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Chapter 13 - Reliability of Safety Systems

This memo is based on the book: System Reliability Theory - Models, Sta-
tistical Methods, and Applications by Rausand, Barros and Hoyland (2021).
John Wiley & Sons, and in particular on Chapter 13.

The international standard Functional safety of electrical/electronic/programmable
electronic safety-related systems (IEC 61508, 2010) is a generic, performance-
based standard for safety-related systems. In this chapter we present some
fundamental elements addressed in IEC 61508.

Safety Instrumented Systems and Safety Instrumented Func-
tions

A safety instrumented system (SIS) is an independent protection layer that is
installed to mitigate the risk associated with the operation of a specified haz-
ardous system, which is referred to as the equipment under control (EUC).
An example of an EUC is a process vessel.

A SIS is composed of sensors often referred to as input elements, logic
solvers and actuating items often referred to as final elements.

A safety instrumented function (SIF) is a function that is implemented by
a SIS and that is intended to achieve or maintain a safe state for the EUC
with respect to a specific process demand such as high pressure in the vessel.

A SIS has two main system functions:

1. When a predefined process demand occurs in the EUC; the deviation
shall be detected by the SIS sensors, and the required actuating items
shall be activated and fulfil their intended functions.

2. The SIS shall not be activated spuriously, that is, without the presence
of a predefined process demand in the EUC.

A demand is defined as: An event or a condition that requires a SIF to be
activated (i) to prevent an undesired event from occurring or (ii) to mitigate
the consequences of an undesired event. In the process industry, a demand is
also called a process upset or a process deviation.
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Testing of Safety Instrumented Functions

A SIS is often a passive system that is activated only when a demand oc-
curs. Failures may therefore occur and remain hidden until the system is
demanded or tested. We often referred to two main categories of testing.

• Proof Testing. To verify that a SIS is able to perform its SIFs, the sys-
tem is usually proof tested at regular intervals of length τ. The time
interval between two consecutive proof tests is often called the proof
test interval. Proof testing is also called functional testing. Dangerous
failures detected by proof testing are called dangerous undetected (DU)
failures.

• Diagnostic testing. A diagnostic test is an automatic partial test that
uses built-in self-test features to detect failures. Dangerous failures de-
tected by a diagnostic test are called dangerous detected (DD) failures.
The identified faults are announced as alarms, locally at the equipment
and in the control room.

Safety Integrity Levels (SILs)

IEC 61508 uses safety integrity as a performance measure for a SIF. Safety
integrity is the probability of a SIS satisfactorily performing the specified
SIFs under all the stated conditions within a stated period of time. IEC 61508
does not specify detailed probability values, but divides the requirements into
four safety integrity levels, SIL 1, SIL 2, SIL 3, and SIL 4, with SIL 4 being
the most reliable and SIL 1 being the least reliable.

Reliability Metrics

Probability of Failure on Demand

The probability of (dangerous) failure on demand, PFD(t) is the probability
that the SIS has a dangerous fault and that it is not able to perform its SIFs
at time t. The notion probability of failure on demand may indicate that we
are dealing with a conditional probability, given that a demand has occurred.
This is not correct and PFD(t) may be expressed as

Pr(The SIS is not able to perform its SIF at time t)

irrespective of whether a demand occurs or not. If a demand should occur at
time t, PFD(t) is the probability that the SIS fails to perform its SIF. In many
cases, it is not necessary to determine the PFD as a function of time and we
can suffice with an average value. If the SIF is proof tested after regular
intervals of length τ and the system is considered to be as-good-as-new after
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each proof test, the long-term average probability of failure on demand can
be expressed as

PFD= 1
τ

∫ τ

0
PFD(t)dt

Average Frequency of Dangerous Failures per Hour

For SIFs that are operated in high-demand or continuous mode, IEC 61508
requires that the reliability is specified by the average frequency of dangerous
failures (PFH) where the frequency is given as number of dangerous failures
per hour. The abbreviation PFH is retained from the previous version of
IEC 61508 where the metric was called “average probability of (dangerous)
failure per hour.” The idea behind using the PFH as a reliability metric is
that demands will occur so often that when a dangerous failure of the SIF
occurs, it is most likely that a demand will occur and a hazardous event will
be manifested before we can bring the EUC to a safe state.

