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ABSTRACT: Industry 4.0 represents a trend in manufacturing which includes cyber-physical systems, the
Internet of things, cloud computing and cognitive computing. Cyber-physical systems (CPS) refers to smart
systems that include engineered interacting networks of physical and computational components. The term dig-
ital twin refers to a digital replica of physical assets, processes and systems that can be used in real time for
control and decision purposes. The digital twin representation is seen as a prerequisite for effective synchroniza-
tion of operation and maintenance within the manufacturing industry as well as in other industries. The relation
between production plans and activities and actual production can to some extent be described by deterministic.
The relation between maintenance plans and activities and the production system availability on the other and
requires probabilistic representation. The term stochastic digital twin is therefore introduced. An ambition of
Industry 4.0 is to support real-time processing whenever possible. This paper discusses elements of Industry
4.0. A case study is provided to demonstrate these terms and challenges to the mathematical modelling required
for optimal synchronization of operation and maintenance.

1 INTRODUCTION

1.1 Background

Nowadays Industry 4.0 and digitalization are fre-
quently used terms for the changes that are taking
place in industry, civil engineering, transportation,
public services and so on. The “4.0” refers to the forth
industrial revolution and points to the opportunities
communication over the internet gives with respect to
real-time control of processes at almost every level.
Industry 4.0 and related concepts as cyber-physical
systems, internet of things, cloud computing and dig-
ital twins give new opportunities for both production
and maintenance, but even more important the syn-
chronization and coordination of the two.

A huge number of papers have been published in
recent years on Industry 4.0 and cyber-physical sys-
tems. Very many of these papers present concep-
tual descriptions and frameworks, for example (Rojas,
Rauch, Vidoni, & Mat 2017, Kacem, Simeu-Abazi,
Gascard, Lemasson, & Maisonnasse 2017, Kim &
Park 2017). Few papers addressing the modelling as-
pect of synchronization of production and mainte-
nance in an Industry 4.0 have not been found. Some
relevant papers are (Hehenberger, Vogel-Heuser,
Bradley, Eynard, Tomiyama, & Achiche 2016, Up-

asani, Bakshi, Pandhare, & Lad 2017, Cheng, Zhou,
& Li 2017).

1.2 Objective

The objective of this paper is to clarify basic terms
and elaborate on basic elements of Industry 4.0 in re-
lation to real-time synchronization of operation and
maintenance. A case study from the railway sector is
used to exemplify the concepts.

2 DEFINITIONS AND CONCEPTS

Industry 4.0 is a collective term particularly used
in manufacturing to emphasize technologies and
concepts of value chain organizations. Further the
terms Cyber-Physical Systems, the Internet of Things,
Cloud computing and the Digital Twin are often used
in relation to Industry 4.0. Although the term origi-
nates from the manufacturing industry, the elements
of Industry 4.0 are relevant for most businesses.

The current usage of the term Industry 4.0 has been
criticized as essentially meaningless. The 4.0 points
to the forth industrial revolution under a premise that
digitalization is the really new thing. But why digital-
ization and not Nano technology? Further, the content



of Industry 4.0 also seems to vary from industry to in-
dustry, and from author to author. From a scientific
point of view it might therefore be better to avoid a
precise definition but rather focus on Industry 4.0 el-
ements.

The aim of this paper is to shed light on Industry
4.0 elements that are relevant for the interaction be-
tween production and maintenance. Here production
has a very broad meaning, it could cover manufactur-
ing, logistics, transportation systems, hospitals, power
supply and so on.

The Internet of Things (IoT) is the network of phys-
ical devices, production facilities, cars, air-planes and
in general items embedded with electronics, software,
sensors, actuators, and network connectivity which
enable these objects to connect and exchange data.
Each “thing” is able to inter-operate within the ex-
isting Internet infrastructure.

The IoT allows objects to be sensed or controlled
remotely across existing network infrastructure, cre-
ating opportunities for more direct integration of the
physical world into computer-based systems. When
IoT is augmented with sensors and actuators, the tech-
nology becomes an instance of the more general class
of Cyber-Physical Systems (CPS).

Cyber-physical systems (CPS) refers to smart sys-
tems that include engineered interacting networks of
physical and computational components.

