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Spare part optimization

Introduction

When optimizing models for individual components in relation to the interval
τ, it may be appropriate to consider whether it pays to have a spare part
in stock by allowing us to reduce downtime. In the analysis, we can then
compare the situation with and without spare part in stock, and find out if
the cost of inventory can be justified. In many situations, there are several
components that "fight" for the same spare part, and it becomes a question
of how many spare parts we need. We can compare this with the situation
at home where the question is how many light bulbs (of a given type) we will
normally have in stock to avoid not running out of light bulbs. In this lesson,
we’ll look at two different ways to model this:

• An analytical model where we can set up equations to calculate the
expected share of the time we lack one, two or more spare parts

• A Markov model where we can find the same answer, but where we
have more flexibility to give in different assumptions

An analytical model

• Constant failure rate (i.e., the total failure rate for many components
that need a new spare part in the event of failure) =λ

• Number of spare parts = s

• The spare parts are stored in a stock and are retrieved from there if
necessary

• Failed components are repaired in a workshop

• The number of components under repair in the workshop = X

• Repair rate for each components repaired =µ
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• We have endless number of repair men, i.e., a repairman can always
start repairing a component that comes to the workshop

Note that we have assumed that components that fail will be repaired. If we
instead have to buy new components in the event of a failure, the model will
be identical if we allow the expected time it takes to obtain a new component
= 1/µ.

Mathematical model

• According to Palm’s theorem, X ∼ Po(λ/µ)

• From the Poisson distribution it follows by introducing p(k)=Pr(X = k)= (λ/µ)k

k! e−λ/µ:

– p(0)= e−λ/µ

– p(s+1)= λ/µ
s+1 p(s)

• The probability of missing spare parts is: R(s)=Pr(X > s)=∑∞
k=s+1 p(k),

which gives:

– R(0)= 1− p(0)

– R(s+1)=∑∞
k=s+2 p(k)=∑∞

k=s+1 p(k)− p(s+1)= R(s)− p(s+1)

• The number of units we may lack is referred to as BO (Backorders):

– EBO(s)=E(BO)=E(max(0, X − s))=∑∞
k=s+1(k− s)p(k)

– EBO(s+1)=∑∞
k=s+2(k− s−1)p(k)=∑∞

k=s+1(k− s−1)p(k)

– EBO(s+1)=EBO(s)+∑∞
k=s+1(−1)p(k)=EBO(s)−R(s)

• The following recursive regime can then be used

– p(0)= e−λ/µ

– R(0)= 1− p(0)

– EBO(0)=E(X )=λ/µ

– p(s+1)= λ/µ
s+1 p(s)

– R(s+1)= R(s)− p(s+1)

– EBO(s+1)=EBO(s)−R(s)

Simple cost model

• Cost elements

– CU = Unavailability cost per unit of time

– CS = Capital cost per unit of time to keep a unit in stock
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• Cost equation, i.e., the objective function:

– C(s)= CSs+CUEBO(s)

To minimize the cost equation, C(s) is calculated for different values of s. We
must then use the recursive formulas to find EBO(s)

Exercise 1

Consider the following situation:

• Constant failure rate (i.e., the total demand rate of spare parts) = λ =
0.01

• Number of spare parts = s = decision variable

• The spare parts are stored in a stock and retrieved from there upon a
demand

• Failed components are repaired in the workshop

• Repair rate for each components repaired =µ= 0.1

• We have endless number of repair men, i.e., a repairman can always
start repairing a component that comes to the workshop

• CU = 10 000 = Unavailability cost per unit of time

• CS = 2 = Capital cost per unit of time to keep a unit in stock

Find the optimal value of s.

Markov modelling

Markov modelling is a special way to model transitions between system states.
Here we will investigate Markov models where we have a limited number of
states. Each state is given a number (identifier). It turns out appropriate to
let the identifier of a state be the number of spare parts in stock. If the stock
is empty and no one is requesting a component, we give the state number
0, while negative state numbers correspond to the number of spare parts we
have shortages, i.e., a stock-out situation.

Markov models can in some cases be solved analytically, but we usually
need a computer program to calculate the Markov models.

