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Chapter 1

Introduction

1.1 Background

The digitalization that takes place in the society today will also have an impact within mainte-

nance. Computerized maintenance management systems and advanced signal processing of

vibration data have been around for decades. However, more formalized digital models that

have predictive capabilities used to support maintenance decision are hardly used in practice.

The term ‘digital twin’ is very popular in these days, and in order to realize the potential of such

digital twins within maintenance it is required to establish maintenance models which can be

implemented as part of the “twins”. A challenge in many companies is the inherent conflict be-

tween operations and maintenance. From the operations perspective one would like to produce

as much as possible, whereas the maintenance department also require to shut down produc-

tion in order to carry out maintenance. The idea is that various digital twins can help to sort out

some of the conflicting objectives and avoid sub-optimization.

In the literature a huge number of mathematical models exist but they are not often used in

practice. Therefore it is important to establish a limited number of mathematical models that

covers in a reasonable manner the most common situations.

1.2 Objectives

The main objectives of this course compendium is to introduce the reader into maintenance

theory and apply methods, models and programming techniques to improve maintenance and

operations of offshore wind farms. In particular the reader shall:

1. Become familiar with maintenance concepts and mathematical models used in mainte-

nance planning and optimization

2. Understand interaction between maintenance and operations

2
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3. Get familiar with the concept of digital twins and develop simple digital twins demon-

strating interaction between maintenance and operations

4. Become motivated to learn more

1.3 ICT-tools and resources

A large number of mathematical models are presented in this compendium. In order to apply

these models to support maintenance it is required to have some tools. Most of the models

presented can be run from the spreadsheet mode in Excel. To support this, a dedicated Excel

fail is presented, i.e., the MaintOp.xlsm file. This file contains build-in code for many of the

models presented.

An alternative to run the models from within Excel, it is also possible to implement these

models in Python. An introduction to Python is provided for this course, and example files are

provided from the Python repository .

A set of solutions to exercises can be found in the Solution repository .

1.4 Outline

Chapter 2 describes the main elements of a computerized maintenance management system

(CMMS). A CMMS is a digital tool which is essential for efficient maintenance management.

However, a CMMS is usually a static tool containing information regarding the asset in terms of

inventory listing, preventive and corrective maintenance activity conducted, and work orders

for future activities to be conducted.

Chapter 3 presents a framework for structuring elements of so-called digital twins. The DNV-

RP-A204 (2021) recommended practice is a starting point and then various digital twins are in-

troduced and we discuss how these could interact.

Chapter 4 defines the basic maintenance terminology followed by reliability terminology

and concepts. Classical age and block replacement maintenance policies are introduced.

Chapter 5 presents the ideas behind predictive maintenance. We introduce state variables

and stochastic processes which are the basis for the maintenance models developed. The start-

ing point is the classical PF-model, but also the Wiener and gamma processes are introduced.

The concept of remaining useful lifetime (RUL) is defined.

Chapter 6 introduces a model where degradation could be defined in terms of a finite num-

ber of degradation levels. Markov theory is applied in order to establish the required mainte-

nance models.

https://folk.ntnu.no/jvatn/eLearning/commonFiles/MaintOp.xlsm
https://folk.ntnu.no/jvatn/eLearning/Python/
https://folk.ntnu.no/jvatn/xtra/maintOp/Python/
https://folk.ntnu.no/jvatn/xtra/maintOp/Solutions/
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Usually maintenance activities are grouped together to save the so-called setup cost and

Chapter 9 presents a framework for grouping of maintenance activities and how to include op-

portunistic maintenance in the optimization process.

The criticality of failures depends significantly on the downtime after a failure. Downtime

again depends on the spare part strategy, and Chapter 10 introduces several models for spare

part management.

For prioritization of renewal projects and modifications we have a long-term perspective of

investments and net present values (NPV) is often used as a way to distinguish between future

costs and cost we pay now. Chapter 11 introduces basic concepts and formulas used in life cycle

cost (LCC) analysis.

All models presented in this course require numerical values for the model parameters.

Chapter 12 gives an introduction to reliability data analysis. The starting point is life time data

analysis, but also methods for estimating model parameters in the Markov model is presented.

In recent years artificial intelligence (AI) and machine learning (ML) have been introduced

into more and more application area. Chapter 13 introduces some basic ML-concepts. AI is not

covered in this presentation.

The main focus in this course compendium is on maintenance modelling and mathemati-

cal modelling to support maintenance optimization. However, to establish a complete mainte-

nance plan we can not afford to establish a detailed maintenance model for all items. Reliability

centred maintenance (RCM) is a holistic approach to establish a preventive maintenance pro-

gram and Chapter 14 presents the main ideas of RCM.



Chapter 2

Computerized maintenance mangement

system

2.1 Introduction

A computerized maintenance management system (CMMS) is software that centralizes mainte-

nance information and facilitates the processes of maintenance operations. The folloing section

is mainly based on Pedersen (2020). To understand the objective of a CMMS it is fundamental

to understand what is maintenance management. Maintenance management is all activities of

the management that determine the maintenance objectives, strategies and responsibilities, and

implementation of them by such means as maintenance planning, maintenance control, and the

improvement of maintenance activities and economics. In particular:

• Planning, scheduling, and managing maintenance for parts, vehicles, and other essential

equipment

• Predicting potential issues and scheduling regular maintenance tasks to eliminate them

• With more real-time data, it is possible to streamline the maintenance process and make

it more cost-effective

An important aspect of maintenance management is to understand the maintenance manage-

ment loop depicted in Figure 2.1:

The core of a CMMS is its database. It has a data model that organizes information about

the assets and equipment a maintenance organization has to maintain, as well as materials and

other resources to do so. The main objectives of a CMMS are:

• Provide data for decision

• Organize and manage work orders, i.e., task describing maintenance tasks to be executed

5
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Figure 2.1: Maintenance management loop NORSOK-Z008/HAVTIL

• Report and document the technical condition, and maintenance activities carried out

• Make sure that the maintenance management loop in Figure 2.1 is “closed”

Experience shows that an efficient CMMS enables lower operations and maintenance costs due

to

• Efficient information retrieval (overview of assets)

• Efficient platform of communication (Work orders, spares management)

and more explicitly increased availability of a plant or system due to

• Preventive Maintenance just in time

• Lower MLD (efficient information retrieval, efficient communication, efficient spares or-

dering etc. )

• Lower MRT due to access to documentation

• Lower MDT

where MLD = Mean Logistic Delay, MRT = Mean active Repair Time, and MDT = Mean Down

Time.

Important modules of a CMMS are:

• Equipment register - for registering company’s equipment / assets

• Work Order module - for planning and performing efficient maintenance and modifica-

tion
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• Preventive Maintenance module - automatic generation of work orders based on mainte-

nance plan, condition monitoring - notifications

• Procurement module - spare parts management,

• Documentation module - for handling drawings, procedures, and other information.

• Analysis module - for handling statistical data on failures, remaining useful lifetime pre-

diction etc.

2.2 Equipment register

The components are registered with a number in an hierarchic system. The components be-

come and individual object with a history and information linked to it. (NORSOK Z-DP-002).

Typical information in the equipment register for an object is:

• Sizes, capacities, operations and maintenance manuals

• Location in the plant

• Preventive maintenance program

• Documentation

• Spares

2.3 Work order module

The work order module is a register of jobs planned and going on in a plant. It is important to

have jobs prioritized and done the right way, by skilled personnel using the required methods

and procedures.

• Jobs are described in individual work orders with an independent number and, well de-

fined scope, listing of activities with manpower requirements described, listing of spares

and tools needed, how to do inspection, what to report, time schedule etc.

• Good job instructions are essential, they shall be detailed enough to have the job done

according to requirements. Task analysis if often recommended to develop good job de-

scriptions.

• Include the people going to do the work in writing and outlining the work order if possible.
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Requisition control is also an important aspect, i.e., who has the authority to order work and

defining the scope. The system will only allow certain people to authorize work and use of re-

sources. A work order shall describe the plan for implementation of the work:

• Time frame for the job

• Personnel amount and type needed

• When must activities happen in time, i.e., a time interval for execution

A work order must also have a closing report, i.e., specification of:

• Time used

• What has been done

• Updated drawings - As Built

• Outstanding work

• Handover reports, signed check lists

• Important findings for continuous improvement

2.4 Preventive Maintenance module

The main purpose of preventive maintenance module is to administrate planned maintenance.

The preventive maintenance module shall be able to generate work orders automatically based

on maintenance plan, for example established by Reliability Centred Maintenance (RCM). Fur-

ther alarm lists from condition monitoring system should also be able to generate automatic

preventive maintenance work orders. A well defined preventive maintenance work order con-

tains:

• Work description

• Procedures - requirements

• A list of tools needed

• A list of spares

• Plan -time, resources, manpower etc.

• Report requirements, checklists
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2.5 Documentation module

The documentation module shall ensure easy access to documentation:

• Beware is the documentation updated and valid ? Can it be trusted?

• Can store photos, videos, paper-based info

• Can extract information online

• Easy retrieval

• Efficient way of communicating

2.6 Analysis module

The main purpose of the analysis module is to support the continuous improvement processes,

and reference is made to Analysis/Improvement in Figure 2.1. Of particular interest is to review

failures, direct failure causes and root causes. It is also important to be able to estimate perfor-

mance metrics like:

• Failure rates, and the failure rate function

• PF-intervals

• MDT

• MLD

• MRT

• Availability



Chapter 3

Digital twin

3.1 Introduction

A digital twin is a digital representation of a real-world entity or system. The implementation of

a digital twin is an encapsulated software object or model that mirrors for example a physical

system, historical and future maintenance activities, or an operational plan. Data from multiple

digital twins can be aggregated for a composite view. The notion of a digital representation

of real-world entities or systems is not new. Its heritage goes back to computer-aided design

representations of physical assets or profiles of individual customers. The difference in the latest

iteration of digital twins, adopted from Gartner (2019), is:

1. The robustness of the models with a focus on how they support specific business out-

comes such that high reliability and efficient maintenance

2. Digital twins’ link to the real world, potentially in real-time for monitoring, and control

3. The application of advanced big data analytics and AI/ML to drive new business opportu-

nities

4. The ability to interact with them and evaluate “what-if” scenarios

Experience shows that there is no common definition of the term digital twin, and the aspects

to implement in the various companies digital twin varies.

In the recommended practice on qualification and assurance of digital twins (DNV-RP-A204,

2021) it is proposed to define a “ladder” for the evolutional stages of a functional element of a

digital twin as depicted in Figure 3.1.

No reported study has been carried out to document evolutionary stages within mainte-

nance. Many companies are implementing digital twins for maintenance, but to our knowledge,

10
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Figure 3.1: Evolution stages or capabilities of a functional element of a digital twin (DNV-RP-
A204)

the main effort is on systematizing various systems on the descriptive level and to some extend

the diagnostic level.

An objective for offshore wind operation and maintenance is to reach a predictive level for

the digital twin implementations according to the stages in Figure 3.1.

Digital twin common foundation

Input
• Data streams
• Events / 

transatcion
• Master data
• Documentation
• Metadata
• Data history

Analysis
• Computation 

models
• Algorithms
• Data 

transformation
• Search 

algorithms

Output
• Interaction
• Visualization
• Reccomended 

actions
• Information
• Automation
• Search results

• Domain knowledge
• Asset information model
• Sensor infrastructure

• Cyber security
• Integration
• Change management

Decision support

Figure 3.2: Elements of a digital twin (DNV-RP-A204)

DNV-RP-A204 also presents a generic model for the elements of a digital twin. Figure 3.2

indicates a process from input through analysis to output.

To build up the input blocks in Figure 2 we need to integrate several sources, e.g., Buildiing
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information management systems (BIM), CMMS, FRACAS and GIS models.

If the ambition also is on the diagnostic and predictive evolution stages the output block

needs to be formally linked to the analysis block where input is analysed in (near) real-time.

Finally, the prescriptive and autonomy evolution stages relates to decision support in Fig-

ure 3.2, where “support” at the ultimate stage means e.g., automatic generation of maintenance

work orders, automatic shutting down of road sections or railway lines in case of bad weather,

increased degradation levels etc.

3.2 Digital twin labelling

According to DNV-RP-A204 (2021) a digital twin is defined as a Virtual representation of a system

or asset that calculates system states and makes system information available, through integrated

models and data, with the purpose of providing decision support over its lifecycle. In order to be

more explicit regarding functionality of the digital twin we propose to label the digital twins

according to the various application domains. The following labelling categories are proposed:

• The Operations DT: This DT contains operational plans, cost related to lost production,

opportunity windows for maintenance etc

• The Condition DT: This DT contains information regarding the condition of the “hard-

ware”. In principle this DT contains both current condition, and historical data

• The Risk DT: This DT contains the risk picture

• The Environment DT: This DT contains information regarding the environment, such as

temperature, precipitation, wind etc.

• The Maintenance cost DT: This DT contains the relevant mathematical models used for

optimizing maintenance, interacting with the Operations DT

We will not elaborate on technical issues, i.e., how these DT are sharing data, how we can con-

duct “what-if” queries etc.

3.3 Operations DT

The operations DT relates to operational plans, agreed deliverables, logistics etc. For example

for a raiolway system the operations DT typically contains the time table, and any planned de-

viations from the plan. For example freight trains are not necessarily scheduled in advanced.

For train operations it is also important to have a model describing how failures and planned

maintenance work on the track will affect the throughput, i.e., cancellations, delays etc. For
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road segments there will not be any time table, but important information would be daily traffic

(ÅDT) split to a required level, i.e., by months and working days vs weekends. For a wind farm

the operations DT contains plan for which turbines to operate, blade pitch, yaw drive direction

etc.

In order to respond to short term what-if queries, it is required to have a model-based foun-

dation and/or data driven based foundation if we have sufficient data for training purposes.

Long term what-if queries would typically be expected changes in traffic volume.

3.4 Condition DT

The condition DT contains information regarding the condition (health) of the assets. Part of

such information is contained in a computerized maintenance management system (CMMS).

Information from online and offline condition monitoring systems are usually not transferred

directly to the CMMS, thus the condition DT also include information from condition monitor-

ing system as well as supervisory control and data acquisition systems (SCADA). Thus, the basic

information contained in a DT is:

• The plant hierarchy with the relevant objects

• Information regarding events for each object, in particular preventive maintenance and

corrective maintenance tasks

• Condition information from condition monitoring systems, both off-line and on-line sys-

tems

• Information from the SCADA system

In this context we include both the information about the asset, e.g., a plant hierarch with

the relevant objects (physical items) and the information from condition monitoring systems,

and any event information related to objects.

Although measurements from condition monitoring systems may be available there is still a

challenge for the condition DT to respond on:

• Early warnings or anomaly detection

• Diagnostics, i.e., clarify which part is degraded, what is the degradation mechanism etc,

see Figure 3.1

• Prognostics, i.e., how will degradation evolve over time, and when will the item not be able

to perform it’s required function any more, also see Figure 3.1 for prediction.
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Typical approaches for handling these challenges are signal processing, first principle approaches

(white box), probabilistic modelling and signal processing (grey box) and machine learning

(black box).

3.5 Risk DT

For the operation and maintenance phase of a system the (static) risk models could be catego-

rized into:

• Qualitative and semi-quantitative models and techniques like bow-tie, FMECA, HAZOP,

Task Analysis and preliminary hazard analysis (PHA)

• Quantitative system risk and reliability models like fault tree analysis, event tree analysis

and Markov analysis

• Structural reliability models including assessment of loads and strengths.

In order to make what-if inquiries to the risk DT it is important to explicit link the risk models

to:

• The items and elements in the condition DT

• The environment DT

• Other factors that have an influence, and are expected to change over time, e.g., changes

in maintenance resources.

3.6 Environment DT

The environment DT shall contain all aspects of the environment, this means for example in a

real-time perspective current temperature, precipitation, wave heights and wind speed are im-

portant. But these dimensions can only partly cover the environmental impact on the asset. For

example the impact of precipitation on a railway system in terms of risk of insufficient drainage

capacity depends on existing water saturation of the soil, snow melting in surrounding areas etc.

To establish relevant and useful environment DTs is therefore very demanding. An important

element of an environment DT is weather forecasting.
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3.7 Maintenance cost DT

The maintenance DT contains information regarding planned and executed maintenance, as

well as logistics, personnel plans, how maintenance is organized etc. Cost models are required

in order to set up what-if inquires for example related to changing time and amount of mainte-

nance.

3.7.1 White-, grey- and blackbox models

The models introduced above are often denoted grey-box models because the degradation is

only partial described, this in contrast to so-called white-box models. The following character-

istics are often used

• White-box models. These are models where the physical degradation of an item is de-

scribed by the laws of physics, chemistry etc. For example a fatigue model for crack prop-

agation.

• Gray-box models. These are models where degradation is modelled by probabilistic mod-

els. In the current work Markov state models have been used, but other common models

are the Gamma, Wiener and Inverse Gauss processes. Typically the degradation incre-

ments are described by stochastic jumps. These processes may include covariates rep-

resenting physical conditions, but the relation between the increments and the physical

conditions and factors are usually established by regression methods rather than physical

laws. In Chapter 5 several probabilistic models are introduced.

• Black-box models. The black-box models aim to make predictions regarding future degra-

dation without specifying any model. These models are “trained” by large amount of data.

Typical models are machine learning methods like deep neural networks and Random

forests.