Cloud computing is an information technology
paradigm that enables access to shared pools of con-
figurable system resources. The companies can fo-
cus on their core businesses instead of expending re-
sources on computer infrastructure and maintenance.
Downsides of such a strategy could be unexpected op-
erating expenses if administrators are not familiarized
with cloud-pricing models and vulnerabilities and se-
curity issues. In some presentations the term Internet
of Services (IoS) is used rather than cloud computing.

The term digital twin refers to a digital replica of
physical assets, processes and systems that can be
used in real-time for control and decision purposes.
The digital twin representation is seen as a prereq-
uisite for effective synchronization of operation and
maintenance within the manufacturing industry as
well as in other industries. The relation between pro-
duction plans and activities and actual production can
to some extent be described by deterministic mod-
els. The relations between maintenance plans and ac-
tivities and the production system availability on the
other and require probabilistic representations.

A stochastic digital twin is a computerized model
of the stochastic behaviour of a system where the
model is updated in real time based on sensor infor-
mation and other information accessed via the internet
and the use of cloud computing resources.

The digital twin concept has several implications
in the development of methods for synchronization of
operation and maintenance. A detailed digital repre-
sentation of the physical asset, from the single device

to the complex interaction of the components in the
value chain, is a first basic requirement for the digital
twin. The second requirement is a real-time two-way
communication from the physical asset to the digi-
tal twin, enabled by the industrial IoT where sensors
continuously upload data related to the current state of
operation into the cloud, paired with the capability of
remote plant control. Finally, the digital twin and the
real-time two-way communication between the twin
and the plant is expected to achieve the maximum po-
tential benefit from the digital transformation, if also
machine-learning methodologies are implemented in
this framework in order to exploit the information in
historical data and the current state, together with pre-
dictive simulation capabilities.

To be useful a digital twin needs “what-if” capa-
bilities. This means that the decision makers, i.e., hu-
mans or computers, shall be able to “ask” the digital
twin what will be the consequences of various deci-
sions. For a stochastic digital twin this means that the
“answer” is given as a set of probability statements.

A real-time model is a model where it is possible
to obtain values of system performance and system
states in real-time. With real-time we mean that data
referring to a system is analysed and updated at the
rate at which it is received. As for the digital twin a
real-time model typically connects to the “real world”
via the IoT, although other means of communication
is also possible. A real-time model is also referred to
as an on-line model.

A test model is a mathematical model describing re-
lations between future and current values of the vari-
ables of interest, but where we are not able to moni-
tor system performance and system sates in real-time.
Such a model is often referred to as an off-line model.
A test model is still valid in order to establish decision
rules to be used in real-time.

Most methods and models used in production plan-
ning and optimization as well as in maintenance
planning and optimization are off-line models. These
models can be used for establishing optimal strate-
gies, but they can not give real-time decision support.
A real-time model is often used to describe a limited
part of a system, whereas a digital twin aims at giv-
ing a complete digitalized representation of the sys-
tem and decision processes.

A real-time decision support systems is a system
where relevant data is collected and processed into
relevant information in real time. This means that the
raw data stream is automatically collected and pro-
cessed into information. Information is further inter-
preted in such a way that it gives meaningful decision
support.

A real-time execution system is a system which im-
plement algorithms to determine optimal decisions at
time t, and then execute these decisions. An exam-
ple of a real-time execution system is an automated
replenishment program (ARP). The aim is to provide
automated replenishment of products based on real-



time demand information to the production, ware-
houses and distribution processes in the supply chain.
This corresponds to real-time control in control the-
ory. Similarly for maintenance a real-time execution
system will automatically issue a work order with task
descriptions and due date.

Predictive maintenance builds on the idea to utilize
the condition of a component and the future expected
loads in order to judge the correct time for “hard”
maintenance such as overhaul, replacement of worn
parts, calibration and so on. Sensor technology is usu-
ally used to capture the condition of components or a
system, and the term ‘condition monitoring’ is often
used to describe the collection and analysis of state
data relevant for predictive maintenance. It should be
noted that manual inspection and use of “human sen-
sors” to capture noise, smell, vibration could also be
treated as condition monitoring.