The following assumptions and limitations apply:

• Failures and repair times are exponentially distributed

• We can introduce different strategies, e.g., vary how many repair men
we want
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• For non-exponential repair times, we can use so-called phase type dis-
tributions. This is a little more to elaborate, but can provide reasonably
good solutions with not too much extra modelling work

• Disadvantages

– In principle, we may have infinite number of backorders, while in
the model we must limit the number of states in the transition
matrix, limiting the number of backorders the model can hold

– We must manually specify the transition matrix, which can be te-
dious when testing different strategies, with programming this is
not that difficult

– For very large systems, there may be challenges with computa-
tional speed

Model specification

• Constant failure rate =λ, i.e., demand rate of spare parts

• Number of spare parts = s

• The spare parts are stored in a stock and are retrieved from there if
necessary

• Failed components are repaired in a workshop

• The number of components under repair in the workshop = X

• Repair rate for each component being repaired =µ

• We have a limited number of repair men, and the number = m

Graphical representation

The following are transitions between states. We assume in the first place
that we have a large number of repairmen.

From the Markov model we find the steady state solution, and unavail-
ability (or expected backorder) is given by

U(s)=EBO(s)= P−1 +2P−2 +3P−3 + ... (1)

where P−1 is the element in the solution vector representing shortage of ex-
actly one item, P−2 shortage of exactly two items etc.
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Figure 1: Markov transition diagram

m-Rapairmen

In the model so far, we have assumed that we have an infinite number of
repair men. That means that the more devices that are for repair, the greater
the repair rate will be. In general, we have assumed that the repair rate is
Xµ, where X is the number of units for repair in the workshop, while µ is the
repair rate (completion rate) each repairman has.

If we only have m repairmen, the transition rate is min(X ,m)µ , where
X is most easily determined by assessing how many units are for repair for
the current state. For example, if s = 5, and we consider state -1, X will be
5+1= 6, and if we have only m = 4 repairers, the rate from state -1 to state 0
will be equal to 4µ.

The cost equation is given by:

C(s,m)= CSs+CUEBO(s)+CM m (2)

where CM is the cost per unit time of having one repairman available.
Note that a repair man is doing other tasks, so CM is not necessarily very
large.

Exercise 2

Consider the situation in Exercise 1. Solve the problem by Markov theory.
Hint: Set m =∞.

Exercise 3

Consider the situation in Exercise 1. We now also introduce CM = 0.25 equal
the cost per unit time per repairman available. Use Markov theory to find
the optimal value of s and m
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Figure 2: Step 1

A reorder policy model

The following model is similar to the lot size, reorder point policy, (r,Q), used
in inventory management. The model assumptions are:

• Constant rate of failure λ

• Mean lead time when ordering new spares =MLT

• Lead times are Gamma (Erlang) distributed with parameters α = 4,
and µ=α/MLT

• Totally m new spares are ordered when stock level equals n

Note that α= 4 may be changed to account for general value of SD(LT) =
α1/2/µ

Figure 2 illustrates the situation for taking components out of the stock.
Initially we have m+n components in stock. Then when the level reaches n,
i.e., the re-order point, an order is placed for replenishment of the stock.

To model the lead time, we introduce intermediate states representing
the gamma distribution, i.e., a transition from state n to state n1 to state n2
to state n3 and finally to state m+n. Figure 3 illustrates this.

During the lead time, there might be a new demand for a spare (i.e., a
failure). This means that stock level is reduced by one. Figure 4 illustrates
this by the transitions from n1 to (n−1)1 and so on.

Figure 5 illustrates the complete picture.

Optimization

To optimize the model, we need to specify

• cF = Fixed cost per order

• cH = Holding cost per item per unit time

From the Markov calculations we can obtain both expected holding cost,
and expected number of orders per unit time, together with the expected
number of backorders per unit time.
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Figure 3: Step 2

m + n n 0 -1 -2 -3

n1

n2

n3

l l l l l l l l

m

m

m
m

l

l

l

Figure 4: Step 3

7



m + n n 0 -1 -2 -3

n1

n2

n3

l l l l l l l l

01

02

03

-11

-12

-13

m

m

m
m

l

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m
m

l

l

l

l

l

l

l

l

l

l

l

l

l

l

Figure 5: Step 4

APPENDIX - Solving the Markov differential equations

Let ·A be the transition matrix obtained from the Markov transition diagram,
where each row correspond to departure from the corresponding sate, i.e., the
row number, and each column correspond to arrival into the corresponding
state, i.e., the column number. Further P(t) is the vector of probabilities for
each state.