In this course we primarily use gray-box models where some of these models are motivated by

white-box models. For example there are physical degradation models stating that the degra-

dation rate increases with increasing degradation level, which is then used when setting up the

probabilistic gray-box model



Chapter 4

Preventive Maintenance

4.1 Introduction

The objective of this chapter is to demonstrate aspects of maintenance as part of a reliability

analysis. In addition to passively treat maintenance as part of the reliability, we will also investi-

gate some models for maintenance optimization.

Z Maintenance: The combination of all technical and management actions during the life cy-

cle of an item intended to retain the item in, or restore it to, a state in which it can perform as

required.

Maintenance is important to achieve a high availability. Generally availability depends on

the following factors:

1. Inherent reliability (e.g., quality, type of material used and design principles)

2. Maintainability (how easy it is to perform maintenance)

3. Maintenance support (resources, spare parts etc)

4.1.1 Maintenance Categories

The maintenance is often categorized into (Rausand et al., 2021):

1. Corrective maintenance (CM), i.e., tasks performed as a result of a detected item failure or

fault, to restore the item to a specific condition. CM tasks may be carried out immediately

or be deferred.

16
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2. Preventive maintenance (PM), i.e., planned maintenance tasks performed prior to fail-

ures. The activities are carried out in order to reduce the probability of failure, or increase

the mean time to failure (MTTF). There are several types of PM tasks:

(a) Age-based

(b) Clock-based (calendar based)

(c) Condition-based

(d) Opportunity-based

(e) Overhaul, e.g., as part of a turnaround

3. Predictive maintenance, i.e., maintenance based on prognoses for the degradation of the

item.

Note that the categorization varies from standard to standard, e.g., some standards include pre-

dictive maintenance as part of condition-based maintenance. Figure 4.1 depicts the categoriza-

tion used in EN 13306.

Maintenance

Preventive 
maintenance

Corrective 
maintenance

Predetermined 
maintenance

Condition based 
maintenance

Non predictive 
maintenance

Before failure After failure

Predictive 
maintenance Acute

Deffered
(planable)

Figure 4.1: Maintennace categories (EN 13306)

4.1.2 Preventive Maintenance Policies

A preventive maintenance policy is a strategy that aims at minimizing the long run cost. A pol-

icy both deals with qualitative issues like replace an item periodically at a given age, and quan-

titative issues like what age that should be. The classical maintenance policies were basically

considering age or calendar time as the decision variable to use in the optimization. In light of
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“predictive maintenance” the condition of an item and future operational loads are becoming

more important in order to minimize long run cost. Examples of both types of models will be

investigated.

Z Preventive Maintenance: Maintenance carried out at predetermined intervals or according

to prescribed criteria and intended to reduce the probability of failure or functional degradation

of an item.

4.1.3 Terminology and Cost Function

This section presents important terminology adapted from Rausand et al. (2021) with some ad-

ditional terms.

• Maintenance task: A specific task to maintain an item determined by “what, where, how

and when”. A task is part of the task space, A , i.e., A = a1, a2, a3, . . .

• Maintenance decision: A process δ to select a specific maintenance task ai ∈A . δ depends

on available data D, cost, operating conditions etc.

• Maintenance strategy: An overall framework describing how the maintenance decision

problem shall be approached. A strategy embraces an objective function, often denoted

the cost function:

• Cost Function: C = C (a,δ, t ,D,DOC, tcal, . . .). In addition to the maintenance task and the

data the cost function depends on the time t of executing the maintenance, the opera-

tional context DOC, the calendar time tcal, . . . (e.g., inside / outside working hours) and so

on. A specific note is made regarding the notation used for the time. In some presen-

tations t is used for the time axis, but in many other presentations we use τ to denote

time, for example the length of a maintenance interval. When we deal with maintenance

grouping we need to distinguish between the running time t and the local time xi for the

individual components. Also note that time may be multi-dimensional, for example if we

carry out both a failure-finding-task and a replacement-task.

To optimize maintenance we would like to minimize the cost per unit time. In many situations

this will be to minimize the expected maintenance cost in a renewal period divided by the ex-

pected length of the renewal period:

C = E[C (TR )]

E[TR ]
(4.1)
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The cost function in Equation (4.1) does not indicate any decision variable, i.e., which variables

the cost function should be minimized with respect to. In literature the cost function is often

denoted the objective function. The following situations are the most common:

• An item is periodically maintained at intervals of length τ. The cost function is denoted

C (τ) and the challenge is to find the value of τ that minimizes the long run cost per unit

time. The optimal value is denoted τ∗, and the minimal value of the cost function is de-

noted C∗.

• A situation has occurred where we need to make a “here-and-now” decision regarding the

next maintenance. Current time is t0 and running time from t0 is denoted t . The time

elapsed since last maintenance is x, i.e., maintenance was carried out at time t0 − x. The

objective is to determine time from t0 until next maintenance is to be carried out. The

cost function is denoted C (t ) and the objective is to find the value of t that minimizes the

cost function over some limited time horizon. In this situation we usually use a so-called

marginal cost approach.

• Also here we are going to make a “here-and-now” decision, but there are only a limited

set of opportunities for maintenance. The first opportunity is now, i.e., at time t0, the next

opportunity is at time t1 and there could be more opportunities at times t2, t3, . . . and so

on. In this situation it is often not possible to specify an explicit objective function, hence

we denoted the objective function Ct0 ,Ct1 ,Ct2 , . . . for the maintenance opportunities at

times t0, t1, t2, . . . respectively.

• The condition of an item is the critical information used to determine the next mainte-

nance. If we are able to specify the condition by a one-dimensional health indicator, say

X (t ) and assuming the item will fail when the health indicator exceeds a threshold ℓ, i.e.,

when X (t ) ≥ ℓ, then it is reasonable to carry out maintenance whenever X (t ) ≥ m, where

m < ℓ. The cost function is then a function of the maintenance limit m, i.e., C (m), and the

objective is to find the value of m that minimizes C (m). For items where the health indica-

tor only can be revealed by inspections, we also need to determine the optimal inspection

strategy, i.e., the cost function, C (τ,m) is depending both on the inspection interval τ and

the maintenance limit m.

4.1.4 Reliability terminology

To develop maintenance models that can support preventive maintenance strategies requires

a proper understanding of basic reliability terminology and models. In this section some basic

ideas are presented, and readers familiar with reliability theory can skip this section. Reliability

is about the ability to perform one or more required functions and we need some definitions:
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Z Function: An activity, process, or transformation stated by a verb and a noun that describes

what must be accomplished.

Examples of functions are provide torch, stop flow of fluid and detect gas. Further:

Z Reliability: The ability of an item to perform as required in a stated operating context and

for a stated period of time.

Note 1: The term item could be a technical system a subsystem or a component

Note 2: The required performance must be specified, by e.g., laws, customer requirements etc.

Note 3: When we describe past reliability we use the term achieved reliability, whereas the single

word reliability is always used to describe future reliability.

In some situation we will define reliability of a service, e.g., a bus service in a town:

Z Service reliability: The ability of the service to meet its supply function with the required

quality under stated conditions for a specified period of time.

4.1.5 States and transitions

Some items only operate in one state, e.g., a cooling pump may always be pumping. Other

components operate in two or more states, e.g., a safety valve may be in an open position, or

a closed position. For each state the item might have different functions. For example a valve

in an open position has two main functions, i.e., keep open and close upon demand. Failing to

perform a function is denoted a failure, and more precisely:

Z Failure: The termination of the ability of an item to perform as required.

A failure is then an event that occurs in time, whereas a fault is a state where the item is

not able to perform as required. An error is a “discrepancy between a computed, observed or

measured value or condition and the true, specified or theoretically correct value or condition”.

See Figure 4.2 for an illustration.

Z Fault of an item: A state of an item, where the item is not able to perform as required.
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Figure 4.2: Failure and fault

Z Failure mode: The manner in which a failure occurs, independent of the cause of the failure.

To understand the failure mode concept it is important to have focus on how the failure

manifest it self, and not on the cause of the failure.

4.1.6 Failure causes and effects

Z Failure cause: Set of circumstances that leads to failure.

The term ‘cause’ is a difficult term and in our context we distinguish between the “direct” or

“proximate” cause and the “root cause”, i.e.,:

Z Proximate cause: An event that occurred, or a condition that existed immediately before the

failure occurred, and, if eliminated or modified, would have prevented the failure.

Z Root cause: One of multiple factors (events, conditions, or organizational factors) that con-

tributed to or created the proximate cause and subsequent failure and, if eliminated, or modi-

fied would have prevented the failure.

Note that the direct or proximate cause on one level in a system hierarchy may be the effect

of a failure mode on a lower level. For example the proximate failure cause of a pump might

be a “bearing failure”, where again the failure mode of the bearing is to provide “friction less”

rotation of the impeller.

“Behind” the bearing failure we may find the root cause, e.g., lack of lubrication (grease). To

trace root causes we may even go further behind, e.g., lack of maintenance and even deficiency

in the maintenance management.
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4.1.7 State variable

The state variable of an item is used to specify the state of a component. In some situations we

use the state variable to enumerate the various state a component can be in, i.e., x, whereas in

other situations we will also treat the stochastic behaviour of the item, hence the state variable

will be a stochastic variable:

X (t ) =
{

1 if the item is functioning at time t

0 if the item is in a failed state at time t
(4.2)

Note that we use an uppercase letter for the state variable when treated as a stochastic variable,

and a lowercase letter when we just enumerate or consider a specific value of the state of the

item.

4.1.8 Time-to-failure

The time-to-failure, or lifetime of an item is the time elapsing from when the item is put into

operation until it fails for the first time. If we denote the time-to-failure with T then

T = min{t : X (t ) = 0}

Note that “time” sometimes is measured indirectly, e.g., by the number of kilometres driven

by a car, the number of times a switch is operated, and the number of rotations of a bearing.

Since X (t ) is a stochastic variable, the time-to-failure, T , is also a stochastic variable. To

grasp the reliability metrics we could relate these metrics to what we would observe if did ex-

periments and collected the true lifetimes of the items. In the textbook several examples of such

“empirical metrics” are given.

4.1.9 PDF and CDF

Assume that the time-to-failure T is a continuous distributed stochastic variable with prob-

ability density function f (t ) and cumulative distribution function F (t ). Figure 4.3 shows the

probability density function (PDF).

To interpret the PDF we have for small ∆t :

Pr(t < T ≤ t +∆t ) ≈ f (t )∆t

i.e., the probability that a new item will fail in the interval t to t +∆t equals the PDF at time t

multiplied with the length of the interval.

Figure 4.3 does not give any indication why the item fails. A failure mechanism is a physical
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Figure 4.3: Probability density function, f (t )

or chemical process that leads to failure. Fatigue is one such mechanism where fatigue cracks

develop into a breakage, i.e., a failure. Figure 4.4 illustrates the situation.

The lower part of the figure illustrates the crack propagation. Due to different loads the crack

propagation is considered as a stochastic process, and different trajectories are indicated. When

the crack size reach a critical value, i.e., the failure limit l in the figure, the item will fail. Since

the crack propagation is random, also the time-to-failure will be random, and the corresponding

probability density function is indicated in the upper part of the figure.

Figure 4.4: Different trajectories of crack propagation leads to stochastic time-to-failure

In some cases it is possible to measure or by other means assess the underlying process. In

such cases we know a specific trajectory as time goes by, and we may utilize this knowledge to

make more precise prediction of the time-to-failure as time goes by, that is f (t ) in Figure 4.4 will

be sharper and sharper. If the underlying development cannot be observed, the original f (t ) in

Figure 4.3 is the only knowledge we have regarding coming failures. Section 4.1.11 introduces

the failure rate function, which is the conditional probability of failure as a function of time, and

will be the expression to use in order to determine when to perform a preventive maintenance

action.

The relation between the cumulative distribution function (CDF) and the probability density
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function is given by:

F (t ) = Pr(T ≤ t ) =
∫ t

0
f (u)du

4.1.10 Survivor Function

The survivor function of an item is defined by:

R(t ) = 1−F (t ) = Pr(T > t ) =
∫ ∞

t
f (u)du

i.e., the probability that a new item will survive the time interval (0, t ].

4.1.11 Failure Rate Function

The failure rate function is essentially the conditional probability that an item will fail in a small

time interval given that it has not failed up till now. The probability that an item will fail in

(t , t +∆t ] when we know that the item is functioning at time t is:

p(t ,∆t ) = Pr(t < T ≤ t +∆t |T > t ) = Pr(t < T ≤ t +∆t )

Pr(T > t )
= F (t +∆t )−F (t )

R(t )

If we investigate the ratio p(t ,∆t )/∆t we get the failure rate function z(t ) of the item:

z(t ) = lim
∆t→0

p(t ,∆t )

∆t
= lim
∆t→0

Pr(t < T ≤ t +∆t |T > t )

∆t

= lim
∆t→0

F (t +∆t )−F (t )

∆t

1

R(t )
= f (t )

R(t )

And for small ∆t :

Pr(t < T ≤ t +∆t |T > t ) ≈ z(t )∆t

Figure 4.5: Typical shape of z(t ), i.e., a bathtub shape
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Figure 4.5 shows a typical shape of z(t ). This shape of the failure rate function is the origin

of the name bathtub curve for the failure rate function. In an early life the item may be exposed

to so-called “burn-in” failures. This could be failures related to errors during installation, or

defects during manufacturing. Then there could be a rather long period of normal operation

with low probability of failure. As time goes by “wear-out” often brings the item to it’s end of life.

It should be noted that not all items will follow the bathtub curve.

Note that f (t ) is the probability of failing at time t , whereas R(t ) is the probability of surviv-

ing time t . In z(t ) = f (t )
R(t ) we divided by R(t ), so even if the probability of failing at large times t is

low, the fraction becomes very high since we hardly survive t , i.e., the denominator R(t ) ≈ 0.

4.1.12 Effective failure rate

The effective failure rate, λE(τ), is the unconditional expected number of failures per time unit

as a function of the maintenance interval τ. Consider an item with an increasing failure rate

function z(t ) at the end of life:

• If no preventive maintenance is conducted and the item is only maintained upon a failure,

the effective failure rate will be quite high, see the left part of Figure 4.6

• If we maintain at time τ1 this corresponds to “removing” a part of the right hand side of

the bathtub curve, resulting in a lower effective failure rate, i.e., shown in the middle of

Figure 4.6

• If we further reduce the maintenance interval, say to τ2 the resulting effective failure rate

could be quite low, i.e., shown in the right part of Figure 4.6

Figure 4.6: Effective failure rate for various maintenance decisions

If the failure rate function is known we may approximate the effective failure rate by the

average failure rate function in the interval [0,τ):

λE(τ) ≈ 1

τ

∫ τ

0
z(t )d t (4.3)
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4.1.13 Age and calendar based policies

The age and block replacement policies are two classical maintenance models that can motivate

the models we will derive in this course.

Age Replacement Policy - ARP

In the age replacement policy an item is replaced or overhauled to an as-good-as-new condi-

tion when the item reaches a specified age. We usually consider a replacement rather than an

overhaul, but the situation is the same if an overhauled item is as-good-as-new after an over-

haul. The age at replacement is denoted τ and the challenge is to find the optimal τ, say τ∗. The

situation is characterized by:

• The item is replaced with a new item, or repaired to an as-good-as-new (AGAN) state when

it reaches the age τ

• If the item fails before the scheduled maintenance, the unit is replaced and the “mainte-

nance clock” is set to 0

• In Figure 4.7 T1 and T2 are failure times where the item is replaced with a new item or

repaired to an as-good-as-new state

• The cost of a preventive replacement is c

• The cost of a corrective replacement, i.e., replacing a failed item is c +k

Figure 4.7: ARP

Let f (t ) denote the time-to-failure distribution of the item and assume that the item is as-

good-as-new after a replacement. The time between two consecutive replacements is called a

replacement period. This period is stochastic, and the mean time between replacements is:

MTBR(τ) =
∫ τ

0
t f (t )d t +τPr(T > τ) = ... =

∫ τ

0
(1−F (t ))d t =

∫ τ

0
R(t )d t

where T is the (potential) time to failure, and we have used partial integration to derive the

formula.

