the age replacement policy an item is replaced or overhauled to an as-good-
as-new condition when the item reaches a specified age. We usually consider
a replacement rather than an overhaul, but the situation is the same if an
overhauled item is as-good-as-new after an overhaul. This age is denoted τ

and the challenge is to find the optimal τ, say τ∗. The situation is character-
ized by:

• The item is replaced when it reaches the age τ

• If the item fails before a periodic activity, the unit is replaced and the
“maintenance clock” is set to 0

• In Figure 1 T1 and T2 are times-to-failure where the item is replaced

• The cost of a preventive replacement is c

• The cost of a corrective replacement, i.e., replacing a failed item is c+k
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Figure 1: ARP

In the modelling we let f (t) denote the life time distribution of the item,
and we assume an item to be as-good-as-new after a replacement. The time
between two consecutive replacements is called a replacement period. This
period is stochastic, and the mean time between replacements is:

MTBR(τ)=
∫ τ

0
t f (t)dt+τPr(T > τ)= ...=

∫ τ

0
(1−F(t))dt =

∫ τ

0
R(t)dt

where T is the (potential) time to failure, and we have used partial integra-
tion.

For each replacement period we always have to pay the cost c. If a re-
placement period ends with a failure, we have to pay an extra cost k. The
probability of paying the extra cost is Pr(T ≤ τ) = F(τ). The long run cost per
unit time is then given by:

CA(τ)= Costinacycle
Expectedlengthofacycle

= c+kF(τ)∫ τ
0 [1−F(t)]dt

Numerical methods are required to minimize CA(τ)

Numerical methods for MTBR(τ)

The ARPexample.xlsm MS-Excel file available on Blackboard contains some
Visual Basic code (VBA) for numerical integration required for calculating
MTBR(τ). The essential code is:

Function MTBR(Tau As Single, alpha As Single, lambda As Single)

MTBR = NumInt( iMTBR, 0, Tau, alpha, lambda, 0)

End Function

where iMTBR() is a function returning the integrand in
∫ τ

0 (1−F(t))dt where
a Weibull distribution is assumed in the code. The NumInt() function per-
forms the numerical integration.

Note the following:

• VBA is not very advanced, therefore a special trick is used to pass a
function to another function, i.e., this is what we need if we have a
general purpose integration function we would like to apply for any
integrand function we are going to write. In more “math-oriented”
languages such as MATLAB, the use of so-called “function pointers”
is more easy to use and understand
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• When we pass a function as an argument to the NumInt() function we
need to pass the function name as a text string. The integrand is the
first argument.

• In our integration function we may then use Application.Run function
to “execute” the function specified by it’s name. This is a rather slow
approach, so a faster approach is to test the function name by a Select

Case statement.

• The second and third argument of the NumInt() function are the lower
and upper integration limit respectively

• We always need to pass exactly 3 additional arguments (parameters) to
the NumInt() function. We only need 2 of them here, but we have to
send the third one which here is set to 0 (how many parameters to pass
can be changed, but it needs hard coding in the implementation).

• The integrand function, here iMTBR() is in fact a SUBROUTINE. Since a
subroutine can not return a value, we have to use a special function
fReturn to return the value, this is shown below:

Sub iMTBR(x As Single, alpha As Single, lambda As Single, dummy As Single)

fReturn Exp(-((lambda * x) ^ alpha))

End Sub

Block Replacement Policy - BRP

In a block replacement policy we would like to replace an item at a specific
point of time. The argument for this could be that we have many identical
components, and it is more convenient to perform the preventive mainte-
nance at the same time (i.e., a block replacement). Another argument for
a block replacement policy could be that this is much easier to manage by
our computerized maintenance management system (CMMS). Figure 2 illus-
trates the situation. T1 and T2 are failure times, but they will not affect the
time of a preventive activity. It seems a bit “waste” of useful life to replace at
time 4τ but this may be defended by lower administrative cost.

Figure 2: BRP

The situation is slightly different from the ARP, and also a different cost
structure is used:

• The item is replaced every τ time unit
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• An item may fail one ore more times between periodic replacements,
if this happens it it assumed that the item is immediately repaired or
replaced to a-good-as-new condition

• The cost of a preventive replacement is c

• The cost of a corrective replacement, i.e., replacing a failed item is k

In this situation the replacement period is always τ. In each period we always
have to pay the cost c. In addition we pay the cost k for each failure. The
expected number of failures is given by the renewal function, W(τ)=E(N(τ)).
Thus the average cost per time unit is:

CB(τ)= c+kW(τ)
τ

Note that W(τ)/τ is the average expected number of failures per time unit
when the item is replaced every τ time unit. This is often written:

λE(τ)= W(τ)
τ

For small values of τ compared to the MTTF, it is unlikely that we have more
than one failure in an replacement period. This means that the expected
number of failures in a replacement period is given by the average value of
the failure rate function, z(t). If we assume that failure times are Weibull
distributed, we obtain:

λE(τ)=
(
Γ(1+1/α)

MTTF

)α
τα−1

where MTTF = Γ(1+1/α)/λ. In this situation it is straight forward to find an
analytical solution for the optimal replacement period:

τ∗ = MTTF
Γ(1+1/α)

α

√
c

(α−1)k

Note that the numerical approach is slightly different from Example 12.2 in
the textbook. The analytical solution by τ∗ deviates slightly from the exam-
ple. For example if k/c = 10 and α= 2 we obtain τ∗ = 0.36MTTF, whereas the
textbook example gave 0.39MTTF.

In Chapter 10 the fundamental renewal equation, W(t) = FT (t)+∫ t
0 W(t−

x) fT (x)dx was given, and in case we have a reasonable initial approximation,
for W(t), say W0(t) we may use the following iteration scheme:

Wi(t)= FT (t)+
∫ t

0
Wi−1(t− x) fT (x)dx

to obtain better and better solutions for W(t). We may use

W0(t)=λE(t)t =
(
Γ(1+1/α)

MTTF

)α
tα−1t =

(
Γ(1+1/α)

MTTF

)α
tα
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Degradation Models

When maintenance is condition based we will utilize the understanding of
degradation of the item to determine appropriate maintenance action and
time for maintenance.

In the following we distinguish between:

• X (t), t ≥ 0 = a stochastic process describing the actual degradation of
the item at time t

• Y (t), t ≥ 0 = a stochastic process describing the measurements of degra-
dation of the item at time t

where the measurements typically contain noise. Degradation could be crack
lengths, corrosion depths, vibration levels etc. In some situations it may be
difficult to distinguish the variation in the degradation process from the mea-
surement errors. In this presentation we will not explicitly consider imper-
fect measurements of the degradation in order to make simple presentations.
We will therefore not make an explicit definition of what is the difference
between X (t), t ≥ 0 and Y (t), t ≥ 0.

Remaining Useful Lifetime

In degradation modelling (prognostics) the term Remaining Useful Lifetime
(RUL) is introduced. RUL(t j) is a stochastic variable that measures the time
from t j until the item is not “useful” any more. “Useful” need to be defined, for
example a failure, or some other bad performance. Since RUL is a stochastic
variable, we often need the distribution function, i.e.,

Pr(RUL(t j)≤ t)= FRUL(t j)(t) (1)

where t j is the current time, and t is a future point of time, typically mea-
sured from t j as the starting point.

In the textbook various data-driven approaches are given in order to as-
sess the RUL distribution. In the following a limited number of ideas are
pursued. The definition in Equation (1) will not help us since there is no
explicit link to the condition or degradation of the item. A more explicit defi-
nition of RUL is therefore:

RUL(t j)=min
{
h : X (t j +h) ∈Xl

}
(2)

where Xl is the set of states where the item is considered not useful, and the
distribution (CDF) is defined as:

Pr(RUL(t j)≤ t)=Pr(min
{
h : X (t j +h) ∈Xl

}≤ t|T > t j,Y (t)t∈Tt j
)
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where we condition on the fact that the item is still useful (T > t j), and the
knowledge of the measurements, i.e., the various observations (Y ) at various
points in time, i.e., the set Tt j .

The Wiener and Gamma processes

The Wiener and gamma processes are popular stochastic processes used to
model degradation. Both processes assume that the change in degradation
level in a small time interval can be described by a stochastic variable. In the
Wiener process these changes can be both positive and negative, whereas in
the gamma process the changes are always positive, i.e., positive increments.
There are various pros and cons for these two processes. The gamma process
is more intuitive, since increments (degradation) is always positive which is
true for man failure mechanism, i.e., we can not improve unless some mea-
sures are taken. On the other side, measurements of the degradation often
show that the change in degradation level from one point of time to the next
may be negative. This could then be caused by measurement errors (noise).

Wiener Process with Linear Drift

Before we define a Wiener process with drift we define the Wiener process
{Wt, t ≥ 0} by:

1. W0 = 0

2. W has independent increments: for every t > 0, the future increments
Wt+u −Wt,u ≥ 0, are independent of the past values Ws, s ≤ t.

3. W has Gaussian increments: Wt+u −Wt is normally distributed with
mean 0 and variance u,Wt+u −Wt ∼N (0,u).

4. W has continuous paths: Wt is continuous in t.

Note the slightly different notation from Chapter 10, we use the notation
{Wt, t ≥ 0} rather than {W(t), t ≥ 0}.