Spurious Trip Rate and related concepts

The spurious trip rate, (STR) is the rate of spurious trips of a specified SIF
per hour.

There are three main types of spurious activation: (i) spurious activation
of individual components, (ii) spurious activation of a SIF, and (iii) spurious
shutdown of the process. To use the same concept to describe all the three
types may lead to misunderstanding and confusion. To distinguish the differ-
ent types of spurious activation, the following terms and definitions are often
used (deviates from the presentation in the textbook):

• Spurious operation. A spurious operation (SO) is an activation of the
safety function of a channel without the presence of a specified process
demand. A spurious operation of a channel is said to be an SO-failure
and the SO-failure rate is denoted λSO.

• Spurious trip. A spurious trip (ST) is an activation of a SIF without the
presence of a specified process demand.

• Spurious shutdown. A spurious shutdown is a partial or full process
shutdown without the presence of a specified process demand.

Reliability Metrics and SIL

To fulfil the requirements of a safety integrity level, a SIF in low-demand
mode must have a PFD in the corresponding interval specified in Table 1.
Similarly, a SIF in high-demand or continuous mode must have a PFH in the
corresponding interval specified in Table 1.
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Table 1: SIL requirements vs PFD/PFH

SIL Low demand mode of operation
(Average probability of failure to
perform its design function on de-
mand)

High demand mode of operation
(Average probability of failure per
hour to perform its design function)

4 10−5 ⩽ PFD <10−4 10−9 ⩽ PFH <10−8

3 10−4 ⩽ PFD <10−3 10−8 ⩽ PFH <10−7

2 10−3 ⩽ PFD <10−2 10−7 ⩽ PFH <10−6

1 10−2 ⩽ PFD <10−1 10−6 ⩽ PFH <10−5

Classification of Failures Based on Consequence and Detectability

Hardware failures can be classified as:

• Dangerous (D) failure. A dangerous failure is a failure that brings the
item into a state where it is not able to perform its safety function(s).
When the item is in such a state, it is said to have a dangerous (D) fault.

• Safe (S) failure. A safe failure is a failure that does not leave the item
in a state where it is not able to perform its safety function(s). When
the item is in such a state, it is said to have a safe (S) fault.

Dangerous and safe hardware failures/faults may also be categorized as
detected or undetected.

• Detected. A fault that is detected by automatic diagnostic testing, in-
ternal in the item or connected to a logic solver.

• Undetected. A fault that is not detected (not diagnosed) by automatic
diagnostic testing, internal in the item or connected to a logic solver.

Combining the two principles of categorization yields:

• Dangerous undetected (DU) faults. DU-faults are preventing activation
on demand and are revealed only by proof testing or when a demand
occurs. DU-faults are sometimes called dormant or hidden faults. The
DU-faults are of vital importance when calculating the SIF reliability
as they are a main contributor to SIF unavailability.

• Dangerous detected (DD) faults. DD-faults are detected short time after
they occur, by automatic diagnostic testing. The average period of un-
availability due to a DD-failure is called the mean time to restoration
(MTTR), the mean time elapsing from the DD-failure occurs until the
function is restored.

4



• Safe undetected (SU) failures. Non-dangerous failures that are not de-
tected by automatic self-testing.

• Safe detected (SD) failures. Non-dangerous failures that are detected
by automatic self-testing. In some configurations, early detection of
failures may prevent an actual spurious trip of the system.