For each replacement period we always have to pay the cost c. If a replacement period ends

with a failure, we have to pay an extra cost k. The probability of paying the extra cost is Pr(T ≤
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τ) = F (τ). The long run cost per unit time is then given by:

CA(τ) = Cost in a cycle

Expected length of a cycle
= c +kF (τ)∫ τ

0 (1−F (t ))d t

Numerical methods are required to minimize CA(τ)

Numerical methods for calculating MTBR(τ)

In case of Weibull distributed times-to-failure, the following Python code may be used to calcu-

late MTBR(τ):

from scipy.integrate import quad

import math

def iMTBR(t,alpha ,lmbda):

# Integrand , i.e., 1-F(t;alpha ,lmbda)

return math.exp(-((t*lmbda) ** alpha))

def MTBR(tau , MTTF , alpha):

lmbda=math.gamma(1+1/alpha)/MTTF

I,err = quad(iMTBR , 0, tau , args=(alpha , lmbda))

return I

print("Test: MTBR",MTBR(40 ,100 ,3))

where iMTBR() is a function returning the integrand in
∫ τ

0 (1−F (t ))d t . To minimize the objec-

tive function in Equation (4.4) we can make a plot in Python:

from scipy.integrate import quad

from numpy import arange , zeros

import math

import matplotlib.pyplot as plt

def iMTBR(t,alpha ,lmbda):

# Integrand , i.e., 1-F(t;alpha ,lmbda)

return math.exp(-((t*lmbda) ** alpha))

def MTBR(tau , MTTF , alpha):

# Carry out numerical integration by using scipy quad -function

lmbda=math.gamma(1+1/alpha)/MTTF

I,err = quad(iMTBR , 0, tau , args=(alpha , lmbda))

return I

def C_A(tau , MTTF , alpha , c, k):

# Objective functino

lmbda=math.gamma(1+1/alpha)/MTTF

return (c + k*(1-math.exp(-((tau*lmbda) ** alpha))))/ \

MTBR(tau , MTTF , alpha)

# Parameters
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MTTF = 4

alpha = 3

c = 15

k = 51

xlist=zeros([21])

ylist=zeros([21])

# Calculate objective function for relevant arguments

i=0

for tau in arange(1,3.1,0.1):

xlist[i]=tau

ylist[i]=C_A(tau ,MTTF ,alpha ,c,k)

i+=1

plt.plot(xlist , ylist)

plt.xlabel(r'$\tau$')

plt.ylabel(r'$C_A(\tau)$')

plt.title('Cost as function of maintenance interval ')

plt.savefig('ARPoutput.svg')

plt.show()

Block Replacement Policy - BRP

In a block replacement policy an item is periodically replaced at predefined points of time. The

argument for this could be that we have many identical components, and it is more convenient

to perform the preventive maintenance at the same time (i.e., a block replacement). Another

argument for a block replacement policy could be that this is much easier to manage by our

computerized maintenance management system (CMMS). Figure 4.8 illustrates the situation.

T1 and T2 are failure times, but they will not affect the time of the next preventive activity. It

seems a bit “waste” of useful life to replace at time 4τ but this may be defended by lower admin-

istrative cost.

Figure 4.8: BRP

The situation is slightly different from the ARP, and also a different cost structure is used:

• The item is replaced every τ time unit

• An item may fail one ore more times between periodic replacements, if this happens it it

assumed that the item is immediately replaced or repaired to a-good-as-new condition

• The cost of a preventive replacement is c
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• The cost of a corrective replacement, i.e., replacing a failed item is k

In this situation the replacement period is always τ. In each period we always have to pay the

cost c. In addition we pay the cost k for each failure. The expected number of failures is given

by the renewal function, W (τ) = E[N (τ)]. Thus the average cost per time unit is:

CB (τ) = c +kW (τ)

τ

Note that W (τ)/τ is the average expected number of failures per time unit when the item is

replaced every τ time unit. This is often written:

λE(τ) = W (τ)

τ

For small values of τ compared to the MTTF, it is unlikely that we have more than one failure

in an replacement period. This means that the expected number of failures in a replacement

period is given by the average value of the failure rate function, z(t ). If we assume that failure

times are Weibull distributed, we obtain:

λE(τ) =
(
Γ(1+1/α)

MTTF

)α
τα−1

where MTTF = Γ(1+1/α)/λ. In this situation it is straight forward to find an analytical solution

for the optimal replacement period:

τ∗ = MTTF

Γ(1+1/α)
α

√
c

(α−1)k

4.1.14 Marginal cost approach

The age- and block replacement policies discussed in the previous section find the optimal in-

terval by minimizing expected cost per time unit. This is the standard approach we use to op-

timize maintenance intervals. However, this approach is rather static and can not take into

account real-time information that would be relevant for optimizing the next maintenance in-

terval.

To include here-and-now information relevant for the next maintenance we often use a

marginal cost approach. That is, we consider the situation from now on until the next preven-

tive or corrective maintenance action. Let t be running time from now on, and let x be the time

elapsed since last preventive maintenance action, i.e., the “local age” of the item under consid-

eration. We now seek the value of t that minimizes the (marginal) expected cost in the interval

[0, t ] plus the average cost from t until the end of a longer time horizon to consider, i.e., up to

some time T .
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In order to obtain the average cost in the longer perspective, assume that we already applied

the ARP or BRP approach to calculate some average cost per unit time, say C∗. The challenge

is now to calculate the expected cost in the interval [0, t ]. Various aspects could be taken into

account. To demonstrate the approach, we consider the age replacement policy, and assume

that the cost of the preventive activity c depends on the time t , i.e., c = c(t ), but the additional

failure cost k is fixed. The marginal cost approach is now to minimize the objective function:

C (t ) = kF (t |x)+C∗(T − t )+C∗
∫ t

0
(t −u) f (t |x)du + c(t ) (4.4)

where F (t |x) = 1−R(t + x)/R(t ) and f (t |x) = f (t + x)/R(t ) are the conditional CDF and PDF

respectively for time-to-failure given that the item has survived up to time x. Further R(t ) and

f (t ) are the unconditional survivor function and probability density function respectively.

Note that to minimize the objective function in (4.4) we can choose any T which is larger

than the optimal t . So if we have some tentative optimal value, we could just let T be 10 times

longer. Further we need the average cost per time unit, C∗.

4.1.15 Interval optimization - General approach for non-observable failure

progression

Reliability Centred Maintenance (RCM) is a systematic approach to determine appropriate main-

tenance tasks. Chapter 14 presents the main steps required to run an RCM exercise. RCM pro-

vides a dedicated decision logic to determine the type of maintenance, and we essentially dis-

tinguish between the following situations:

1. It is possible to observe a (health) indicator that can warn about coming failures, see Fig-

ure 4.4

2. It is not possible observe such an indicator, but there are ageing mechanisms, see Fig-

ure 4.3

3. There is no indicator, there is no ageing, and the function of the item is hidden.

In this section we focus on situation 2 where we do not have any indicator, but we may use the

age of the component, the number of hours operated, the total mileage run by a car etc. to

decide upon next preventive maintenance.

Consider an item where a preventive maintenance (PM) action is conducted at predeter-

mined intervals due to an increasing failure rate function z(t ). Typically we assume that time-

to-failure is Weibull distributed where the failure rate function is given by:

z(t ) =αλαtα−1 (4.5)
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In order to find an optimal interval for the preventive maintenance action we establish the av-

erage cost per time unit as a function of the maintenance interval, say τ:

C (τ) = cPM/τ+λE(τ) [cCM + cEP + cES] (4.6)

where cPM is the cost of a preventive maintenance action (to prevent failures), cCM is the cost

of a corrective maintenance (CM) action if a failure occurs, λE(τ) is the effective failure rate, i.e.,

the expected number of failures per time unit when the component is preventively maintained

every τ time unit, cEP is the expected production losses upon a component failure, and finally

cES is the expected safety cost upon a component failure, including material damages and envi-

ronmental losses.

There is no general formula for obtaining cEP and cES upon an item failure. Within the do-

main of safety and reliability analysis there are several models and methods that apply. More

information about these methods can be found in the course ntnu.no/studier/emner/PK6031.

Often we are able to make a direct argument to establish cEP and cES, and for the production

losses we are often able to specify the cost by:

cEP = pP (cDMDT+ cT) (4.7)

where pP is the probability that a failure of the actual item results in a production loss, cD is the

production loss per hour (in NOKs or Euros) given a system failure, MDT is the mean down time

upon a failure and cT is the trip cost, i.e., a cost that is paid, but independent of the duration of

the downtime.

Often the mean down time is split into MDT = MLD+MRT where MLD is the mean logistic

delay time, and MRT is the mean active repair time. For offshore wind MLD would usually be

the dominating factor.

To minimize the objective function in Equation (4.6), we usually let cU = cCM + cEP + cES de-

note the expected unplanned cost upon a failure to simplify.

The effective failure rate depends on the time-to-failure distribution of the item. The Weibull

distribution is a widely used distribution for ageing components. In the case of Weibull dis-

tributed times-to-failure we may find approximation formulas for the effective failure rate. If we

know the mean time to failure, MTTF (without maintenance), and the ageing parameter, α, of

the time-to-failure distribution of the item, the effective failure rate may be approximated by:

eqStream: Effective failure rate approximation:

λE(τ) =
(
Γ(1+1/α)

MTTF

)α
τα−1 (4.8)

where Γ(·) is the gamma function. The approximation is good when the maintenance interval

https://www.ntnu.no/studier/emner/PK6031
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is small compared to the MTTF. If the maintenance interval is approaching the MTTF value, the

approximation in Equation (4.8) is not very accurate for large values of τ, and we might use the

following improved approximation, see Kwang Pil et al. (2008):

λE(τ) =
(
Γ(1+1/α)

MTTF

)α
τα−1

[
1− 0.1ατ2

MTTF2 + (0.09α−0.2)τ

MTTF

]
(4.9)

The approximated effective failure rate in Equation (4.9) is usually sufficient, but if higher pre-

cision is required we may use renewal theory. From the fundamental renewal equation we have

W (t ) = FT (t )+∫ t
0 W (t − x) fT (x)d x. Here W (t ) is the expected number of events up to time t in

a renewal process. In case we have a reasonable initial numerical approximation for W (t ), say

W0(t ) we may use the following iteration scheme:

Wi (t ) = FT (t )+
∫ t

0
Wi−1(t −x) fT (x)d x

to obtain better and better solutions for W (t ). As a starting point we use:

W0(t ) =λE(t )t =
(
Γ(1+1/α)

MTTF

)α
tα−1t =

(
Γ(1+1/α)

MTTF

)α
tα

In the following we assume that the approximation in Equation (4.8) is sufficient for our pur-

pose. By equating the derivative of C (τ) in Equation (4.6) to zero, we find the optimal interval to

be:

τ∗ = MTTF

Γ(1+1/α)

(
cPM

cU(α−1)

)1/α

(4.10)

Example 4.1 Wind turbine

We are considering a wind turbine of 10 MW. In average we assume that the output effect is 6

MW, where wake effects, periods of low wind speed etc. cause reduction in the produced energy.

The average loss per kilowatt hours (kwh) is assumed to be 0.5 NOKs. An electrical motor is used

for jawing control. In case of a failure of the motor we assume that we have to shut down the

wind turbine until the motor is repaired or replaced.

The motor is assumed to have an increasing failure rate function, where the ageing is rather

strong, i.e., the ageing parameter is α= 3.

MTTF is assumed to be five years if no preventive maintenance is carried out. Under normal

weather conditions we the mean downtime is 12 hours. The cost of a preventive replacement of

the motor is cPM = 15 000 NOKs. The cost of a corrective replacement is cCM = 30 000 NOKs. In

addition to the cost of repairing the failed motor, there is a loss of electricity production.

In order to apply Equation (4.10) we need the PM cost, i.e., cPM = 15 000 NOKs, the CM cost,
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i.e., cCM = 30 000 NOKs, and the downtime cost, i.e., cEP = MDT ·0.5 ·6 000 = 36 000 NOKs. Total

(unplanned) cost upon a failure is thus cU = cCM + cEP = 66 000 NOKs. Note that in this example

pP = 1, and cT = 0. The optimal interval is given by:

τ∗ = MTTF

Γ(1+1/α)

(
cPM

cU(α−1)

)1/α

= 4

Γ(1+1/3)

(
15 000

66 000 ·3

)1/3

≈ 2.7 years

Alternatively, we could solve the problem by a minimization routine, for example by the Solver

in Excel. The cost function to minimize is:

C (τ) = cPM/τ+λE(τ)cU

□
Often we introduced the pre-calculated effective failure rates:

• Low ageing: λE(τ) = 0.79τ/MTTF2

• Medium ageing: λE(τ) = 0.71τ2/MTTF3

• Strong ageing: λE(τ) = 0.67τ3/MTTF4

Since α= 3 we may alternatively use the formula for medium ageing when solving the problem

in e.g., Excel.

As a third option, we could also make a plot of the cost function. In this case we might

visualize all cost elements, i.e., we use

C (τ) = cPM/τ+λE(τ)cU = cPM/τ+λE(τ) (cCM + cEP)

Figure 4.9 depicts the cost elements. Hours is the time unit on the x-axis, and the optimal value

is around 24 000 which is slightly less than three years as found by the analytical solution. Note

that expected production losses dominate the corrective maintenance cost.

4.1.16 Digital twin

The objective function in Equation (4.6) is used to find an optimal maintenance interval for

items where we cannot utilize the condition of the item, but where there is ageing. The result is

an interval which in the long run is optimal. In some cases, there are specific conditions which

will affect our decision regarding maintenance. For example:

• The maintenance window is “closed” at the optimal point of time for maintenance
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Figure 4.9: Cost function for the yaw motor

• The preventive maintenance cost is temporarily deviating from the average preventive

maintenance

• Production losses upon a failure is temporarily deviating from the average value

• etc.

In principle we would have a “digital twin” for production, for the weather etc. which could

be combined with the objective function in Equation (4.6) in order to make real-time decision

regarding the point of time for the next maintenance. For example, if the price of electricity is

very high, i.e., cEP, and we are approaching the time of next maintenance, we could insert the

current value of cEP and minimize Equation (4.6) to find the next point of time for maintenance.

A more demanding situation is if maintenance window is “closed” for a period of time when

preventive maintenance is scheduled. We will elaborate on this, and make the following as-

sumption:

• Current time is t0

• The current age of the item is x, i.e., it is x time unit since last maintenance was carried

out, thus the last maintenance was then carried out at time t0 −x

• τ∗ is the optimal maintenance interval

• The maintenance window will close just after time is t0, and reopen at time t1, where t0 <
t0 − x +τ∗ < t1, i.e., the due date for next maintenance is within the closed maintenance

window

• The alternatives for executing the preventive maintenance is therefore t0 and t1
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Figure 4.10: Failure rate function in relation to the weather window

• If we postpone the maintenance to t1, and the item fails before the maintenance window

opens, we will loose the production until the maintenance window opens.

Figure 4.10 depicts the failure rate function from t0 −x to t1.

In the modelling we still assume that time-to-failure is Weibull distributed with PDF and

survivor function given by:

f (t ) =αλ(λt )α−1e−(λt )α (4.11)

and

R (t ) = Pr(T > t ) = 1−FT (t ) = e−(λt )α (4.12)

where

λ= Γ(1/α+1)

MTTF
(4.13)

In the modelling we assume there is a fixed cost of failure cT and corrective cost CCM. But in

addition to the immediate cost of a failure during the period of a closed maintenance windo is

cD per time unit until the component could be repaired.

If we decide to carry out the PM activity at time t0, i.e., just before the maintenance window

closes the expected cost until the maintenance window opens at time t1 is:

C ′
t0
= cPM + [1−R(tW)] (cCM + cT)+ cD

∫ tW

t=0
f (t ) (tW − t )d t (4.14)

If we postpone the next PM activity to time t1 the expected cost up to, but not including time t1

is:
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C ′
t1
= [1−R(tW +x)/R(x)] (cCM + cT)+ cD

∫ tW

t=0
f (t +x) (tW − t )d t/R(x) (4.15)

Note that C ′
t1

is not including the preventive maintenance cost time t1. Preventive maintenance

cost is not to be paid if there has been a failure during the closed maintenance window, hence

we add the expected preventive maintenance cost in order to obtain:

Ct1 =C ′
t1
+ cPMR(tW +x)/R(x) (4.16)

Further if PM is carried out at time t0 the time to the next preventive maintenance is tW shorter

compared to waiting until time t1, hence to be able to compare we add the expected total cost

in a time interval of length tW, i.e.,

Ct0 =C ′
t0
+C∗tW (4.17)

where C∗ =C (τ∗) is given by Equation (4.6). The PM should be carried out at time t0 if Ct0 <Ct1 ,

else we should wait until the maintenance window opens at time t1.

4.2 Hidden function

If the function of a system being analysed is hidden, periodic functional or proof testing may

reveal failures. In this situation, therefore, the maintenance activity is periodic proof test. The

more frequent a proof test is carried out, the less likely the item will be in a fault state upon a

demand. Such a demand could be to activate the process shut-down in emergency situations,

or to start a back-up pump in case of the main pump is failing. In this situation we calculate the

so-called PFD (Probability of Failure on Demand) indicating the proportion of time the system

cannot perform the required function. Functions having hiden functions often comprises N

identical elements and we require k or more of these elements to function in order to ensure

that the system is functioning. Such systems are denoted a kooN system. The PFD is found by:

PFD(τ) ≈
(

N

N −k +1

)
(λτ)N−k+1

N −k +2
+βλτ/2 (4.18)

where

• β is the proportion of common cause failures, i.e., causes that result in a simoulatneous

failure of all N elements

• If there is only one element, we use the usual formula PFD =λτ/2
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• The binomial coefficient is given by
(x

y

)= x!
y !(x−y)!

The cost equation is given by:

C (τ) = cFT/τ+N · cRλ(1−λτ/2)+ cH ·PFD(τ) · fD (4.19)

where

• cFT is the cost of performing a proof test of all the N elements

• cR is the cost of repairing one of the N elements if found in a fault state by a proof test

• cH is the cost of a hazardous event

• fD is the rate of demands, e.g., the rate of gas leaks

• PFD(τ) is given by Equation (4.18)

In this situation, we cannot find a solution by equating the derivative of the cost equation (4.18)

to 0, and we must then either minimize C (τ) numerically, or graphically.

To better understand the term N · cRλ(1−λτ/2) we realize that the mean time to failure is

1/λ but a failure is not revealed immediately, and in average it takes τ/2 time units until a failure

is revealed. This means that the mean cycle length, or mean time between failures, is 1/λ+
τ/2 = (1+λτ/2)/λ and the corresponding frequency of repairs is λ/(1+λτ/2). Using the Taylor

expansion 1/(1+ x) ≈ 1− x gives λ/(1+λτ/2) ≈ λ(1−λτ/2). Multiplying with the number of

elements N and the repair cost CR gives the final cost for repairs.