3 THE DIGITAL TWINS

This section presents principal elements of the digital
twins for maintenance and production.

3.1 Maintenance

To a large extent the computerized maintenance man-
agement system (CMMS) could be seen as a digital
twin for maintenance. Principal content found in the
CMMS are the asset register covering all components,
the preventive maintenance (PM) program covering
the type of maintenance and the plan for maintenance.
The CMMS will also contain required spare parts, re-
sources and tools for conducting maintenance and so
on. But there is relevant information not found in the
CMMS which is essential for the stochastic digital
twin to be developed. First of all the CMMS has no
inherent mathematical models to be used for degrada-
tion development and time to failure. Further informa-
tion regarding component condition is often not part
of the CMMS, and needs to be obtained from stand
alone systems operated in parallel to the CMMS. Fur-
ther the CMMS is not connected to the supervisory
control and data acquisition (SCADA) system and
other systems giving information regarding process
parameters and future loads from production and the
environment.

It is beyond the scope of this presentation to write
out the details regarding the content of a stochastic
digital twin for maintenance. For illustrative purposes
and for use in the case study presented later a very
simple digital twin is presented in the following. Al-
though we in many situations can do much better,
the classical failure rate function is used as a basis.
The situation relates to so-called delay time models
(Christer 1987), often referred to as PF-interval mod-
els. The situation is as follows: A component is put
into service at time t = 0. Then after a random time
TP the component enters a degraded state. This state

is often referred to as a potential failure. It is assumed
that a condition monitoring activity can reveal such a
potential failure with some detection probability, say
1− q. If no action is taken the component will fail af-
ter another random time TPF. A Cox proportional haz-
ard rate function (Cox 1972) is used as a basis for for-
mulating the failure rate function, z(t) = f(t)/R(t)
for TPF (t is running time after the potential failure has
occurred). TPF is often referred to as the PF-interval,
and the corresponding failure rate function is:

z(t|y,x(t)) = z0(t)eβ1yeβ2x(t) (1)

where z0(t) is a baseline failure rate function, typi-
cally on the form z0(t) = αλαtα−1 in the Weibull case.
y is a vector of state variables at the point of time of
the potential failure is observed, and x(t) is the av-
erage load profile t time units ahead. βy and βx are
regression coefficient vectors established by for ex-
ample statistical analysis of data.

The failure rate function in eq. (1) is a classical
model and it could be questioned whether this model
represent at digital twin. A prerequisite for being at
least a part of a digital twin is that y could be accessed
from sensor readings and communicated via the IoT.
Further x(t) needs to be accessed in real time from
enterprise resource planning (ERP) systems and other
system for future production plans.

If eq. (1) is part of the stochastic digital twin we
may now “ask” for the probability of failure if we wait
for example t time units before the potential failure is
fixed:

F (t|y,x(t)) = 1− e−
∫ t
0 z(u|y,x(u))du (2)

Only a few aspect of the “maintenance twin” are elab-
orated here. For real applications it will be an enor-
mous amount of work to structure the raw data, infor-
mation, knowledge, models and so on to have a digi-
talized stochastic maintenance twin.

3.2 Production

There are so many aspects to deal with when it comes
to production and logistic optimization that we will
not even make an attempt to cover these in this presen-
tation. However, with respect to maintenance there are
some important aspects that we will emphasize when
setting up the digital twin for production.

3.2.1 Objective function
Operations research (OR) is the systematic approach
to optimize production under various constraints
(Phillips, Ravindran, & Solberg 1976). The objective
function, Z, is typically the quantity to maximize or
minimize with respect to some vector of decision vari-
ables, say x, i.e., Z = Z(x).



3.3 Constraints and conditions

Usually there are constraints to take into account in
the optimization, for example a set of functions, say
gj(x) should all be positive. In addition to these con-
straints we also have to optimize Z = Z(x) subject to
S, where S = [s1, s2, . . . , sn] is the state vector of the
components in the system. For example si = 1 could
represent that component i is functioning, and si = 1
represents a fault state.

It should be emphasized that both the objective
function and the constraints and conditions are chang-
ing all the time. It is therefore required to have real-
time access via the IoT to the “physical” plant, exist-
ing orders, inventory levels and so on.