PFD calculations for systems

To obtain PFD for a system we may follow the following procedure:

1. Find PFD for the system as a function of t in an interval, i.e., 0 ⩽ t⩽ τ,
and denote the result PFD(t)

2. To obtain PFD(t) we often utilize the system survivor function, say R(t)

3. Find the average PFD(t) by integration: PFD = 1
τ

∫ τ
0 PFD(t)dt = 1−

1
τ

∫ τ
0 R (t)dt

The classical example is one component proof tested at point of times τ,2τ,3τ,. . . ,
and time to failure is exponentially distributed, i.e., R(t)= e−λt.

PFD= 1− 1
τ

∫ τ

0
R(t)dt = 1− 1

τ

∫ τ

0
e−λtdt = 1+ 1

λτ

∫ τ

0
−λe−λtdt = 1+ 1

λτ
e−λt

∣∣∣τ
0
=

1+ 1
λτ

(
e−λτ−1

)
If λτ is small, i.e., (<0.01) we utilize that e−x ≈ 1− x+ x2/2, and inserting in
the expression for PFD(t) yields:

PFD= 1+ 1
λτ

(
e−λτ−1

)
≈ 1+ 1

λτ

(
1−λτ+ (λτ)2/2−1

)=λτ/2

Note that λ is the rate of DU-failures. In some presentations the notation
λDU is used, but for simplicity we only use λ. In general we allso need to add
contribution of DD failures, but this is not further discussed in this presenta-
tion.

Another way to obtain the same result is to use that e−x ≈ 1− x for small
x-values directly, hence we have that PFD(t) = 1− e−λt ≈ λt in an each proof
test interval:

t  

PFD(t) 

3τ 2τ τ 4τ 

 

 

 PFD »  lt/2

PFD(t) = 1- e-lt

»  lt
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which yields PFD≈λτ/2.
Such an argument we may also use for two identical components in par-

allel that are proof tested at the same time. The time dependent PFD of the
two components is found by

PFD(t)=PFD1(t) ·PFD2(t)≈ (λt)2

yielding:

PFD= 1/τ
∫ τ

0
PFD1(t) ·PFD2(t)dt ≈ 1/τ

∫ τ

0
(λt)2dt = (λτ)2

3

The PFDs of some koon systems of identical and independent components
with constant failure rate λ and test interval τ are found to be:

k\n 1 2 3 4

1
λτ

2
(λτ)2

3
(λτ)3

4
(λτ)4

5

2 – λτ (λτ)2 (λτ)3

3 – –
3λτ

2
2(λτ)2

4 – – – 2λτ

The general formula for PFD is

PFD=
(

n
n−k+1

)
(λτ)n−k+1

n−k+2

Common cause failures

The equation above assumes that components in a SIS fail independent of
each other. In practice components may fail due to common causes. Common
cause failure may be due to maintenance introduced failures, design failures,
excessive stress etc. To model common cause failures the total failure rate of
one component (i.e., rate of DU failures) is split into an independent part and
a dependent part:

λ=λ(i) +λ(c) = (1−β)λ+βλ

where β = λ(c)/λ is the common cause factor. This (beta factor) model now
yields:
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• For the dependent part, use PFD = βλτ
2

• For the independent part, use the independent failure rate (1−β)λ in
the PFD formulas of the koon system of identical and independent com-
ponents

• Add the contributions:

PFD= βλτ

2
+

(
n

n−k+1

)[
(1−β)λτ

]n−k+1

n−k+2

Staggered Testing

Now, consider the case with the two components in a 1oo2 voting having the
same λ and τ, but where the testing is not carried out simultaneously. The
situation is illustrated in Figure 1.

t

PFD(t)

a  

 

0 τ  2τ 

≈λ(t+τ-a)

≈λt

≈λ(t-a)

Figure 1: Staggered testing

Assuming that component 2 is tested at time (a) inside the test interval of
component 1, it can be shown that:

PFD(a)≈ (λτ)2

3

(
1− 3a

2τ
+ 3a2

2τ2

)
PFD(a) attains its maximum value

PFDmax ≈ (λτ)2

3
= 4

3
· λτ

2
· λτ

2

when a = 0 or a = τ, i.e., when the components are tested simultaneously.
PFD(a) attains its minimum value when a = τ/2, i.e., when component 2

is tested in the middle of the test interval of component 1:

PFDmin ≈ 5
8

(λτ)2

3
= 5

6
· λτ

2
· λτ

2
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Note that this minimum PFD is actually smaller than the PFD obtained
when simply multiplying the average PFD values of the individual compo-
nents. Compared to the case of simultaneous testing, we obtain a PFD reduc-
tion of 38% in the case of “optimal” testing. Hence, there is a great potential
for improvement in the total PFD if components are tested at different times.
This is exploited in staggered testing. Also note that the minimum value is
obtained when a = τ/2 for a 1oo2 system, for general configuration it is more
complicated to set up the optimal staggered testing regime.

More about the test regime

There are three different test regimes that are considered

• Simultaneous testing, i.e., a = 0 in Figure 1

• Optimal staggered testing, i.e., a = τ/2 in Figure 1

• Independent testing

If the components are tested independently we can calculate PFD for each
component by the formula PFDi =λiτi/2 and proceed with the structure func-
tion. Due to the independent test regime, it is reasonable to argue that the
components are independent, and we proceed with the standard approach
which here means to replace xi in the structure function with pi = 1−PFDi.
If common cause failures are relevant, we may add an artificial block to rep-
resent the common cause “part" of the components.

It is important to understand the difference between independent testing
and independent components. Independent testing means that if we know
that one of the component is in a fault state this will have no information
regarding if the other component is in a fault state. This is not true for e.g.,
simultaneous testing. For simultaneous testing we have: If one component is
known to be in a fault state it is more likely that we are at the end of the test
interval compared to if it was functioning. Hence, it is also more likely that
the other component is in a fault state because the likelihood of being at the
end of the test interval is higher. The components performance are dependent
not because of any physical reasons, only due to the testing regime.

The PDS method

The PDS method is developed by SINTEF Safety. The method has two main
features:

1. It proposes a more realistic way to model common cause failures (CCF).
In the β-factor model a CFF will always cause all components to fail.
This is often not realistic. The PDS method therefore proposes a correc-
tion factor to adjust the β-factor to account for the situation where not
all components fail due to the CCF situation.
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2. In IEC 61508 only random hardware failures are quantified. The PDS
method also quantifies systematic failures by the so-called test inde-
pendent failure term, pTIF. Systematic failures are not treated in this
presentation.

The idea behind adjusting the β-factor is that if we have a CFF causing two
components to fail, it is not certain that the remaining components will fail.
Some assumptions are then made regarding the probability that a third com-
ponent fails given that two components have failed due to a CFF and so on.
The correction factor is dependent on k and n, and is generally denoted Ckoon,
and is presented in Table 2 for some combinations:

Table 2: Ckoon correction factors

k\n n = 2 n = 3 n = 4 n = 5 n = 6
k = 1 C1oo2 = 1.0 C1oo3 = 0.5 C1oo4 = 0.3 C1oo5 = 0.20 C1oo6 = 0.15
k = 2 - C2oo3 = 2.0 C2oo4 = 1.1 C2oo5 = 0.8 C2oo6 = 0.6
k = 3 - - C3oo4 = 2.8 C3oo5 = 1.6 C3oo6 = 1.2
k = 4 - - - C4oo5 = 3.6 C4oo6 = 1.9
k = 5 - - - - C5oo6 = 4.5

A configuration specific β-factor is now calculated by multiplying the orig-
inal β-factor with the correction factor Ckoon found in Table 2. Note that the
baseline β-factor is assumed to be specified for a 1oo2 system.

PFH calculations

In the following we present the simple approximation formula proposed in
the PDS method for the probability of failure per hour, PFH:

PFH= Ckoonβλ+
n![λ(1−β)τ]n−k+1

(n−k+1)!(k−1)!τ
(1)

Note that the correction factor Ckoon only applies for the PDS method. To ob-
tain eq. (1) we treat CCF failures and independent failures individually. For
the CCF failures the results is rather obvious. For independent failures, let
(p(t,k,n) be the probability that the first n−k components are in a fault state
(assuming they are numbered 1,2, . . . ,n. A system failure will then occur if
one of remaining k components fail. We have that (p(t,k,n) ≈ [

λ(1−β)t
]n−k.