Problems

4.1 Timing Belt. The timing belt of a car is a critical component. If it fails, there is a large risk

that this causes serious damages to the engine. In this problem we assume the following:

• MTTFWO = 175000 km (WO means Without Maintenance, i.e., the MTTF if we do not re-

place the timing belt preventively)

• α= 3 = ageing (shape) parameter in the Weibull distribution for time-to-failure

• cPM = 7000 NOKs (Cost of preventively replacing the timing belt)

• cCM = 35000 NOKs (Cost if the timing belt fails, i.e., major damages to the engine)

Find the optimal interval for replacing the timing belt by using the following methods:

1. Analytical, i.e., taking derivatives and set equal to 0
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2. Graphical solution

3. Numerical solution (for example the Excel Solver or scipy.optimize in Python)

4.2 Timing Belt, continued. The timing belt Problem 4.1 is more realistic if we include the fol-

lowing assumptions:

• Pr(Need to rent a car|Breakdown) = 0.1

• Cost of renting a car = NOK 5000

• Pr(Overtaking |Breakdown) = 0.005

• Pr(Collision|Overtaking |Breakdown)=0.2

• cCollision = 25 million NOKs

Find the optimal interval in this situation, and compare with the previous exercise.

4.3 Jaw motor example Implement the jaw motor example in Python where you use a numerical

routine for minimizing the objective function. Compare the result by using Equation (4.8) and

Equation (4.9) for the effective failure rate.

4.4 Consider the motor used for jawing control above where the ageing parameter is α= 4 and

MTTF = 5 years if no preventive maintenance is carried out. The cost of a preventive replace-

ment of the motor is cPM = 15 000 NOKs. The cost of a corrective replacement is cCM = 30 000

NOKs. The cost of loss production is 0.5·6000 = 3000 NOKs per hour. Assume that current age of

the yaw motor is t0 = x = 17 000 hours, i.e., the due time for maintenance is approaching. But,

it is expected difficult to approach the turbine for the next 14 days. That is the next opportunity

for maintenance is t1 = t0+14·24 = 17 336. Determine if it pays off to advance the next PM. Note

that t is used to denote running time, but here we can assume that t = 0 corresponds to the last

maintenance, i.e., x = 17 000 hours ago.

4.5 We are considering the maintenance of an emergency shutdown valve (ESDV). The ESDV

has a hidden function, and it is considered appropriate to perform a proof test of the valve at

regular intervals of length τ. The cost of performing such a test is NOK 10 000. If a test reveals a

hidden failure the cost of repairing the failed valve equals NOK 50 000. If the ESDV is demanded

in a critical situation, the total (accident) cost is NOK 10 000 000. The rate of demands for the

ESDV is one every 5 year. The constant failure rate of the ESDV is 2 ·10−6 hrs−1). Determine the

optimum value of τ by:

• Finding an analytical solution

• Plotting the total cost as a function of τ
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• Minimising the cost function by means of numerical methods

4.6 In order to reduce testing it is proposed to install a redundant ESDV. The extra yearly cost of

such an ESDV is NOK 15 000. Determine the optimum test interval if we assume that the second

ESDV has the same failure rate as the first one, and there is a common cause failure situation,

with β = 0.1. Will you recommend the installation of this redundant ESDV?

4.7 We will assess the maintenance of a pump system. The pump system consists of an active

pump, pump A, and a stand-by pump, pump B. Typically, pump A is run during normal opera-

tion. If pump A fails, pump B can be started. If we succeed in starting pump B, we assume that

pump B will not fail while pump A is being repaired. After pump A is repaired, pump A is put

into operation, while pump B is put back into cold stand-by. For pump A, we assume that an

overhaul will ensure that the pump is almost as good as new after the overhaul. Furthermore, a

BRP strategy is followed. Reliability data to use are given below:

Parameter Value Explanation (all cost amounts are given in NOK)

MTTFA 8 000 Mean time to failure of pump A (hours) if we do not perform preventive

maintenance.

qB 0.1 The probability that pump B will not start when needed. In the first part

of the exam paper, this value should be used. In subsequent tasks, the

value should be calculated.

MTTFB 16000 Mean time to failure of pump B (hours) if we do not perform preventive

maintenance (overhaul). The MTTF value applies to the time the pump

is in cold stand-by. We disregard the posibility that the pump may fail

during operation, as the time it is running is very short.

α 3 Aging parameter of the pumps. Same aging parameter for both pumps.

The time-to-failure of both pumps are assumed to be Weibull dis-

tributed.

cPM 4 000 The cost of performing preventive overhaul task. The same value for

both pumps. We assume that the preventive overhaul task means that

we can consider the pumps almost as good as new after the work has

been done.

cCM 9 000 The cost of repairing a pump that has failed. This cost is greater than

the preventive activity because the task cannot be planned and there

may be consequential damage (the entire pump must be replaced).

cFT 1 000 Cost of performing a function test (proof test) of pump B.

MDT 8 Mean downtime (hours) in case of pump A failure.

cU 25 000 Production loss per hour the system does not produce.
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We assume that the stand-by pump B cannot fail during operation since it will run for very few

hours.

a) Write down the cost equation, i.e., the objective function, to determine the optimal main-

tenance interval of pump A assuming the fixed probability, qB, that pump B will not start

upon a demand.

b) Find an expression for the optimal interval and insert numeric values to find that interval,

i.e., a numerical value of τA.

c) Explain how an optimal interval could be obtained by numerical minimization of the ob-

jective function, carry out such minimization and compare the result with the answer

found in problem a).

4.8 We consider Problem 4.7 but will consider the maintenance of pump B. We will perform both

an overhaul with interval τB,O, and a proof-test with interval τB,FT, where τB,FT < τB,O.

a) Give arguments for why we would use both of these maintenance activities, i.e., proof-test

and overhaul. Hint: Time-to-failure of the stand-by pump during stand-by is assumed to

be Weibull distributed.

b) Write down an expression for the effective failure rate of the stand-by pump as a function

of τB,O. Then use this expression as the “failure rate”, i.e., “λ” in the unavailability formula:

q = PFD = λτ/2. Insert numerical values, and calculate the probability that the stand-by

pump will not start if τB,O = 14 000 and τB,FT = 7 000. Compare with qB used in problem

Problem 4.7.

c) Write down the cost function where you now treat the cost as function of all maintenance

intervals, i.e., C =C (τA,τB,O,τB,FT). Hint: Remember that you have to account for overhaul

and proof-test of the stand-by pump, and the cost of repairing the stand-by pump.

c) Find a simultaneous optimal solution for all the maintenance activities, i.e., minimize the

cost function wrt τA,τB,O and τB,FT. If you are not able to minimize with respect to τA,τB,O

and τB,FT, keep τA equal to the value you found in Problem 4.7, keep τB,O = 14 000, and

then minimize with respect to τB,FT. Then keep keep τA equal to the value you found in

Problem 4.7 keep τB,FT equal to the value you just found, and then minimize with respect

to τB,O. Finally keep τB,O and τB,FT equal to the values you just obtained, and minimize

wrt τBA.



Chapter 5

Predictive Maintenance

5.1 Introduction

In contrast to traditional calendar based preventive maintenance the main idea of a predictive

maintenance strategy is to utilize component condition, future loads, and opportunity windows

to determine a “just in time” plan for maintenance. Condition information is basically used for:

• Anomaly detection, i.e., early warning of coming events

• Diagnostics, i.e., the search for root causes behind symptoms observed

• Prognostics, i.e., estimation of degradation rate, time to failure, remaining useful life etc.

based on relevant information

A key element of PdM is use of sensor technology to assess the condition of the equipment. Con-

dition monitoring is a method to evaluate the condition of equipment by performing periodic

(offline) or continuous (online) equipment monitoring. In addition to the condition monitoring

system (CMS) predictive maintenance often involves data from the supervisory control and data

acquisition systems (SCADA). Data from the computerized maintenance management system

(CMMS) is crucial in order to make predictions, i.e., the prognostics part.

In this presentation main focus is on the prognostics part of predictive maintenance.

5.2 The PF-model

The PF-model is one of the classical models within predictive maintenance. The basic idea in

our context is that failure is regarded as a two- stage process. First, at some time a defect in the

system becomes detectable, i.e., a potential failure (P), then, after some delay-time, the system

fails due to the degeneration of the defect, i.e., a failure F. Backer and Christer (1994) present an

exhaustive review of the models based on the the PF interval concept.

41
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Figure 5.1 illustrates the situation behind the PF-model. On the y-axis we use the term

‘health indicator’ whereas in other presentations the term ‘failure progression’ is used. The idea

is that there is “something” that could be used to spot a coming failure.

Figure 5.1: PF-Model

The point “P” depicts a potential failure, i.e., the time where a coming failure is observable.

The time interval from the failure is first observable, and till a failure occurs is very often denoted

the PF-interval. We will in the following denote this situation the “PF” situation because the PF-

interval will be central in the understanding of effective maintenance strategies. An example

could be a rail which is exposed to a combination of fatigue and a flat wheel which initiates a

crack (potential failure, P). However, such cracks could be detected by ultrasonic inspection,

and hopefully we will detect the crack before it propagates to a rail breakage, i.e., a failure (F).

Note that if no maintenance is carried out, the time to failure will have an increasing failure rate

(IFR).

To establish the effective failure rate we recognize that the two point of times “P” and “F”

in Figure 5.1 are stochastic variables. This means that it is random when a potential failure

occurs and the time it takes before it develops to a failure. The PF-interval is therefore also

stochastic, and is denoted TPF. As an example consider a rail where a crack can be initialized at

different places of the rail, and thus time before the crack “reaches the surface” will vary. Another

situation is where the crack propagation depends on the load, e.g., the number of heavy axels

passing the track.

Periodic inspection is conducted at intervals of length τ to detect potential failures. The

length of the inspection intervals should not be longer than the average PF-interval. However,

since the PF-interval varies from time to time, and because there is also probability that a po-

tential failure is not revealed during an inspection, the inspection interval should be shorter

than the average PF-interval. A prerequisite for using the PF-intervals in maintenance planning

is that a failure is alerted by some degradation in performance, or some indicator variable is

alerting about the failure. Such a variable could be vibration, cracks, increased temperature etc.
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The following quantities will be relevant when calculating the effective failure rate as a func-

tion of the maintenance interval:

• Mean PF-interval length, EPF

• Standard deviation in PF-interval length, SDPF

• Probability that an existing crack (or another warning situation) will be detected by an

inspection, pI = 1−qI, given that it is possible to detect the crack by condition monitoring

method

• Coverage of the inspection method, i.e., percentage of cracks that could be detected, PC

• Interval length between inspections, τ

• Frequency of potential failures, fP

In appendix H an expression for Q0(τ,EPF,SDPF, qI) is derived. This function represents the

probability that the maintenance strategy fails to reveal a potential failure in due time. It is

required to program this function in Excel VBA, Python or another programming language. The

effective failure rate can now be calculated by:

λE(τ) = fPQ0(τ,EPF,SDPF, qI) (5.1)

In order to obtain the optimal inspection interval we also need the rate of renewals:

ρE(τ) = fP
[
1−Q0(τ,EPF,SDPF, qI)

]
(5.2)

The cost function to minimize is given by:

C (τ) =CI/τ+λE(τ)CF +ρE(τ)CR (5.3)

where CI is the cost of inspection, CF is the total cost of a failure, and CR is the cost of renewal,

i.e., the cost of fixing a potential failure before it has developed to a failure.

Example 5.1 Ultrasonic inspection of rails

Rail breakages are a serious threat to railway safety, and periodic ultrasonic inspection of the

rails is a required safety barrier for safe operation of the railway infrastructure. The objective of

inspection of the rails are to detect presence of defects such as cracks and track misalignments.

Cracks are initiated within the rail and, as the rail operation proceeds, they worsen if no

recovery action is undertaken. An ultrasonic inspection car is used to detect potential defects.

Candidate defects are verified by a manual inspection with a hand-held trolley with ultrasonic
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inspection equipment. Defects, or cracks, are assigned a “severity class” and a corresponding

maintenance procedure is currently undertaken:

2b Keep rail under observation, and perform a new inspection every 3 MBT

2a Keep rail under observation, and perform a new inspection every 1 MBT

1 Repair the defect quickly, i.e., within one month

0 Repair failure immediately and initiate traffic restrictions until failure is fixed.

where MBT is million gross tonnage passed at the specific location. A zero-defect is considered

to be a failure, and would develop to a rail breakage in short time, i.e., a state F. From an op-

timization point of view, both the frequency of inspection and the follow up regime should be

optimized.

In this example we will only consider the frequency of running the inspection car. See Vatn

(2023) for a more comprehensive study also considering follow-up strategies for the various de-

fect states.

We consider a railway line where the rails are approaching the technical life time. With tech-

nical life time we mean that the rails are worn-out, and the rate of fatigue cracks are increasing.

The rate of new cracks detected by the ultrasonic rate (the rate of potential failures) is cur-

rently 0.5 failures per 10 km per year. The number of potential defects that cause rail breaks

depends on the inspection interval. Of the rail breakages, we again assume that 5% gives derail-

ment. The cost of a derailment is on average NOK 15 million. Correction of potential defects

(before they result in a rail breakage) costs NOK 20,000, while repair after rail breakage costs

NOK 40,000. The expected PF interval length is assumed to be 5 years , and the standard devi-

ation of the PF interval is assumed to be 3 years. It costs NOK 4,000 per 10 km of ultrasound

inspection that can reveal potential errors. The probability that a defect (potential failure) is not

detected by the ultrasonic train is 20% per run.

The Q0(τ,EPF,SDPF, qI function is implemented in MaintOp.xlsm , and Table 5.1 shows the

parameter used.

Figure 5.2 shows the cost contributions per 10 km for the various cost elements. The optimal

inspection interval is τ∗ = 1.2 years if found by using the Solver.

5.3 Predictive maintenance and Cox-proportional models

Predictive maintenance is about utilizing information regarding the condition of a component

and the future expected loads in order to judge the correct time for intervention. In the previous

section a simple model was derived but the current condition of the component and the fu-

ture expected loads were not explicitly used. Some formalism is required for such a utilization.

https://folk.ntnu.no/jvatn/eLearning/commonFiles/MaintOp.xlsm
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Table 5.1: Parameter values specified in Excel

Parameter Value Formula/Value

c_R 20000 20000
c_CM 40000 40000
c_Safety 750000 =0.05*15000000
c_I 4000 4000
c_F 790000 =C_CM+C_Safety
f 0.05 0.05
e_pf 5 5
sd_pf 3 3
q 0.2 0.2
tau 1.2 1.2
Q_0 4.278E-02 =Q0(tau,e_pf,sd_pf,q)
C(tau) 5910 =c_I/tau + f*Q_0*c_F+f*(1-Q_0)*c_R

This will be crucial for digital twins where a computerized mathematical model of the system

is established where real time information regarding state, production profile and plans etc are

connected via internet of thins (IoT).

A reasonable simple extension of the model used in the previous section will be derived. The

starting point is the failure rate function, z(t ). We stick to the Weibull distribution where the

failure rate function is given by z(t ) = αλαtα−1. We observe that z(t ) does not contain neither

the current state nor the future loads. The so-called Cox-proportional hazard model Cox (1972)

is often used to incorporate the current state in the failure rate function.

It should be noted that in a Cox-proportional hazard model we will utilize the current state

measured by some health indicator and future loads in the model for time-to-failure. However

Figure 5.2: PF-Model



CHAPTER 5. PREDICTIVE MAINTENANCE MODELS 46

in this model we do not explicit model how the health indicator will develop from now on. This

means that there is a “here and now” assessment of the time-to-failure distribution. Typically

such a model could be established from statistical data. Later on we will introduce the Wiener

and gamma processes where we explicit make a model for how the health indicator will develop.

Let y be the vector of current relevant state information for the component, for example

temperature, vibration level and so on and let x(t ) be the vector of average loads in the time

period [0, t ). The failure rate function may be written on the form:

z(t |y,x(t )) = z0(t )eβ1yeβ2x(t ) (5.4)

where β1 and β2 are regression coefficient vectors established by for example statistical analy-

sis of data. z0(t ) is a baseline failure rate function, typically on the form z0(t ) = αλαtα−1. t is

running time measured from the current time, say t0.

Now assume that the parameters α, λ, β1 and β2 are all known. Further assume that the

current component state, y, is known and that we have an estimate of future load x(t ). The cost

equation to minimize is:

C (t ) = cPM,0e−t/θ+ cUFT (t |y,x(t )) (5.5)

where the cumulative distribution function is given by:

FT (t |y,x(t )) = 1−exp

(
−

∫ t

0
z(u|y,x(u))du

)
(5.6)

A main objective when establishing digital twins for maintenance and operations is to set up a

regime for data collection and analysis. It is beyond the scope of this presentation to describe

relevant statistical methods. Typically a partial likelihood estimation approach is recommended

where the impact of the regression coefficient is estimated, and then a separate approach is used

for estimation of the failure rate function. See e.g., Cox (1972).