3.4 Maintenance interaction

The digital twin for production will also be a stochas-
tic twin due to the probabilistic nature of production
optimization. From classical OR examples variability
in supply and demand are the main sources for un-
certainty. However, we will focus on the relation to
maintenance. Important aspects that need to be struc-
tured as part of the digital twin for production are:

• Slots for maintenance, i.e., possible opportuni-
ties for doing maintenance

• Specifications of how utilizing possible slots will
affect the objective function Z = Z(x) and the
constraints gj(x)

• Specification of possible “relaxes” in production,
for example avoid running a component with full
load if a “potential failure” has been revealed

• Specifications of how such “relaxes” will affect
the objective function Z = Z(x) and the con-
straints gj(x).

Note that the objective function Z = Z(x) in tradi-
tional OR does not include maintenance. Since the
objective of this paper is to investigate synchroniza-
tion and coordination of activities in the production
and maintenance departments, the objective function
should cover both departments.

4 CASE STUDY

4.1 Introduction

A railway example is used to demonstrate challenges
in synchronization and coordination of activities in
the production and maintenance departments. Only
few aspects are dealt with, and issues related to really
establish the stochastic digital twins and have them
to play together is not addressed in this presentation.
One aspect of “digitalization” within maintenance is
related to increased used of predictive maintenance.
Turnouts (switches) are important components in the

railway infrastructure, and failure of a turnout will
usually give large problems with the circulation, and
delays are expected. Although various condition mon-
itoring techniques exist for turnouts they have not
been implemented on the Norwegian railway network
due to high cost. In Norway Bane NOR is a state-
owned company responsible for the Norwegian na-
tional railway infrastructure. In recent years Bane
NOR has been running a test project on a simplified
predictive maintenance strategy for turnouts based on
measuring only power as function of time when the
traction motor is activated to change the position of
the turnout. The time required for changing the posi-
tion of the turnout varies from one to up to 20 sec-
onds. The idea is that the power as function of time
for each individual turnout is a “signature” for that
turnout, and deviation from that signature could be
seen as a potential failure as discussed in Section 3.1.
The main advantage of this system is that the infor-
mation is available more or less “free of charge”. The
challenge is to use it in an efficient way.

The system has been piloted over a period of almost
3 years. As part of the pilot project data have been
analysed for one of the turnouts. In a follow up project
it is planned to conduct more comprehensive analy-
ses. During the test period 11 failures were observed.
For 3 of these failures a potential failure was not ob-
served at all. Thus the reliability of the condition mon-
itoring system is only some 70%. The analysis was
conducted by visual analysis of the power/time curve
for all movements of the turnout for a period of 10
days prior to the failure. More comprehensive analy-
sis could obvious give a higher reliability.

4.2 The PF-interval model

The average PF-interval, i.e., the estimate of E(TPF)
were found to be 80 hours. However, 2 failures had
an observed PF-interval of less than 3 hours. To es-
timate the parameters in the failure rate function in
eq. (1) assuming a Weibull distribution and ignoring
covariates y and x(t) we may use the following pro-
cedure:

1. Let x be such that FT (x) = px where both x and
px are known. It can be shown that the follow-
ing iterative scheme may be used to estimate α:
αi+1 = ln(− ln(1−px))

ln(xΓ(1+1/αi)/E(TPF))

2. For the location parameter we use set: λ= Γ(1 +
1/α)/E(TPF).

In the example we had px = 2/(11 − 3) and x = 3
hours, and E(TPF) = 80 hours. Applying the proce-
dure this will give α̂ ≈ 0.49 and λ̂ ≈ 0.026. It should
be noted that α < 1 means that the PF-interval is not
very consistent. The reason for the low value of α is
that we are mixing several failure mechanisms. There
are three main failure mechanisms with quite differ-
ent characteristics here, i.e., snow and ice with short



PF-interval, lack of lubrication with a medium PF-
interval, and mechanical failure with a rather long PF-
interval. This means that we need to apply the pro-
cedure above for each separate failure mechanisms.
From the failure statistics obtained from the pilot
project we do not have sufficient number of observa-
tions to apply the procedure above. For the case study
we will proceed with assuming that the failure mech-
anism is related to lack of lubrication and without any
statistical support we set α̂ = 2 and λ̂ = 0.0246 corre-
sponding to E(TPF) = 36 hours.