From Markov theory we have:

P(t) ·A= Ṗ(t) (3)

Time dependent solution for the Markov process

To solve Equation (3) as a function of time we may use an analogy to ordinary
differential equations in one dimension and we get:

P(t)=P(0)etA

Although this is a very elegant solution, it is not very attractive since taking
the exponential of a matrix is not that easy. Computer codes such as Matlab
is required. We may, however, rewrite Equation (3) as:

Ṗ(t)= lim
∆t→0

P(t+∆t)−P(t)
∆t

=P(t) ·A

yielding

P(t+∆t)≈P(t)[A∆t+I] (4)

where I is the identity matrix. This equation may now be used iteratively
with a sufficient small time interval ∆t and starting point P(0) to find the
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time dependent solution. Only simple matrix multiplication is required. Im-
plementing a solution in for example VBA some considerations are required
regarding the step length ∆t. Choosing a too low value gives numerical prob-
lems and will also require longer computational time. Choosing a too high
step length will cause the approximation in Equation (4) to be inaccurate. A
rule of thumb will be to use a value of one tenth of the inverse value of the
highest transition rate.

Note that in Markov analysis we usually only require the time-dependent
solution for a limiting time period, and typically we would like to calculate
P(t) at values t = 0,∆t,2∆t, . . .. Using Equation (4) is therefore attractive. To
improve the approximation in Equation (4) we could use one “intermediate”
point, i.e., we could use:

P(t+∆t)≈P(t)[A∆t/2+I][A∆t/2+I] (5)

and even improve by splitting into 2n sub-intervals, yielding:

P(t+∆t)≈P(t)
[
A∆t/2n +I

]2n
(6)

Note the similarity between Equation (6) and Equation (11.106) in the text-
book. The advantage of Equation (6) is the calculation efficiency, i.e., we only
need n matrix multiplications to reduce the step-length by a factor 2n. Note
that we only calculate [A∆t/2n +I]2n

once in Equation (6), so we could afford
double precision in that part of the calculations to increase the precision. It
should be noted that there is still a trade-off between round-off errors and
accuracy in the approximation in Equation (6), and a good choice of n would
be in the range 4-6.

Steady state solution for the Markov process

In the long run we will have that Ṗ(t)→ 0 when t →∞, hence P(t) ·A= 0. We
define the steady state probabilities by the vector P = [P1,P2, . . . ,Pr], where
we have omitted the time dependency (t) to reflect that in the long run the
state probabilities are not changing any more.

To solve the steady state equations we realize that the matrix A has not
full rank due to the way have have established the diagonal elements. To
overcome this problem we remove one (arbitrary) of the equations in the fol-
lowing set of equations:

[P1,P2, . . . ,Pr] ·


a11 a12 · · · a1r
a21 a22 · · · a2r

...
... · · · ...

ar1 ar2 · · · arr

= [0,0, . . . ,0]

and replace it by the following equation:
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r∑
j=1

P j = 1

For example replacing the first equation gives:

[P1,P2, . . . ,Pr] ·


1 a12 · · · a1r
1 a22 · · · a2r
...

... · · · ...
1 ar2 · · · arr

= [1,0, . . . ,0]

In matrix form we write:

P ·A1 =b (7)

where b is a row vector of zeros except for the first element which equals one.
Note that Equation (7) is not on standard form A ·x = b. Transposing each
side on the equal symbol in Equation (7) gives AT

1 ·PT = bT which could be
solved by standard Gauss-Jordan elimination.

Note that in this section we have numbered the transition matrix from
1 to r, whereas in the spare part situation we typically have negative state
numbers, and we need to introduce an offset number in the matrix manipu-
lation.
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