If no data is available we might use expert judgements for elicitation of the relevant model

parameters. As a basis for our argument we will use the PF-model illustrated in Figure 5.1 as a

conceptual model. The history up to the potential failure is now of limited value, the only is the

current state and future loads. We assume that the potential failure as just occurred. Let T be the

length of the PF-interval, and let FT (t |y,x(t )) denote the cumulative distribution function of the

PF-interval. If we do not have statistical data to estimate the model parameters, the following

procedure may be used for elicitation of the model parameters:

1. Assess the expected length of the PF-interval under the assumption of insignificant future

load x(t ). Denote this value by ξ.
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2. Asses the consistency of the PF-interval by the shape parameter α in the Weibull distribu-

tion. As a rule of thumb use

• α= 2 corresponds to a variety of failure mechanisms and causes leading to a failure.

• α= 3 corresponds to a few failure mechanisms and causes leading to a failure.

• α= 4 corresponds to a rather specific failure mechanism / failure cause leading to a

failure.

3. Calculate the intensity parameter by λ= Γ (1/α+1)/ξ.

4. For each yi in y let yi = 0 correspond to the condition at the point of time P in Figure

5.1. This corresponds to no significant damage or degradation for the actual regression

variable.

5. For each yi in y let yi ,C be a critical value for that particular regression variable. Under

the assumption that all other regression variables y j = 0, j ̸= i assess the reduction in ξ by

some factor, say ki . Note that there is no specific “rule” to determine yi ,C, and the higher

value chosen, the lower value will be assessed for ξ.

6. Calculate the corresponding regression parameters by βi = −(lnki )/yi ,C, i.e., for the ele-

ments in β1.

7. Repeat the procedure for each xi (t ) in x(t ) to find the elements of β2.

Figure 5.4 illustrates the idea behind the factor ki . The expected length of the PF-interval

equals ξ if the state variable yi = 0. Then we can imagine a situation where yi = yi ,C. With such

a critical value of the state variable yi the expected PF-interval is much shorter, say kiξ. From

such an argument we can determine the factor ki .

P

*
F

yi

yi,C

kix

 x = E(PF|yi=0)

Figure 5.3: Elicitating of the factor ki

Example 5.2 Using vibration data and expected average loads

If the PF-model in Figure 5.1 is found realistic for the maintenance challenge at hand, there are
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two challenges. The first one is to determine the inspection strategy to reveal potential failures.

The second challenge is the response to a revealed potential failure. Often it is not possible to

fix a potential failure immediately, or at least it will be very costly. Fixing the problem requires

planning, access to spare parts, resources etc. To model this, we assume that there is an upper

limit for repair/renewal cost, say cR,0. This cost represents the cost if the repair/replacement

cost is carried out more or less immediately after the potential failure has been revealed. Then

we assume that the cost will become lower if we could wait t time units before we do the work.

Various models for the drop in cost could be used, but in the following we assume an exponen-

tial drop. Further if a failure occurs before t we have to pay some unplanned failure cost, say cU.

This means that if we decide to wait t time units from now on until we will execute the work, the

expected cost as a function of t is given by:

C (t ) = cR,0e−t/θ+ cUFT (t ) (5.7)

In Equation (5.7) neither the current condition nor the future load is considered. Let y be the

vibration level measured by the so-called “RMS" value (Root Mean Square) which is an ISO con-

vention. Technically the RMS value is calculated by multiplying the peak amplitude by 0.707. For

machines of medium size the vibration level is mapped into zones where zone A is the normal

level which we here assume corresponds to y = 0, zone B which still is considered acceptable

ranges from y = 1.8 to y = 4.5, zone C which is critical ranges from y = 4.5 to y = 11.2 and zone

D corresponds to y > 11.2. A machine in zone D is considered to have serious damages within

very short time and is therefore often protected by a protection system causing the machine to

shut down (TRIP).

y = RMS

11.2

4.5

1.8

C

B

A

6
120

D=Failure 

Figure 5.4: Levels for the root mean square based on ISO
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The future operational load is specified by the variable x which measures the portion of time

the machine is run on more than 90% of maximum capacity. A high value of x is expected to

increase the degradation rate and hence give a shorter value of the PF-interval.

In the elicitation process the maintenance engineer assess the mean residual time to failure,

i.e., the time until the protection system will trip the system (PF-interval) to be ξ = 120 days

when an anomaly situation occur, i.e., drifting into zone B. Since only vibration and excessive

load is considered as influencing factors of the PF-interval the shape parameter is assessed by

α= 4. This gives λ= Γ (1/α+1)/ξ= Γ(1.25)/120 ≈ 0.00775.

For the elicitation of the k-factor for the RMS a critical value for the vibration is set to yC =
4.5. The expert now assess that given such a value, the expected number of days until a trip

occurs is 6 days. The corresponding reduction factor for the remaining time to trip is assessed

to kY = 6/120 = 0.05. This gives βY =−(lnkY)/yC =−(ln0.05)/(4.5−1.8) ≈ 0.05. Note that we use

4.5-1.8 rather than 4.5 because 1.8 is considered as the “zero-point” for y corresponding to level

A is considered to be normal vibration level.

A machine running with 90% of maximum capacity or more in xC = 0.25 = 25% of the time

is assessed to have a reduction factor of kX = 0.1 (12 days to failure in average). This gives βX =
−(lnkX)/xC =−(ln0.1)/.25 ≈ 9.2.

The relevant parameters required to calculate the cumulative distribution function for the

PF-interval in Equation (5.6) have now been established. Now assume that we have observed

y = 4 and from the production it is desired to run on high load in 10% of the time, i.e., x = 0.1.

The cumulative distribution function in Equation 5.7 did not include the explanatory vari-

ables. Further there is no extra profit related to running at “full speed”, i.e., running at a higher

load than 90%. To access the extra profit we assume that if the machine is run at 90% load or

more, then the extra profit that day is pHL Assuming a linear relation the total extra profit by

running at high load in x portion of time for t days is pHLxt . This amount is then subtracted

from the cost function, and we get:

C (t , x) = cR,0e−t/θ+ cUFT (t |y, x)−pHLxt (5.8)

where

FT (t |x, y) = 1−exp

(
−

∫ t

0
z(u|y, x)du

)
and

z(t |y, x) =αλαtα−1eβY(y−1.8)+βXx
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Note that we use y −1.8 because the “zero-point” for y is 1.8 corresponding to level A is “normal

vibration”.

The cost/profit figures are as follows: cR,0 = 15,000, cU = 30,000 and pHL = 1,000 where all

values are given in NOKs. The characteristic time in the decay function is given by θ = 30 days.

In the example we also assume that there is a maintenance window only once a week, and the

first opportunity will be in 3 days.

Inserting in Equation (5.6) and using the cost function in Equation (5.5) Table 5.2 indicates

that we should use the opportunity that comes after 31 days.

Table 5.2: Results for the Cox proportional hazard rate model

t Repair Downtime Production Total

3 13573 0 -300 13273
10 10748 33 -1000 9781
17 8511 273 -1700 7085
24 6740 1074 -2400 5413
31 5337 2907 -3100 5145
38 4227 6224 -3800 6650
45 3347 11185 -4500 10032

Note that the cumulative distribution function calculated by Equation (5.6) is the uncondi-

tional distribution function given we were at point of time P in Figure 5.1. In reality since y = 4

it is reasonable to believe that some days has elapsed since the potential failure was evident. A

conditional distribution function is therefore more appropriate. This means that we also need

to assess the time since the potential failure occurred. Let t0 be the current time, and assume

that the time since the potential failure (P) is s time units. Let t denote the running time from

now on, i.e., t0 corresponds to t = 0. Using the rule for conditional probabilities we obtain the

following modified cost function:

C (t ) = cPM,0e−t/θ+ cU

[
1− 1−FT (t + s|y,x(t + s))

1−FT (s|y,x(s))

]
−pHLxt

In the example calculation this conditional approach is not used. □

Example 5.3 Towards a real time model - The digital twin

The previous example is now used as motivation for developing a simple stochastic digital twin.

A digital twin may be viewed as a digital simulation model with built in analytics, decision sup-

port, and self learning features. Learning features will not be discussed in this example, and only

glimpse of analytics is provided.

The digital twin is represented by two models, one maintenance model and one production
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model, where these models interact via the Internet of Things. In the following the maintenance

model is denoted the maintenance twin and the production model is denoted the production

twin. The physical counterpart of the maintenance twin is the actual component state, the phys-

ical load on the machine, the actual maintenance carried out the actual time the machine can

not produce due to preventive and/or corrective maintenance and so on. The physical counter-

part of the production twin is what is actually being produced, when the production takes place,

the economic value of the production, the cost of production, the various machines being used,

the use of personnel and resources and so on.

Let T be the operational windows for execution of a preventive maintenance task of the

packing machine, i.e., the point of times τ1,τ1 +τ,τ1 +2τ, . . . . The decision support to be pro-

vided by the maintenance twin upon a potential failure situation is now:

min
t∈T

C (t ) = cPM,0e−t/θ+ cUFT (t |y,x(t ) (5.9)

The maintenance twin represented by Equation 5.9 has to be implemented on a digital plat-

form, for example MS Excel. The maintenance twin needs to be fed with data from the produc-

tion twin. Here the production twin is very simple, only a set of predefined scenarios combining

different values of cPM,0,cU,y,and x(t ). Table 5.3 shows the data used in this simple MS Excel

representation of the two twins interacting. In a real life implementation the data in Table 5.3

needs to be generated by the ERP system, the SCADA system and so on.

Table 5.3: Data used in the production twin

cPM,0 cU y x CPS message/Comment

15000 35000 4 0.1 Base line (from example)
15000 35000 3 0.3 High future loads
5000 35000 3 0.1 Cheap PM due to low production

15000 35000 2 0.15 Lower degradation
15000 35000 4 0.15 Very high degradation
15000 100000 3 0.15 Very high failure cost

5.4 Gradual failure progression

The PF-model in Section 5.2 illustrates what we often denote a “fast failure progression” be-

cause the length of the PF-interval is relatively shorted compared to the time between potential

failures. This means that there is no sign of degradation for a long time, and then some failure

mechanism become evident and the item will fail within short time if nothing is done.

In this section we will introduce a general framework. The basis is still that maintenance is



CHAPTER 5. PREDICTIVE MAINTENANCE MODELS 52

condition based where the understanding of degradation of the item determines appropriate

maintenance action and time for maintenance.

In the following we distinguish between:

• {X (t ), t ≥ 0} is a stochastic process describing the actual degradation of the item at time t

• {Y (t ), t ≥ 0} is a stochastic process describing the measurements of degradation of the item

at time t

where the measurements typically contain noise. Degradation could be crack lengths, corrosion

depths, vibration levels etc. In some situations it may be difficult to distinguish the variation in

the degradation process from the measurement errors. In this presentation we will not explicitly

consider imperfect measurements of the degradation in order to make simple presentations. We

will therefore not make an explicit definition of what is the difference between {X (t ), t ≥ 0} and

{Y (t ), t ≥ 0}.

Figure 5.5 shows a typical example of the development into a failure. On the y-axis the figure

shows {X (t ), t ≥ 0} the actual degradation. As for the PF-model this would be some health indi-

cator like crack length, corrosion level, wear etc. In addition to the failure limit we introduce a

maintenance limit, i.e., when {X (t ), t ≥ 0} exceeds the maintenance limit, a request for mainte-

nance is put forward. An important decision variable is then what the maintenance limit should

be.

Figure 5.5: Gradual failure progression

5.5 Remaining Useful Lifetime

In degradation modelling (prognostics) the term Remaining Useful Lifetime (RUL) is introduced.

RUL(t0) is a stochastic variable that measures the time from t0 until the item is not “useful” any

more. The term ‘Useful’ needs to be defined, for example a failure, or some other bad perfor-

mance. Since RUL is a stochastic variable, we often need the distribution function, i.e.,

Pr(RUL(to) ≤ t ) = FRUL(t0)(t ) (5.10)



CHAPTER 5. PREDICTIVE MAINTENANCE MODELS 53

where t0 is the current time, and t is a future point of time, typically measured from t0 as the

starting point.

A huge number of mathematical models for RUL prediction exist in the literature. In the

following a limited number of ideas are pursued. The definition in Equation (5.10) will not help

us since there is no explicit link to the condition or degradation of the item. A more explicit

definition of RUL is therefore:

RUL(t0) = min{h : X (t0 +h) ∈Xl } (5.11)

where Xl is the set of states where the item is considered not useful. In Figure 5.5 this corre-

sponds to all values above the “Failure limit”. The RUL distribution (CDF) is defined as:

Pr(RUL(t0) ≤ t ) = Pr(min{h : X (t0 +h) ∈Xl } ≤ t |T > t0,Y (τ)τ∈Tt0
) (5.12)

where we condition on the fact that the item is still useful (T > t0), and the knowledge of the

measurements, i.e., the various observations (Y ). In Equation (5.12) X (t0+h) is the actual degra-

dation h time units ahead of current time t0. When we condition on Y (u)u∈Tt0
this means that

the only information we have at the current time t0 is the measurements, i.e., the process {Y (u)}

sampled at various points in time, i.e., the set Tt0 . In principle we do not know the actual states

of the system up to the current time, but since T > t0 we for sure know that X (u) ∉Xl ,u ≤ t0.

The Wiener and gamma processes are popular stochastic processes used to model degrada-

tion. Both processes assume that the change in degradation level in a small time interval can

be described by a stochastic variable. In the Wiener process these changes can be both posi-

tive and negative, whereas in the gamma process the changes are always positive, i.e., positive

increments. There are various pros and cons for these two processes. The gamma process is

more intuitive, since increments (degradation) is always positive which is true for man failure

mechanism, i.e., we can not improve unless some measures are taken. On the other side, mea-

surements of the degradation often show that the change in degradation level from one point of

time to the next may be negative. This could then be caused by measurement errors (noise).

Both the Wiener and gamma processes assume that {X (t ), t ≥ 0} can take any value in some

range. In some situations we limit the value of the process to a countable number of values. The

Markov process is such a process also very relevant for maintenance modelling.

5.6 Wiener Process with Linear Drift

Before we define a Wiener process with drift we define the Wiener process {Wt , t ≥ 0} by:

1. W0 = 0
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2. W has independent increments: for every t > 0, the future increments Wt+u −Wt ,u ≥ 0,

are independent of the past values Ws , s ≤ t .

3. W has Gaussian increments: Wt+u −Wt is normally distributed with mean 0 and variance

u,Wt+u −Wt ∼N (0,u).

4. W has continuous paths: Wt is continuous in t .

Note the slightly different notation where in some situations we use {Wt , t ≥ 0} and in other sit-

uations we use {W (t ), t ≥ 0}.

We now define stochastic process:

X t =µt +σWt

as a Wiener process with linear drift µ and infinitesimal variance σ2.

It follows that X t = X (t ) is normally distributed with mean µt and variance σ2t . Further X

has Gaussian increments: X t+u − X t is normally distributed with mean µu and variance σ2u,

i.e., X t+u −X t ∼N (µu,σ2u).

It is well known from the theory of stochastic processes that the time T when the process

for the first time reach the level ℓ is inverse-Gauss distributed with parameters α = ℓ/µ and

β= (ℓ/σ)2.

For the inverse-Gauss distribution, i.e., X ∼ IG(α,β) we have:

fX (x;α,β) =
√

β

2πx3
exp

(
− β(x −α)2

2α2x

)
(5.13)

and

FX (x;α,β) =Φ
(√

β

α

p
x −

√
β

1p
x

)
+Φ

(
−

√
β

α

p
x −

√
β

1p
x

)
e2β/α (5.14)

The expected value and variance are given by:

E[X ] =α
Var(X ) =α3/β

In the Wiener process with parameters µ,σ the time, T to first passage of the threshold ℓ is then

T ∼ IG(ℓ/µ, (ℓ/σ)2)
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and the expected value and variance are given by:

E[T ] = ℓ/µ

Var(T ) =σ2ℓ/µ3

5.6.1 Maintenance decision problem

Figure 5.6 shows the Wiener process with drift and gives the motivation for the maintenance

decision problem. The elements in the model is discussed in the following.

Figure 5.6: Maintenance model with deterministic lead time TL

We consider the following situation:

• The degradation process can be monitored continuously without any uncertainty, and the

degradation level at time t is X (t )

• A failure occurs the first time X (t ) ≥ ℓ

• When degradation reaches the maintenance limit, m a request is placed to replace the

component with a new component, in Figure 5.6 the maintenance limit is reached at time

t0

• There is a deterministic lead time, say TL, i.e., the time elapsed from the replacement re-

quest is placed until it is executed

• The objective is to determine the maintenance limit, m < ℓ, i.e., how close to the failure

limit we dear to go
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• Figure 5.6 shows one trajectory of the degradation up to the maintenance limit, and from

three on several trajectories are shown to illustrate the randomness in the degradation. If

X (t ) ≥ ℓ for some t < t0 +TL the item fails before it is replaced which is indicated with the

filled area under the RUL-distribution (Remaining Useful Life).