4.3 The initial cost model

The operational hindrance cost of executing a “hard
maintenance” task, and the cost of a failure depends
on the position of the turnout, the time of the day, the
traffic and so on. Therefore an example situation is
presented in the following.

The location of the turnout is assumed to be on a
part of the line where access only can be made by
means of a work train. We assume a single track line
where access by the work train will disturb the cir-
culation. Investigating the time table for today four
opportunity windows have been identified. They are
shown in column 1 in Table 1 where t is the begin-
ning of the time slots. The first three of these time
slots will, however, cause delays in circulation. The
expected delay minutes for each window is shown in
column 2 in Table 1. In average there are 150 passen-
gers per train and a minute delay cost per passenger of
3 NOKs is used by Bane NOR. In addition to the delay
cost there is a fixed cost of NOK 5 000 for ordering
the work train and associated personnel cost. If the
failure can not be “caught” in due time, the expected
total delay is 3 hours. The cost equation to minimize
is:

C(t) = cPM(t) + cUF (t) (3)

where cU = 3 · 150 · 60 · 3 = 81 000 NOKs, F (t) is
given by eq. (2). Table 1 shows that in this situa-
tion one should utilize the last maintenance window
since the circulation is not affected, and the probabil-
ity of failure is still rather low. It can be shown that if

Table 1: Optimization results
t (hours) Delay (min) cPM cF cTot

3 30 18 500 441 18 941
5 15 11 750 1 218 12 968
7 10 9 500 2 370 11 870
9 0 5 000 3 880 8 880

the failure mechanism is ice and snow, and assuming
E(TPF) = 10 hours and α̂ = 2 the risk is much higher,
and one should rather use the first opportunity. Note
that the optimization here is seen from the mainte-
nance department, i.e., the only “production” related
cost is the increased cPM-cost by rushing the mainte-
nance.

4.4 The refined cost model

So far the covariates y and x(t) have been ignored.
We now introduce two variables, y which is a measure
of degradation at the point of detection of the poten-
tial failure, and x as the number of times per hour the
turnout will be operated. The proposed Cox propor-
tional hazard model reads:

z(t|y,x(t)) = z0(t)eβyy+βxxt (4)

For simplicity we have assumed that the number of
train passages per hour is constant over the day. From
the case study we do not have sufficient data to es-
timate βy and βx. We will therefore proceed with
illustrative values for these parameters. That is, for
the example we proceed with βy = ln 2 ≈ 0.69 and
βx = 0.1 ln 2 = 0.069

Now, assume that at the time of the potential fail-
ure we assess y = 0.15 by analysing the power vs time
curve from the condition monitoring system, and fur-
ther from the time table we wind x= 2. Table 2 shows
the result when the covariates are taken into account.
Compared to the original situation we have to advance
the point of time for doing hard maintenance, i.e., lu-
brication and required adjustments. The number of

Table 2: Optimization results - with covariates
t (hours) Delay (min) cPM cF cTot

3 30 18 500 822 19 322
5 15 11 750 3 422 15 172
7 10 9 500 9 812 19 312
9 0 5 000 22 562 27 562

times per hour we operate the turnout, x, is a deci-
sion variable seen from operation. Since the failure
rate function is increasing with increasing value of x,
we should investigate whether it pays off to reduce
x. Now, assume that we can completely remove the
need for operating the turnout by changing the sta-
tion where trains are crossing. This corresponds to set
x = 0 in the model. Rerunning the model shows that
the optimal value of t is t = 9. The cost has been re-
duced from 15 172 to 12 249, i.e., a total saving of
≈ NOK 3 000. However, if this causes total delays of
more than 7 minutes the delay cost will be higher than
the savings. For the railway case it seams unrealistic
that changing the crossings for the actual station for
an entire day will not cause more than 7 minutes of
total delay.

A first attempt to formalize such a “relax” strategy
is to add an extra cost term in the objective function,
cR(x):

C(t, x) = cPM(t) + cUF (t|y,x) + cR(x) (5)

The joint optimization of t and x is not pursued fur-
ther in this presentation.