We now define the stochastic process:

X t =µt+σWt

as a Wiener process with linear drift µ and infinitesimal variance σ2.
It follows that X t = X (t) is normally distributed with mean µt and vari-

ance σ2t. Note that in the textbook µ = a. Further X has Gaussian incre-
ments: X t+u −X t is normally distributed with mean 0 and variance u, X t+u −
X t ∼N (µu,σ2u).

It is well known from the theory of stochastic processes that the time T
when the process for the first time reach the level ℓ is inverse-Gauss dis-
tributed with parameters α= ℓ/µ and β= (ℓ/σ)2.
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For the inverse-Gauss distribution, i.e., X ∼ IG(α,β) we have:

fX (x;α;β)=
√

β

2πx3 exp
(
− β(x−α)2

2α2x

)
(3)

and

FX (x;α;β)=Φ
(√

β

α

p
x−

√
β

1p
x

)
+Φ

(
−

√
β

α

p
x−

p
λ

1p
x

)
e2β/α (4)

The expected value and variance are given by:

E(X )=α
Var(X )=α3/β

In the Wiener process with parameters µ,σ the time, T to first passage of the
threshold ℓ is then

T ∼ IG(ℓ/µ, (ℓ/σ)2)

and the expected value and variance are given by:

E(T)= ℓ/µ

Var(T)=σ2ℓ/µ3

Maintenance decision problem

We consider the following situation:

• Assume that we can observe the degradation process continuously with-
out any uncertainty

• A failure occurs if X (t)≥ ℓ for some time t

• When degradation approaches the failure limit, ℓ we will place a re-
quest to replace the component with a new component

• We assume that there is a deterministic lead time, say TL

• The objective is to determine the maintenance limit, m < l, i.e., how
close to the failure limit we dear to go

A reasonable cost equation to minimize is:

C(m)= cR + cFF(TL|m)+ cU
∫ TL

0 f (t|m)(TL − t)dt
MTBR(m)

where
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• cR = cost of renewal/replacement

• cF = cost of failure (additional cost for corrective maintenance and extra
cost for the failure event)

• cU = cost per hour down time

• F() and f () are CDF and PDF for remaining useful lifetime (RUL), given
we are at the maintenance limit m at some point

• MTBR(m) = Mean Time Between Renewals, given the decision rule to
request a maintenance at m

We now consider one maintenance cycle:

• Assume that we at time t in this cycle observe Y (t)= m

• Let RULm be the time from t until a failure occurs

• RULm is inverse-Gauss distributed with parameters αm = (ℓ−m)/µ and
βm = (ℓ− m)2/σ2, where µ and σ2 are the parameters in the Wiener
process, and ℓ is the failure threshold

• Thus, F()= F(t;αm;βm)= and f ()= f (t;αm;βm) are given by is given by
equations (4) and (3) respectively, and the nominator of C(m) may be
obtained by numerical integration

• MTBR(m)= m/µ+TL

Gamma process

A stationary gamma process Y (t), t ≥ 0 is defined by:

1. Y (0)= 0

2. Y (t), t ≥ 0 has independent and stationary increments

3. The increments in an interval (s, t] is Y (t)−Y (s) and are assumed to be
gamma distributed with parameters (t− s)α and β

Since the increments are gamma distributed, the degradation in a time inter-
val of length s− t is (t− s)α/β. Referring to the example given for the Weibull
process, we could be tempted to assume that the expected time for a new item
to reach a maintenance limit, m is MTBRm = mβ/α. It can be shown (not in
the textbook) that the mean time can be approximated by mβ/α+1/(2α). The
extra term 1/(2α) is often denoted “overshooting” effect. The idea is that the
gamma process is a jump process. This means that it will never exactly hit
the value yp but rather hit slightly above, and hence it takes some “extra”
time compared to if it was an “exact hit”.
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Compared to the Wiener process, it is however easier to find the RULm
distribution. Assume we order a maintenance when the process reaches the
value m. We then have

FRULm (t)=Pr(RULm ≤ t)=Pr(X (Tm + t)≥ ℓ|X (Tm)< ℓ, history up to Tm)

≈Pr(X (Tm + t)− X (Tm)≥ ℓ−m)=∫ ∞

ℓ−m
fαt,β(u)du = 1−Fαt,β(ℓ−m)

where Tm is the point of time when the process exceeds the maintenance
limit. fαt,β() and Fαt,β() are the PDF and CDF of the gamma distribution
with parameters αt and β respectively.

Note the approximation which is due to the fact that we never exactly
reach the maintenance limit m due to overshooting. If we pursue the main-
tenance model used in the Wiener process example, we should also take the
“overshooting” into account for the expected time to reach the maintenance
limit which could be approximated by MTBR = mβ/α+ 1/(2α)+ TL. In the
cost model we also need the PDF for the RUL in addition to the CDF derived
above.

Note the slightly different presentation in the textbook where RUL is
defined at a given point of time t j rather than the first passage time of the
maintenance limit.
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