The cost equation to minimize is:

C (m) = cR + cFF (TL|m)+ cD
∫ TL

0 f (t |m)(TL − t )d t

MTBR(m)
(5.15)

where

• cR = cost of renewal/replacement

• cF cost of failure (additional cost for corrective maintenance and extra cost for the failure

event)

• cD = cost per hour down time

• F (t ) and f (t ) are CDF and PDF for the remaining useful lifetime (RUL), given we are at the

maintenance limit m at some point

• MTBR(m) = Mean Time Between Renewals, given the decision rule to request a mainte-

nance at m

We now consider one maintenance cycle:

• Assume that we at time t in this cycle observe Y (t ) = m

• Let RULm be the time from t until a failure occurs

• RULm is inverse-Gauss distributed with parametersαm = (ℓ−m)/µ and βm = (ℓ−m)2/σ2,

where µ and σ2 are the parameters in the Wiener process, and ℓ is the failure threshold

• Thus, F () = F (t ;αm ;βm) = and f () = f (t ;αm ;βm) are given by equations (5.14) and (5.13)

respectively, and the nominator of C (m) may be obtained by numerical integration

• MTBR(m) = m/µ+TL

5.6.2 Operational load and relaxing on the use of the item

When we reach the maintenance limit we could relax on production, e.g.,:

• Produce less items
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• Stop a wind turbine when wind speed > 15m/s

Let x be a measure of how much we relax on production, i.e., a decision variable, and let cRx(x)

be corresponding production loss per unit time. The cost equation to minimize now is:

C (m, x) = cR + cFF (TL|m, x)+ cD
∫ TL

0 f (t |m, x)(TL − t )d t + cRx(x)TL

MTBR(mL)
(5.16)

where F () and f () now depends on x as well as the maintenance limit.

Two aspects need to be considered:

• The impact of the relax on the degradation rate

• The impact on direct profit

The relax “decision variable” is denoted x, and we have assumed

• µ(x) =µ0(1−x)

• σ(x) =σ0(1−x)

• CRx(x) = 0.002cU(x +25x2)

In the example, we “relaxed” on our selves, i.e., the turbine which is approaching a fault state.

In light of “wake effects”, it might be more relevant to consider relaxing on the “front runners”.

Two aspects need still to be considered:

• The impact of the relax on the degradation rate

• The impact on direct profit

The starting point for the wake model is the classical engineering model by Jensen (1983)

who proposed a model for reduced wind speed downstream

UJ /U0 = 1−2a
(
R/(R +αJ X )

)2 (5.17)

where R = rotor diameter, and X = distance between two turbines. Often a = 1/3, and αJ =0.05

for offshore wind is used. This gives

UJ /U0 = 1− 2

3

(
R

R +0.05X

)2

= 1− 2

3

(
1

1+0.05X /R

)2

(5.18)

For normal spacing of the turbines, the reduction factor UJ /U0 could be between 0.7 and 0.8.
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First of all we should acknowledge that engineering models are not very accurate, and in

particular to consider the situation at the wind farm level, such a model might be too simple.

To optimize production, independent of the impact of degradation, yawing could impact the

loss in inn speed. We do not propose models here, but yawing means reduced swiping area

of the frontrunner turbine, and a reduction factor for the front runner could be something like

cosφ, where φ is the yawing angle. However, the total impact on the effect this will have on the

downstream wake profile is not that easy to model, and far beyond the scope of this presentation

From the maintenance perspective, the turbulence is our main concern wrt the wake effect.

In the wake shadow, it is expected to be much turbulence. We could may be use something like

the inverse reduction factor, i.e., U0/UJ as a starting point for an “increase” factor of e.g., fatigue

loads.

Note the difference:

• General increased load due to turbulence, and how we consider this as a part of the overall

objective function for wind farm control

• The explicit modelling of a given situation, where we have observed a critical degradation,

and the aim is to reduce the risk of failure until maintenance could be carried out, i.e., our

example

5.7 Gamma process

A stationary gamma process X (t ), t ≥ 0 is defined by:

1. X (0) = 0

2. X (t ), t ≥ 0 has independent and stationary increments

3. The increments in an interval (s, t ] is X (t )−X (s) and are assumed to be gamma distributed

with parameters (t − s)α and β. α and β are denoted the shape and scale parameters

respectively.

For the gamma process it is straight forward to obtain the cumulative distribution function for

the first hitting time. Assume degradation degradation of an item follows a stationary gamma

process X (t ), t ≥ 0 and the item will fail the first time X (t ) exceeds a failure threshold ℓ. The

cumulative distribution function for the time-to-failure is:

F (t ) = Pr(T ≤ t ) = Pr(X (t ) ≥ ℓ) = 1−G(ℓ;αt ,β) (5.19)

where G(x; a,b) is the cumulative distribution function for the gamma distribution with param-

eters a and b. The results follows from the fact that the increments are gamma distributed
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The expected degradation in a time interval of length s − t is (t − s)α/β. Referring to the

example given for the Weibull process, we could be tempted to assume that the expected time

for a new item to reach the maintenance threshold, ℓ is ℓβ/α. This is not the case and it can be

shown that the expected value can be approximated by ℓβ/α+1/(2α). The extra term 1/(2α) is

often denoted “overshooting” effect. The idea is that the gamma process is a jump process. This

means that it will never exactly hit the value ℓ but rather hit slightly above, and hence it takes

some “extra” time compared to if it was an “exact hit”.

Compared to the Wiener process, it is however easier to find the RULm distribution. Assume

we order a maintenance when the process reaches the value m. We then have

FRULm (t ) = Pr(RULm ≤ t ) = Pr(X (Tm + t ) ≥ ℓ|X (Tm) < ℓ, history up to Tm) (5.20)

≈ Pr(X (Tm + t )−X (Tm) ≥ ℓ−m) = (5.21)∫ ∞

ℓ−m
fαt ,β(u)du = 1−Fαt ,β(ℓ−m) (5.22)

where Tm is the point of time when the process exceeds the maintenance limit. fαt ,β(·) and

Fαt ,β(·) are the PDF and CDF of the gamma distribution with parameters αt and β respectively.

Note the approximation which is due to the fact that we never exactly reach the maintenance

limit m due to overshooting. If we pursue the maintenance model used in the Wiener process

example, we should also take the “overshooting” into account for the expected time to reach the

maintenance limit which could be approximated by MTBR = mβ/α+ 1/(2α)+TL. In the cost

model we also need the PDF for the RUL in addition to the CDF derived above.

5.7.1 Response Time

To demonstrate the use of the Gamma process we present a situation similar to the one in Sec-

tion 5.6. As a starting point we assume continuous condition monitoring where the inspection

interval is not relevant for optimization. The challenge is to look at an optimal response time af-

ter a critical situation has been identified after analysing the data from the continuous condition

monitoring. The model developed below can also be used in conjunction with the optimization

of inspection intervals, but this is not pursued here. We make the following assumptions:

• The degradation process of a component or a system follows a gamma process with pa-

rameters α and β and a failure threshold at ℓ

• At the time t0 a critical development of the condition is observed. t0 can be the current

time, or some anticipated time in the future.

• We assume that in a rather short time, i.e., at time t0 + xO, there will be a reasonable good
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opportunity to execute an improvement activity that brings the system back to a signifi-

cant improved condition

• As a simplification, we assume that xO is known

• In some situations, there is no natural “opportunity” to carry out the improvement, and it

may be natural to set a fictitious value for xO, typically a value where cost of the improve-

ment activity does not decrease even if we wait longer than xO to carry out the improve-

ment

• We also assume that it is possible to execute the activity prior to t0+xO but at a higher cost

since “priority” is usually not free of charge

• The cost to perform an improvement, CR(x) is assumed to dependent on when the im-

provement is carried out, i.e., x time units from t0. The faster it needs to be implemented,

the higher the expected cost. The lowest cost is assumed at the time t0 +xO.

• If the situation develops rapidly, we may experience e failure before the improvement ac-

tivity is scheduled to be carried out. If this happens, we assume that the system is un-

available until the planned time, i.e. at the time t0 + xO. During this period, there is an

unavailability cost, cD per unit time. In addition, there is a fixed cost associated with the

failure itself, cF. cF represents both additional costs associated with repairing a failure

compared to the planned repair activity, as well as other costs associated with the failure

itself.

• The longer you wait to fix the critical development of the condition, the more you save in

average renewal costs. Let cr denote average renewal costs per unit time.

• Let f (t ) denote the probability density function from t0 until a failure occurs. f (t ) will

typically depend on the current condition, although we do not notationally express this in

f (t ).

Figure 5.7 illustrates the situation. At time t0 degradation has reached a critical level. At

time t0 +xO there is an opportunity to carry out the activity at the lowest possible cost. The cost

function, CR(x), drops from the highest value at x = 0, i.e., at time t0 and drops from here on

until time t0 + xO. Above the failure threshold the probability density function of the time-to-

failure is indicated. Various random trajectory from the critical level to the failure threshold is

indicated.
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Figure 5.7: Optimizing response time x

The decision problem is to find the optimal time for the execution of the improvement ac-

tivity, x, i.e., the optimal response time. A realistic cost function is given by:

C (x) =CR(x)+ (xO −x)cr + cD

x∫
0

f (u)(x −u)du + cF

x∫
0

f (u)du (5.23)

where f (u) is the probability density function for RUL, given the knowledge and condition at

time t0. Numerical methods are needed both to calculate C (x), and to minimize wrt x.

For the last integral we have
x∫

0
f (u)du = F (x) where F (·) is the cumulative distribution func-

tion for RUL. In some cases it is easier to calculate the CDF than the PDF, hence the integral
x∫

0
f (u)(x −u)du can be rewritten to xF (x)−

x∫
0

u f (u)du, and then by partial integration we find

x∫
0

f (u)(x −u)du = xF (x)−
xF (x)−

x∫
0

F (u)du

=
x∫

0

F (u)du (5.24)

Thus we may rewrite the cost equation:

C (x) =CR(x)+ (xO −x)cr + cD

x∫
0

F (u)du + cFF (x) (5.25)

Assuming the gamma process is appropriate for describing the degradation, and given we know

the degradation at t0, i.e., y0 = X (t0), the failure threshold ℓ and the degradation parameters α

and β we have from Equation (5.20):

FRUL(t ) = 1−Fαt ,β(ℓ− y0) (5.26)
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Where Fαt ,β(·) is the CDF of the gamma distribution with parameters αt and β respectively.

Replacing F () in Equation (5.24) by FRUL() from Equation (5.26) gives:

C (x) =CR(x)+ (xO −x)cr + cD

x∫
0

[
1−Fαu,β(ℓ− y0)

]
du + cF

[
1−Fαx,β(ℓ− y0)

]
(5.27)

Problems

5.1 Wind turbine example

We are considering a wind turbine. The wind energy models are presented in Chapter 8, but we

introduce the basic idea. The power of a wind turbine is given by [w=Watt]:

P = sec : O f f W
1

2
ρAu3

0

where γ is the yaw angle, A = π(Dr/2)2 is the rotor swept area and u0 is the free-stream wind

velocity. The reduction factor is given by:

CP(a,γ) = 4a(cos(γ)−a)2

where a is the axial induction factor. It is easy to show that the maximum of CP(a,γ) is achieved

for a = a∗ = cos(γ)/3 and the maximum theoretical power is C∗
P = 16/27cos3(γ) also known as

the Betz limit when γ= 0.

In this problem we assume the following quantities:

• u0 = 10 # Free wind speed [m/s]

• ρ = 1.225 # Air density at 15 degrees [kg/m3]

• r = 60 # Rotor radius [m]

• Dr = 2∗ r # Rotor diameter [m]

• γ= 0 # No yawing

• MTTF = 8760∗5 # Mean time to failure without maintenance [hours] = 5 years

• ℓ= 100 # Failure limit, normalized to 100 (%)

• µ= ℓ/MTTF # Drift parameter for degradation [hours−1]

• σ= 50∗µ # Infinitesimal standard deviation, volatility of degradation [hours−1]
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• TL = 2∗7∗24 # Lead time of maintenance = 2 weeks

• cR = 2 500 000 # Cost of renewal [NOKs]

• cF = 7 500 000 # Cost of failure [NOKs]

• pe = 0.5 # Energy price [NOK/kWh]

a) Calculate the power, and profit per hour = cU = Loss per hour if not producing

b) Assume mu and sigma are the underlying parameters in the Wiener process. Use µ,σ and

ℓ to calculate the mean time to failure and standard deviation of the time to failure

c) Find the optimal maintenance level m, i.e., at which degradation level should renewal be

ordered. What is the average total cost per hour (maintenance, failure and production

loss)?

d) By allowing longer lead times, i.e., 3 weeks, the cost of renewal could be reduced to cR =
2 000 000. Would this give a total cost reduction compared to the original problem?



Chapter 6

Markov State Model - An introduction

6.1 Introduction

Consider a stochastic process {Y (t ), t ∈Θ}, where Y (t ) describes the state (deterioration level) of

an item at time t . In the following we assume that the state variable only takes a finite number

of states. We first present the model when no maintenance is carried out, i.e., we start at time

t = 0 and observe the system until failure. Let:

Y (0) = y0

Y (T ) = yr (6.1)

where T per definition is the time of the first failure. Between y0 and yr there are r − 1 inter-

mediate sates. By choosing a large value of r we could obtain a very good approximation to a

continuous process if this is required. Let T̃i , i = 0, . . . ,r −1 be sojourn times, i.e., how long the

system stay in state i . Notationally we will typically denote the states by their number rather

than by the value to simplify notation.

For the initial model we assume that the sojourn times are independent and exponentially

distributed with parameter λi . Later on we will investigate how sojourn times may be modelled

by arbitrary distributions. We also assume that the process runs through all states chronologi-

cally from y0 to yr without “stepping back” at any time.

Before we present the modelling framework for this simple situation we introduce the main-

tenance model. Figure 6.1 depicts the development of Y (t ) as a function of time. On the x-axis

it is indicated that the system is inspected at period of times τ,2τ,3τ, . . .. If the system is found

in state Y (t ) ≥ yl at an inspection, the system is renewed to an as good as new state, i.e., y0.

We now go back to the simple situation where maintenance is not considered. Let Pi (t )

denote the probability that the system is in state i at time t . By standard Markov considerations

64
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Figure 6.1: Markov transition diagram

we obtain the Markov differential equations:

Pi (t +∆t ) ≈ Pi (t )(1−λi∆t )+Pi−1(t )λi−1∆t (6.2)

where ∆t is a small time interval and and we set λ−1 = 0 per definition. Further the initial con-

ditions are given by:

P0(0) = 1

Pi (0) = 0 for i > 0 (6.3)

Equation (6.2) could easily be integrated by a computer program, for example VBA in MS Excel.

It is now easy to find MTTF by another integration, i.e.,

MTTF =
∫ ∞

0
R(t )d t =

∫ ∞

0
[1−Pr (t )]d t (6.4)

and we should verify that we get MTTF = ∑r−1
i=0 λ

−1
i . Note that the transition rates, λi ’s, are as-

sumed to be known, that is either they are estimated from data, or found by expert judgement

exercises.

6.2 Maintenance model

This section derives a basic maintenance model based on the situation depicted in Figure 6.1.

The state variable Y (t ) evolves as a function of time. On the x-axis it is indicated that the system

is inspected at period of times τ,2τ,3τ, . . .. If the the system state at an inspection is equal to, or

above the maintenance limit ℓ, then a repair is carried out bringing the system back to state 0.

We assume that repair time could be neglected.

The objective function, or cost function to minimize is given by:

C (τ,ℓ) = cI/τ+ (cF + cCM)λE(τ,ℓ)+ cRCρE(τ,ℓ) (6.5)
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where

• ℓ= the maintenance limit

• cI = the cost of an inspection

• cF = the total expected cost of a failure, i.e., downtime cost and trip cost, and any safety

cost

• cCM = the cost of repairing a failed item

• cRC = the cost of renewing a degraded item, i.e., not failed but above or equal the mainte-

nance limit

• λE(τ,ℓ) = the effective failure rate for an item inspected at regular intervals of length τ and

renewed if the maintenance limit is reached at an inspection

• ρE(τ,ℓ) = expected number of renewals per unit time for an item inspected at regular

intervals of length τ and renewed if the maintenance limit is reached at an inspection

In order to specify the model depicted in Figure 6.1 we need to specify the r transition rates

λ0,λ1, . . . ,λr−1. To simplify the specification we make the following assumption:

• λi+1 = (1+ v)λi , i.e., the transition rates are increasing as the item is degrading, with a

constant factor 1+ v corresponding to exponential growth

• It is possible to specify V =λr−1/λ0, i.e., how much faster the growth is at end of life com-

pared to initially

• It is possible to specify MTTF, i.e., the mean time to failure if no maintenance is carried

out

• There is a fixed probability, q that an inspection will not reveal that the maintenance limit

is reached

It is rather easy to show the following:

• v =V 1/(r−1)

• λ0 = 1−1/v r

(1−1/v)MTTF

• Var(T ) = 1−v−2r

(1−v−2)λ2
0

= variance of time to failure if no maintenance is carried out

We don’t need Var(T ) to proceed, but the expression for the variance could be used to compare

our Markov model with e.g., a Weibull model where the variance is already assessed.
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6.3 A more general transition model

Equation (6.2) may be used in situations where we only allow transitions from state i to state

i +1. In more general situations there could be transitions in principle from any state i to any

state j . For example there could be two degradation mechanisms, smooth degradation and

shocks. The smooth degradation causes jumps from one state to the next, whereas shocks could

cause larger jumps. In this situation we need to work with matrices. Let A be an (r +1)× (r +1)

matrix where element (i , j ) represents the constant transition rate from state i to state j . The

indexing here starts at 0, e.g., A(0,1) = a0,1 is the transition from state 0 to state 1.