To find the contribution to the PFH for this situation we calculate the aver-
age of (p(t,k,n) in a proof test period, and multiply with kλ(1−β). Then we
need a combinatorial argument to find all the other combinations here n− k
components are in a fault state. Then combining the arguments, we obtain
eq. (1). Note that the probability that the k remaining components being in
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a functioning state is considered to be close to one, so we do not take this into
account.

STR calculations

In the following we present the simple approximation formula proposed in
the PDS method for the spurious trip rate, STR:

STR= C(n−k+1)oonβλSU

Note that the correction factor C(n−k+1)oon only applies for the PDS method.
We have here explicitly indicated that the failure rate to go into the formula
is the rate of SU failures. In some presentations λSO is used to reflect the
rate of spurious operations on component level.

Markov approach

This presentations deviates from the presentation in the textbook. We have
seen that the Markov equations may be written on matrix form:

P(t) ·A= Ṗ(t)

which may be approximated by:

Ṗ(t)= P(t+∆t)−P(t)
∆t

=P(t) ·A

yielding

P(t+∆t)=P(t)[A∆t+I]

where I is the identity matrix. This equation may now be used iteratively
with a sufficient small time interval ∆t and starting point P(0) to find the
time dependent solution. Only simple matrix multiplication is required for
this approach.

PFD

Assume that we know the state vector P(0) just after a proof test, and that
we have established a Markov transition model for the SIS with respect to a
given SIF. Then it is straight forward to find P(t) within a proof test interval
by the approach presented above. Typically the probability of being in a state
where all components are functioning (state r) is assumed to be one, and
probabilities for the other states are equal to zero. Let F be the set of failed
states with respect to the actual safety function of the SIS. We then have:

PFD= 1
τ

∫ τ

0
PFD(t)dt = 1

τ

∫ τ

0

∑
i∈F

Pi(t)dt
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The integral is replaced by a sum in the numerical calculations since we are
already solving the time dependent solution iteratively by time steps ∆t.

The following figure shows the Markov diagram for a 1oo2 system consid-
ering DU-failures only:

2 1 0
DU2(1-bDU)DU

bDUDU

Note that whereas the closed form formulas for PFD presented earlier only
takes DU failures into account. With the Markov approach, DD failures may
also be included. The Markov diagram for the 1oo2 systems now reads:

2(1-bDD)DD

3 1 0

bDUDU

45 2

bDDDD

2(1-bDU)DU DU

DD

m

m DU

DD

m

where the following system states are defined: 5: Both components OK, 4:
One OK, one DD-failure, 3: One OK, one DU-failure, 2: One DU-failure and
one DD-failure, 1: Two DD-failures, and 0: Two DU-failures.

PFH

The procedure is now similar to the approach for PFD, but we are seeking a
rate, i.e., the rate of transition from a functioning state to a fault state for the
SIS safety function is found by averaging:

PFH= 1
τ

∫ τ

0
PFH(t)dt = 1

τ

∫ τ

0

∑
i∉F

∑
j∈F

ai jPi(t)dt

where ai j is the transition rate from state i to state j measured in expected
number of transitions per hour. Note that we can interchange the integra-
tion and summation operators, i.e., we may first calculate the average state
probabilities, then calculate the appropriate transition rates.

STR

The procedure for the spurious trip rate is now similar to the approach for
PFH, but we need to consider the spurious trip system failure mode. There-
fore, we typically need to draw a new Markov diagram. Let F be the set
of system failure states representing a spurious trip state. STR is found by
averaging:

STR= 1
τ

∫ τ

0
STR(t)dt = 1

τ

∫ τ

0

∑
i∉F

∑
j∈F

ai jPi(t)dt
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