5 DISCUSSION

The objective of this paper has been to investigate “In-
dustry 4.0 solutions” to facilitate synchronization and
coordination of operation and maintenance. By a “pa-
per exercise” it is rather easy to demonstrate how this
can be done, and potential savings. This section dis-
cusses challenges when such ideas are to be imple-
mented for real systems.

5.1 Slots for maintenance and consequences for the
production model

In order to synchronize and coordinate production and
maintenance it is essential that the digital twin on
request can provide time slots for maintenance and
evaluate the production consequences for each pos-
sible slots. In the example we assumed that “some”
could establish the time slots at 3,5,7 and 9 hours.
Here, “some” could be a train manager at the train
control centre (TCC). But this is not really a part of
the “digital twin” for production. To develop a digital
twin all production plans, cost optimization functions
etc. need to be implemented in a computerized system
supported with algorithms to both find possible slots,
and do calculations to evaluate the consequences. For
the railway example we are far from realizing such
systems. To the author’s knowledge the situation is
the same in most Norwegian industries.

The way forward is therefore to develop simplified
production models. For example in Norway a simpli-
fied circulation model for use by the TCC-personnel
upon traffic deviations to assist planning has been de-
veloped. The model acts like a “what-if” tool that
can simulate the consequences if crossing is moved
to station A rather than on the scheduled station B.
It is hard to spot significant achievements here unless
modelling competence within the companies is signif-
icantly increased. A vision behind “cloud computing”
is that ready to use models could just be plugged in
whenever needed. But still this is a vision.

5.2 Specification of possible “relaxes” in
production

In the example, and in many real case situations a mit-
igating measure upon a component degradation is to
reduce the load on that component to increase resid-
ual life. An even more realistic example than the rail-
way example is maintenance and operations of wind
farms. A wind farm can be difficult to access in peri-
ods of the year due to harsh weather conditions. Upon
a potential failure of for example the main bearing of
the turbine it may be better to close down the turbine
in situations with high wind loads. Although this will
reduce the power produced for some hours, it might
prevent a failure which would have made the turbine
unavailable for weeks and even months.

The digital twin for production therefore need to
respond upon request on what are the possible “re-
laxes” that could be made in production that will have
a positive impact on residual life of a component. In
addition to respond on what can be done, the digital
twin also needs to specify the consequences, for ex-
ample by quantifying the reduced production.

5.3 Maintenance models

The literature in the field of maintenance optimisation
produces every year a huge number of models. Very
few of these models are used in practice. One reason
for this is that it is hard to get access to statistical data
for estimation of model parameters. In our example
we need to estimate α, λ, βY and βX. Further this have
to be done for all failure mechanisms. We can eas-
ily imagine an enormous workload. Next, comes the
question whether the Cox-proportional hazard model
is the appropriate model to use. It is rather simple,
but it does not really take into account the physical
aspects of the phenomenon causing a failure.

The prospects for the maintenance twin is therefore
also not that promising. Again, starting with a set of
rather simplified models seems a natural first step.

5.4 Machine-learning

Machine learning is a field of computer science that
gives computers the ability to learn without being ex-
plicitly programmed. Machine-learning is quite dif-
ferent from the model based approach advocated here.
A strength of machine-learning is it’s efficiency to
produce huge amount of results without the explicit
need to do all the “hard work”. From a model based
approach perspective most of us are reluctant to just
“let the computer work out the answers”. However,
for sub-problems like establishing a failure model,
looking into machine-learning approaches are more
acceptable.

5.5 Real-time execution models

An objective of Industry 4.0 solutions is to have auto-
mated decision processes. For simple situations such
as replenishment in retail we see automated replen-
ishment policies. However for mixed problems as dis-
cussed here it is a long way to go to get trust in real-
time execution models.

6 CONCLUSIONS

This paper has discussed steps in synchronization
of operation and maintenance. An example was pro-
vided to illustrate some of the challenges and oppor-
tunities this will give. With idealized examples and
simplified assumptions we are able to carry out rele-
vant modelling. Still, these models are test (off-line)



models and integration into real-time (on-line) mod-
els require significant effort. To succeed it is recom-
manded to start with a relative small set of standard-
ized models for critical processes in the value chain
of the company.
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