Further, let P(t ) be the time dependent probability vector for the various states defined in

A. We now let P(t = 0) = [1,0,0, . . . ,0] to reflect that the system starts in state 0. From standard

Markov theory we now need the Markov differential equations, i.e., P(t ) ·A = Ṗ(t ), from which it

follows:

P(t +∆t ) ≈ P(t )[A∆t + I] (6.6)

where ∆t is a small time interval. Equation (G.7) is now used repeatedly to find the time depen-

dent solution for the entire system. This corresponds to integrating Equation (6.2).

We now outline the main principle for working with matrices to find the time dependent

solution and other relevant quantities. Assume we have access to a small library of matrix rou-

tines:
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstyleFunction mMult(A , B) −> Returns a matrix equal to A * B

basicstylebasicstylebasicstyle basicstyle basicstyleFunction f i x A (A) −> F i l l diagonal of A such that sumrow=0

basicstylebasicstylebasicstyle basicstyle basicstyleFunction getIntMatrix (A , DeltaT ) −> [A * DeltaT + I ]
basicstylebasicstyle

In the following we assume that the matrix library is defined by standard indexing, i.e., the

first row is denoted row number 1 and so on. A warm up exercise to find MTTF is now:
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstyleFunction getMTTF(A)

basicstylebasicstylebasicstyle basicstyle basicstylef i x A A

basicstylebasicstylebasicstyle basicstyle basicstyleMTTF = i n i t i a l guess

basicstylebasicstylebasicstyle basicstyle basicstyleDeltaT = MTTF / 1000

basicstylebasicstylebasicstyle basicstyle basicstylehlp = 0

basicstylebasicstylebasicstyle basicstyle basicstylet =0

basicstylebasicstylebasicstyle basicstyle basicstyleP = [ 1 , 0 , 0 , . . . . ]

basicstylebasicstylebasicstyle basicstyle basicstyleIM = getIntMatrix (A , DeltaT )

basicstylebasicstylebasicstyle basicstyle basicstyleDo While t < 5*MTTF

basicstylebasicstylebasicstyle basicstyle basicstyleP = mMult(P , IM)
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basicstylebasicstylebasicstyle basicstyle basicstylehlp = hlp + (1−P( r +1) ) * DeltaT

basicstylebasicstylebasicstyle basicstyle basicstylet = t + DeltaT

basicstylebasicstylebasicstyle basicstyle basicstyleLoop

basicstylebasicstylebasicstyle basicstyle basicstylegetMTTF = hlp

basicstylebasicstylebasicstyle basicstyle basicstyleEnd Function
basicstylebasicstyle

To get higher precision we could increase the integration to e.g., 10MTTF. Note the motiva-

tion for this approach is given by:

MTTF =
∫ ∞

0
R(t )d t =

∫ ∞

0
[1−Pr (t )]d t (6.7)

where 1−Pr (t ) is the probability that we are not in state r at time t .

So far the maintenance regime is not reflected in the approach. Let λE [(]τ, l ) be the effective

failure rate, i.e., the expected number of failures per unit time if the system is inspected every τ

time unit, and renewed whenever Y (t ) ≥ yl at an inspection. In the integration of Equation (G.7)

we start with t = 0 and whenever t coincides with τ, 2τ etc., special actions are taken:
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstyleFunction lambdaEffective (A , tau , l )

basicstylebasicstylebasicstyle basicstyle basicstylef i x A A

basicstylebasicstylebasicstyle basicstyle basicstyleMTTF = getMTTF(A)

basicstylebasicstylebasicstyle basicstyle basicstyleDeltaT = MTTF / 1000

basicstylebasicstylebasicstyle basicstyle basicstylehlpF = 0

basicstylebasicstylebasicstyle basicstyle basicstylet =0

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime=0

basicstylebasicstylebasicstyle basicstyle basicstyleP = [ 1 , 0 , 0 , . . . . ]

basicstylebasicstylebasicstyle basicstyle basicstyleIM = getIntMatrix (A , DeltaT )

basicstylebasicstylebasicstyle basicstyle basicstyleDo While t < 10*MTTF

basicstylebasicstylebasicstyle basicstyle basicstyleP = mMult(P , IM)

basicstylebasicstylebasicstyle basicstyle basicstylehlpF = hlpF + P( r + 1) Add to e f f e c t i v e f a i l u r e rate

basicstylebasicstylebasicstyle basicstyle basicstyleP( 1 ) = P( 1 ) + P( r + 1) I f system i s f a i l e d , i t i s assumed to be

basicstylebasicstylebasicstyle basicstyle basicstylerenewed

basicstylebasicstylebasicstyle basicstyle basicstyleP( r + 1) = 0 Clear probabi l i ty

basicstylebasicstylebasicstyle basicstyle basicstyleI f localTime >= tau Then

basicstylebasicstylebasicstyle basicstyle basicstylesumP = 0

basicstylebasicstylebasicstyle basicstyle basicstyleFor i = l +1 To r

basicstylebasicstylebasicstyle basicstyle basicstyleSumP = SumP + P( i )

basicstylebasicstylebasicstyle basicstyle basicstyleP( i ) =0

basicstylebasicstylebasicstyle basicstyle basicstyleNext i
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basicstylebasicstylebasicstyle basicstyle basicstyleP( 1 ) = P( 1 ) + SumP

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime = 0

basicstylebasicstylebasicstyle basicstyle basicstyleElse

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime = localTime + DeltaT

basicstylebasicstylebasicstyle basicstyle basicstyleEnd I f

basicstylebasicstylebasicstyle basicstyle basicstylet = t + DeltaT

basicstylebasicstylebasicstyle basicstyle basicstyleLoop

basicstylebasicstylebasicstyle basicstyle basicstylelambdaEffective = hlpF / t

basicstylebasicstylebasicstyle basicstyle basicstyleEnd Function
basicstylebasicstyle

Note the indexing, i.e., the failed state is r + 1 and the maintenance limit is l + 1. In Python

indexing starts at =0, so a Python script is even more intuitive.

In the If localTime = tau part of the script above we have used a loop to simulate what

is happening during an inspection. A more efficient way to do this would be to create an “in-

spection matrix”, say M defined by:

M =



1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

1 0 0 · · · 0

1 0 0 · · · 0
...

1 0 0 · · · 0


(6.8)

where the starting point is an identity matrix, but where we from the row corresponding to state

l shift the “ones” to the left.
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstyle:

basicstylebasicstylebasicstyle basicstyle basicstyleI f localTime >= tau Then

basicstylebasicstylebasicstyle basicstyle basicstyleP = mMult(P , M)

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime = 0

basicstylebasicstylebasicstyle basicstyle basicstyleElse

basicstylebasicstylebasicstyle basicstyle basicstyle:
basicstylebasicstyle

Such an inspection matrix could also be used to specify that an inspection is not perfect. For

example if q is the probability that an inspection fails to reveal that the actual state is l or higher,

the corresponding leftmost “one” is replaced by 1− q and the diagonal element is replaced by
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q for rows corresponding to states l , l +1, . . . ,r −1. An inspection matrix could also be used to

specify that upon an inspection it might be decided to repair to a state which is not as good as

new. For example in 80% of the cases we repair to state 0, in 15% of the cases we repair to sate 1

and in 5% of the cases we repair to state 2.

6.3.1 Significant repair times

So far we have assumed that repair times could be neglected. If we can not neglect repair times

we need to model repair times in the transition matrix A. For example if at an inspection we with

some probability q will decide to repair from state i to state j with constant repair rate µ a first

approach would be to modify the A-matrix, i.e., A(i , j ) = ai , j = qµ. However, this would imply

that a repair starts immediately after the system has reached state j . In reality, a repair can first

start after the coming inspection.

To handle the situation we now introduce “virtual” states. A virtual state is a state in the A-

matrix representing the situation where a maintenance action has been decided and the repair is

actually started. For each pair (i , j ) where there could be a repair from physical state i to physical

state j a virtual state ki , j is defined. Then the associated transition rate is set to aki , j , j = µ. The

row and column representing the virtual state ki , j can be any ones larger than those already

“occupied”. The inspection matrix M will also get an additional row and column representing

the virtual state ki , j , where M(i ,ki , j ) = q , where we in addition need to ensure that the row sum

equals one.

Note that while repairing from state i to state j represented by aki , j , j = µ there might be a

“competing” transition from for example state i to state l , thus we also need to specify aki , j ,l =
λi ,l . Such transitions are not shown in Figure 6.2.

Figure 6.2 illustrates the Markov diagram for a situation with r = 4. Here λi j is the transition

rate from state i to state j representing degradation. Further µki , j , j is the repair rate from virtual

state ki , j to state j . When a repair is initiated as a result of a proof-test, virtual states are intro-

duced. For example the state (2.1) represent that after a test it is decided to repair from state 2 to

state 1. The doted lines represent transitions that instantaneously take place after a proof-test.

The probabilities given by the q-values represent maintenance decisions. For example q3,3.0 = 1

represents that if a state 3 is revealed by a proof-test, we always initiate a repair to state 0. q2,2.0

is representing the probability that we after revealing a state 2 on a proof-test we initiate a repair

to state 0. The q-values are entered into the inspection matrix, M.

In Figure 6.2 there are three nodes representing that the system is in a “small degradation”

state, i.e., physical state 2. State 2 in the diagram is a hidden state, we are not aware of any

transition from state 1 to state 2. The states (2.0) and (2.1) are evident states, we know that we

are in main state 2 (small degradation), a maintenance request has been issues (to state 0 and

state 1 respectively).
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Figure 6.2: Markov transition diagram with potential repairs

Note that in Figure 6.2 we use the notation aFrom,To without indicating the actual row and

column numbers in the transition matrix. The notation aki , j ,l on the other hand, is used to

identify a row and column number in a matrix in the code when we do the programming.

In previous sections we have focused on the effective failure rate, but we might also be inter-

ested in the average portion of time we are in each state. For example we may use:
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstyle:

basicstylebasicstylebasicstyle basicstyle basicstyleDo While t < 10*MTTF

basicstylebasicstylebasicstyle basicstyle basicstyleP = mMult(P , IM)

basicstylebasicstylebasicstyle basicstyle basicstylePavg = Pavg + P

basicstylebasicstylebasicstyle basicstyle basicstyleI f localTime >= tau Then

basicstylebasicstylebasicstyle basicstyle basicstyleP = mMult(P , M)

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime = 0

basicstylebasicstylebasicstyle basicstyle basicstyleElse

basicstylebasicstylebasicstyle basicstyle basicstylelocalTime = localTime + DeltaT

basicstylebasicstylebasicstyle basicstyle basicstyleEnd I f

basicstylebasicstylebasicstyle basicstyle basicstylet = t + DeltaT

basicstylebasicstylebasicstyle basicstyle basicstyleLoop

basicstylebasicstylebasicstyle basicstyle basicstylePavg = Pavg * DeltaT / t

basicstylebasicstylebasicstyle basicstyle basicstyle:
basicstylebasicstyle

Phase type modelling

So far we have assumed that the sojourn times are exponentially distributed. This assumption

could be questioned if there are failure mechanisms like wear, fatigue, corrosion etc. that drives

the degradation of the system. Phase type modelling is an approach where we may approximate

a stochastic variable with a multi state Markov model. The more states we use the better will the
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approximation be. In the following we do not discuss the explicit fitting of model parameters for

the approximation. Several statistical packages exist for this. We will also assume that each ran-

dom variable is approximated by a two-state Markov model in order to reduce the total number

of states. See Laskowska and Vatn (2020) for an example using phase type modelling.

Model

Consider a system having three main states, 1 = new, 2 = degraded, and F = failed. With main

state we here mean what the categorization used by the maintenance department.

We assume that sojourn times in state 1 and state 2 could be approximated by a phase type

distribution, i.e., T̃1 ∼ F1(t ) and T̃2 ∼ F2(t ). The sojourn times are assumed to be stochastically

independent.

For T̃1 the phase type model comprises two sub states, i.e., 1a and 1b. A acyclic phase type

model is used where:

• The probability that the system starts in sub state 1a is p1, and the probability that the

system starts in sub state 1b is 1−p1

• There is a constant transition rate, λ1a from state 1a to 1b

• There is a constant transition rate, λ1b from state 1b to an absorbing state outside the

system

A similar model exist for sojourn time 2.

Note that given F1(t ) and F2(t ) we may in principle find the distribution of the time to failure

for this system by the convolution theorem. This will not be pursued here.

System modelling

The phase type models for the two sojourn time enable easy integration by use of the Markov

equations P(t +∆t ) ≈ P(t )[A∆t + I] when each sojourn time is treated independently.

In order to have a complete model we need to link the two phase type models.

Proposition: For the phase type distribution approximating the first sojourn time there is a rate

λ1b from state 1b to an absorbing state outside the system. This transition is split into two tran-

sitions, one to state 2a and one to state 2b. The corresponding rates are λ1b_2a = p2λ1b and

λ1b_2b = (1−p2)λ1b respectively. Figure 6.3 depicts the situation:

The dashed ellipses represent the physical or main states “new” and “degraded” as observed

by, e.g., maintenance personnel. The states 1a, 1b, 2a and 2b are artificial or sub states used for

modelling, but have no physical interpretation.
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Figure 6.3: Markov transition diagram with intermediate transitions

Let PF (t ) be the probability that the system is in state F at time t . PF (t ) can easily be ob-

tained by integration the Markov equation for the compound system yielding the cumulative

distribution function for time to system failure.

For the model with the artificial states, the Markov property holds. However, if we consider

the three main states (1=new, 2=degraded, and F=failed), the Markov property does not hold.

Given that we have stayed in main state 2 for some time, the probability of escaping that state

will typically increase as time goes by. The explanation is that given we entered state 2 at time

x, we either went to the artificial state 2a with probability p or to state 2b with probability 1−
p, which is exactly matching the phase type model we use for the “physical” state 2 when the

“failure rate function” for state 2 is increasing.

6.4 Varying intervals for inspection

The idea of having fixed lengths between inspections may be questioned. Obvious it would be

some administrative advantages if we could stick to the same inspection intervals independent

on the system state. On the other hand it seems reasonable to reduce the inspection intervals

as we approach the maintenance limit. To obtain the total failure rate, number of inspections,

and number of repairs for a general inspection and maintenance strategy is almost impossible.

In the following we present an approach where we make some assumptions which would be

reasonable to handle from an administrative point of view, and which also should not be far

from the optimal solution:

• The time intervals between inspections are either τL (long), τM (medium), or τS (short).

Further kL and kM are integers such that τL = kLτS and τM = kMτS.

• LL is a set of states which require inspection interval τL, LM is a set of states which require

inspection interval τM and LS is a set of states which require inspection interval τS. For

all other states, LR, it is required to repair the system to a good as new state.

• If a failure occurs at time t in between inspections the system will be repaired to a good

as new condition immediately, and the first inspection of length τL will take place at the



CHAPTER 6. MARKOV STATE MODEL - AN INTRODUCTION 74

smallest value of kτS where k is an integer and kτS > t +τL.

In the modelling we assume that we at any time, t ̸= kτS, have:

• The current inspection regime is governed by τL, τM or τS

• Let tC be the starting point of the current inspection interval, i.e., tC > kτS and tC < (k +
1)τS for some integer k

• If the current inspection regime is governed by τL, the next inspection will take place at

one of the following point of times: tC +τS, tC +2τS, . . . , tC +kLτS

• If the current inspection regime is governed by τM, the next inspection will take place at

one of the following point of times: tC +τS, tC +2τS, . . . , tC +kMτS

We may now define different P-vectors to hold the time dependent state probabilities as we

integrate the solution. Let PS(t ) be defined such that

Pi ,S(t ) = Pr(Y (t ) = yi ∩ current regime is τS) (6.9)

For the medium and long intervals we also need to take into account the “starting point” of

these, and we define:

Pi ,L,m(t ) = Pr(Y (t ) = yi ∩ current regime is τL ∩ cycle is m) (6.10)

With “cycle” m we mean that the inspection will take place at point of times τL+(m−1)τS,2τL+
(m −1)τS,3τL + (m −1)τS, . . .. We can imagine that these cycles are running in parallel. In reality

it will be only one cycle that could be active, but which one is actually active depends on when

the system is renewed. Similarly we define:

Pi ,M,n(t ) = Pr(Y (t ) = yi ∩ current regime is τM ∩ cycle is n) (6.11)

In total we have one PS(t )-vector, kM PM,n(t )-vectors and kL PL,m(t )-vectors. As we integrate

the Markov differential equations for t ̸= lτS we update all the P(t )-vectors according to Equa-

tion (G.7).

Here it should be noted that a more efficient approach would be to use:

P(t +τS) ≈ P(t )[A∆t + I]2n
(6.12)

where ∆t = τS/2n and n is sufficient large to get a low value of ∆t . Typically n = 10. This means

that we may calculate [A∆t + I]2n
once, and use this matrix for all integrations. An alternative is

to use matrix exponentials if we have the numerical routine available, i.e., P(t +τS) = P(t )eAτS .
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Initially we have P0,L,1(t = 0), and all other probabilities are equal to zero. We now apply

Equation (6.12) for t = 0,τS,2τS,3τS, . . . for all the P(t )-vectors. At each step we investigate each

P(t )-vector with respect to:

• Count the “number” of failures, to update the effective failure rate λE

• Count the “number” of repairs, i.e., update the renewal rate ρE

• Move “probability mass” to reflect repairs and change of inspection regime

For each P(t )-vector we investigate the element corresponding to the failed state. These proba-

bilities are added to a variable holding the accumulated expected number of failures. A failure

could have occurred anywhere in the interval we integrate by Equation (6.12), and we assume an

immediate repair. However, according to our assumptions, the system will not change the point

of times where inspections are possible. Now consider time t = lτS, then there will be a main-

tenance regime, say m with inspection interval τL which also has an inspection at time t = lτS.

Let p j be all the probabilities representing failures in the set of P(t )-vectors. The probabilities

are now moved according to:

P0,L,m(t+) = P0,L,m(t−)+∑
j

p j (6.13)

where we assume that τL is small. Since the failure could have taken place some time before t ,

it is a probability that the system was reset to an as good as new state, and then jumped to the

next deterioration level if τL is large. If this is the case we could split
∑

j p j to state 0 and 1.

We now proceed to handle the change of maintenance regime. As before we identify the

integer value m which is such that the regime τL with cycle m has due date for an inspection

at time t = lτS. Similarly we identify the integer value n which is such that the regime τM with

cycle n has due date for an inspection at time t = lτS.

To understand the situation, consider τL = 6,τM = 3 and τL = 1. Assume we are considering

an inspection at time t = lτS = 13 ·1 = 13. m will now be 2 since the second τL cycle will have

an inspection at times 1,7,13,19. . .. Further n = 2 because the second τM cycle will have an

inspection at times 1,4,7,10,13,16. . ..

First consider PL,m(t ), i.e., the vector representing cycle m for the regime τL. For all states

i ∈LL there will be no change in the inspection regime. For all states i ∈LM this will correspond

to shifting from regime τL to regime τM. The vector PM,n(t ) is now representing the cycle which

will “take over”. Further, for all states i ∈ LS this will correspond to shifting from regime τL to
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regime τS. Finally for all states i ∈LR this will correspond to a repair. We thus have:

Pi ,M,n(t+) = Pi ,M,n(t−)+Pi ,L,m(t−), i ∈LM

Pi ,S(t+) = Pi ,S(t−)+Pi ,L,m(t−), i ∈LS

P0,L,m(t+) = P0,L,m(t−)+ ∑
i∈LR

Pi ,L,m(t−)

Pi ,L,m(t+) = 0, i ∉LL (6.14)

The notation t− and t+ is used to denote time just before and just after an inspection respec-

tively.

Referring to the example this means that if there is an inspection at time t = 13 there is a τL

regime with cycle m = 2 which has an inspection at time t = 13. If it during the inspection is

observed that the system is in LM, i.e., we find positive probabilities for Pi ,L,m=2(t−), i ∈LM we

shift to a τL regime with cycle n = 2, i.e., inspection at time t = 13 and next inspection time at

t = 13+3 = 16.

Next consider PM,n(t ). For all states i ∈LM there will be no change in the inspection regime.

For all states i ∈ LS this will correspond to shifting from regime τM to regime τS. The vector

PS(t ) is now representing the regime which will “take over”, i.e.,

Pi ,S(t+) = Pi ,S(t−)+Pi ,M,n(t−), i ∈LS

P0,L,m(t+) = P0,L,m(t−)+ ∑
i∈LR

Pi ,M,n(t−)

Pi ,M,m(t+) = 0, i ∉LM (6.15)

Finally consider PS(t ). For all states i ∈LS there will be no change in the inspection regime. For

all states other states this will correspond to a repair to an good as new state. Note that for this

regime there is not possible to be in LL or LM. The updating of probabilities is defined by:

P0,L,m(t+) = P0,L,m(t−)+ ∑
i∈LR

Pi ,S(t−)

Pi ,S(t+) = 0, i ∈LR (6.16)

6.5 Varying intervals for inspection - Alternative approach

In the previous section the Markov differential equations were integrated having all possible

combination of sequences in the various P(t ) vectors. Alternatively we could integrate the dif-

ferential equations but when there is a failure or a demand for a renewal we just remove the

corresponding probability mass from the P(t ) vectors. This will reduce the number of P(t ) vec-

tors to consider.
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We still assume that the time intervals between inspections are either τL, τM, or τS. Further

kL and kM are integers such that τL = kLτS and τM = kMτS. The situation now simplifies because

there is only one τL regime and one τM regime, i.e., we are not considering the cycles any more.

The time dependent probability vectors for each regime is given by PL(t ), PM(t ) and PS(t ).

In the integration we now define h to be a vector of probabilities of a failure in each period

of length τS. Similarly g is a vector of probabilities of a request of a renewal in each period. Let

j be an index running through all intervals of length τS. The P-vector elements are defined by

P0,L(t = 0) = 1 and 0 for all other elements in the set of P(t )-vectors. The integration procedure

is now:

For j = 1,2, . . . integrate all P(t )-vectors according to:

P(t +τS) ≈ P(t )[A∆t + I]2n
(6.17)

where ∆t = τS/2n , and where we update t = t +τS. In the formulas that follow t− represents the

time just prior to t , and t+ represents the time just after t , i.e., when adjusting for the decision

to take at time t .

Collect failure probabilities etc.:

h( j ) = ∑
k∈{L,M,S}

Pr,k (t−) (6.18)

g ( j ) = ∑
i∈LR

Pi ,S(t−), if j ≥ kL (6.19)

If ( j −1) mod kM = 0 and j > kL then (“medium” maintenance):

g ( j ) = g ( j )+ ∑
i∈LR

Pi ,M(t−) (6.20)

Pi ,S(t+) = Pi ,S(t−)+Pi ,M(t−), i ∈LS (6.21)

End If

If ( j −1) mod kL = 0 then (“long term” maintenance):

g ( j ) = g ( j )+ ∑
i∈LR

Pi ,L(t−) (6.22)

Pi ,S(t+) = Pi ,S(t−)+Pi ,L(t−), i ∈LS

Pi ,M(t+) = Pi ,M(t−)+Pi ,L(t−), i ∈LM (6.23)
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End If

In the procedure listed above we have not explicitly “removed” the probability mass correspond-

ing to a “request” for renewal. This we have to do.

The vectors h and g represent the expected number of failures and the number of requested

renewals for each interval. Let w be the vector of the total expected number of renewals in each

interval. For interval number 1 we have w(1) = g (1), for interval number 2 the expected number

of renewals is w(2) = h(2)+w(1)g (1). To find the number of expected renewals in general we

could use the discrete version of the renewal density for period j :

w( j ) = g ( j )+
j−1∑
i=1

w( j − i )g (i ) (6.24)

Since we already have calculated the values in g it is straight forward to obtain w from Equa-

tion (6.24).

Note that w( j−i )g (i ) represents the probability that there was a renewal at ( j−i )τS and then

there is another renewal iτS later. Here we should also account for the possibility that it was a

failure at ( j − i )τS and then there is another renewal iτS time units later, hence more correct

would be:

w( j ) = g ( j )+
j−1∑
i=1

[
w( j − i )+ f ( j − i )

]
g (i ) (6.25)

where f () is described below.

Let f be the vector of expected number of failures in each period. A failure will occur in

period j in two disjoint ways, either the initial system fails in interval j , or there was a renewal

or failure in a previous period j − i , and then this system fails after another i periods:

f ( j ) = h( j )+
j−1∑
i=1

[
w( j − i )+ f ( j − i )

]
h(i ) (6.26)

Equation (6.26) may now be used to find the average effective failure rate over a given time

horizon.

6.6 Varying intervals with significant repair times

The model in Section 6.4 assumes that repair times could be neglected. In some situations this

is not the case, and in this section an alternative approach is proposed to take into account both

varying intervals and significant repair times.

Figure 6.4 shows the transition diagram for varying intervals with significant repair times.
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Figure 6.4: Markov transition diagram for varying intervals with significant repair times

Here we assume that there are four physical degradation states denoted from 0 (perfect) to 3

(fault state). An index is used to indicate the assumed state. The assumed state is the state

recorded at the last inspection. Here we assume that inspections are perfect, but it is straight

forward to extend the model to imperfect inspections. If the index is not provided, the default

value is 0, corresponding to the bottom row in Figure 6.4. The λ- and µ-values corresponds to

degradation and repair rates respectively.

Figure 6.4 indicates the inspections by using dashed transitions. This means that these tran-

sitions only take place at inspections. τL represent the longest intervals and τS represent the

shortest intervals. In this example it is assumed that long intervals apply when the system state

is assumed to be 0, and short intervals apply when the system state is assumed to be 1 or above.

It is also assumed that the fault state, i.e., state 3, is only revealed by an inspection (proof test),

or by a real demand.

To “integrate” the model we follow the same procedure as in Section 6.3.1. In the main loop

we update the time dependent probability vector by P(t +∆t ) ≈ P(t )[A∆t + I]. For all the “pe-

riodic” transitions indicated by the τ-values in Figure 6.4 the probability is moved, for example

every τL we have:

P11 (t+) = P11 (t−)+P1(t−)

P1(t+) = 0

where t− and t+ are point of times just before and after an inspection respectively.

The essential Python code reads:
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while t < maxTime:

P = np.dot(P, IM) # Integrate from t to t+dt , IM = (I + A*dt) =

integration matrix

Pavg += P

cnt += 1

for l, inspection in enumerate(inspections):

i = inspection[fromPtr]

j = inspection[toPtr]

inspection[tPtr] += dt # Update local time for this inspection

regime

if inspection[tPtr] >= inspection[tauPtr]: # Due time for inspection

inspection[tPtr] = 0 # Reset local time , i.e., since last

inspection

P[j] += P[i]*inspection[pPtr]

P[i] *= (1-inspection[pPtr])

inspections[l] = inspection # Reset

t += dt

Pavg *= 1/cnt

where inspections is a set of inspection regimes corresponding to the τ-values in Figure 6.4.

An inspection regime, i.e., one element in inspections, is modelled with a vector containing

[fromState, toState,tauValue, Prob, localTime].

Of particular interest is the sum of the average probabilities for states representing a fault

state, i.e., 3,31,32 and 33. This is essential the probability of failure on demand, PFD. Let PL be

the sum of average probabilities for states representing that the maintenance regime is governed

by τL, i.e., the states 0,1,2 and 3. The expected number of inspections per time unit is then given

by

fI(τL,τH) = PL/τL + (1−PL)/τH (6.27)

A simple objective function to minimize is thus

C (τL,τH) = cI fI(τL,τH)+ fDPFD(τL,τH)cH (6.28)

where cI is the inspection cost, fD is the demand rate of the safety function considered, and cH

is the cost if the safety function is failing upon a demand.

6.7 Basic Markov degradation model motivated by ISO14224

The ISO standard for collection and exchange of reliability and maintenance data for equipment

ISO14224 (2016) proposes three different levels of degradation of a components:



CHAPTER 6. MARKOV STATE MODEL - AN INTRODUCTION 81

• Incipient (I): The item is able to perform it’s required function. Some degradation is ob-

served, but it is not expected to result in a failure in short time.

• Degraded (D): The item is able to perform it’s required function, but with possible reduced

performance, and a failure is expected in rather short time if a corrective action is not

carried out.

• Critical (C): The item is not able to perform it’s required function, i.e., the item is in a fault

state.

Many operating companies in the oil- and gas industry has adopted these levels in both their

reporting systems, i.e., computerized maintenance management systems (CMMS) as well as

when it comes to planning and optimization of the maintenance strategies. In the following we

will there fore adapt these categories. In order to have a complete set of states for our Markov

model we make two adjustments:

1. A main category healthy (H) is introduced to represent a component which is considered

to be as good as new, or almost as good as new

2. For each of the main categories (main states) H, I and D, we introduce two sub-states to

allow a for a refinement for the description. These extra sub-states are labelled + and - to

represent a state slightly better and a state slightly worse than average of the main state.

The use of sub-states serves two purposes. First of all it will allow a more realistic degradation

modelling. Since usually we assume physical degradation of the item under consideration, a

Markov model with only two states between a perfect component and a failed component is

not very realistic. Secondly, it will allow maintenance personnel to bring more evidence of the

situation into the mark, and finally the maintenance department could establish more flexible

maintenance strategies. Typically observing a degraded state, i.e., D, according to the categories

will result in a decision to do a corrective action to bring the item into a good as new state. With

the refined codes, it is possible to trigger a maintenance action in the D+ state for very critical

items, whereas for non-critical items such a maintenance limit could be set to D-.

The states are shown in Figure 6.5. We will later discuss how to estimate the transition rates

between the states.

To model repair we make the following assumptions:

• We assume that the system is inspected every τ time unit.

• If the result of the inspection is that the condition (state of the system) is equal or higher

than the maintenance limit, a maintenance request is made.
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Healthy Incipient degradation Degraded Critical/Fault state

Figure 6.5: Markov transition diagram for the basic situation

• The lead time, i.e.,the time from a maintenance order is placed until it is executed is a ran-

dom quantity with mean value equal to MLD (Mean lead time delay/Mean logistic delay)

• For simplicity we assume that the active repair time is small compared to MLD, and there-

fore can be ignored.

• To simplify modelling we assume that lead times are Erlang distributed with shape pa-

rameter k. Figure 6.6 depicts the situation when k = 4, where dashed states represent that

a maintenance request has been placed, but is still pending.

• The degradation process continues after a maintenance request has been placed. The

diagram illustrates this by transition rightwards in the dashed states in the diagram.

Note that the transition between state D and D1 is shown by a dotted line. This is because

such a transition only takes place at each inspection. The same apply for the transition between

state D- and D1-.

To solve the model the following steps are required

1. The system starts in state H+

2. The system is integrated for a long time, i.e., such that we can achieve asymptotic results.

Let P(t ) be the time dependent probability vector at timet , and then we apply Let P(t +
d t ) = P(t ) [I +Ad t ]

Problems

6.1 Integration of Markov equations. Assume r = 5 and λi = 0.01, i = 0,1, . . .. Integrate the

Markov differential equations and obtain the expected value and variance of the time to failure.

Hint: Use partial integration for the variance similar to MTTF = ∫
R(t )d t .

6.2 Effective failure rate and renewal rate. Write a program to calculate the effective failure rate

and the renewal rate.

6.3 Wind turbine example with observable degradation. Consider the example in section 4.1.15.

Assume that it is possible to observe the degradation by inspections. Assume that a Markov state
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Figure 6.6: Markov transition diagram with lead times

model with r = 8 is a reasonable model in this situation. The inspection cost is assumed to be

cI = 2 000 NOKs, and the failure probability of an inspection is q = 0.1. The degradation speed

at end of life is considered to be 3 times faster than initially. Find the optimal value of τ and ℓ=
maintenance limit.

6.4 Write a Python program to implement the mean time to failure (MTTF) indicated in Sec-

tion 6.3.

6.5 Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system is inspected

with intervals of length τ = 26. If the system is found in state Y (kτ) = 4 the system will be

renewed. Renewal takes place immediately. The probability that an inspection reveals that the

system is in state 4 is 70% when this is the case. Find the effective failure rate for this situation.

6.6 Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system is inspected

with intervals of length τ = 26. If the system is found in state Y (kτ) = 4 the system will be

renewed. There is a logistic delay of in average 4 weeks before the repair takes place. Delay

time is assumed to be exponentially distributed. The probability of revealing state 4 is still 70%.

Find the effective failure rate for this situation.

6.7 Numerical precision. Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the

system is inspected with intervals of length τ = 26, i.e., not varying intervals. Assume that the

system is in state 0 at time t = 0. Find P(τ) by using Equation (6.12) when using n = 4,6,8 and

10. What would be a reasonable value of n.

6.8 Implement the model above, where r = 5, λi = 0.01, the maintenance rule is τL = 52,τM =
26,τS = 18,LL = {0},LM = {1,2},LS = {3} and LR = {4}.

6.9 Equinor model. Equinor uses a reporting system with the following values of the health
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indicator:

H Healthy

U Unwell

S Sick

D Dead

The transition vector is given by:

λ= [1/15000,1/8000,1/3000]

where the transitions are H → U,U → S and S → D respectively. The time unit is hours.

a) Verify by numerical integration of the Markov equations that MTTF = 15000+8000+3000

b) Find the effective failure rate and the effective renewal rate if the inspection interval is

τ= 2 months. The maintenance limit is“Sick”, i.e., when an inspection reveals the state S

the item is set back to a good as new state. We assume that the lead time is negligible.

6.10 Varying intervals. In this problem we will investigate the model in section 6.4. We use a

model with r +1 = 4+1 = 5 states, where 0 = as good as new, 1 = small defect, 2 = medium defect,

3 = large defect and r = 4 = fault state. The transition vector is given by:

λ= [λ0,λ1,λ2,λ3] = [1/48,1/36,1/24,1/12]

where the time unit is months. The maintenance strategy is determined by:

• LL = {0} = Set of states requiring long intervals

• LM = {1} = Set of states requiring medium intervals

• LS = {2} = Set of states requiring short intervals

• LR = {3} = Set of states where renewal is required

• τS = 1 = Shortest interval

• kM = 6 = Medium interval is every kM time relatively to τS

• kL = 12 = Long interval is every kL time relatively to τS
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Obtain the effective failure rate λE, the renewal rate ρE, and the inspection rate iE.

6.11 We consider the situation in Problem 6.10 but will investigate the gain of having intervals

depending on the condition. The following cost elements shall be used:

• cI = 1 = cost of inspection

• cR = 10 = cost of renewal

• cF = 50 = cost of failure

a) Obtain the optimal inspection interval τ if system is renewed when an inspection reveals

that the system is in state 3, and the inspection interval is the same for all degradation

levels.

b) Find the total expected cost per time unit in a)

c) Find the optimal value of τS when kM = 6 and kL = 12

d) Find the expected cost in c) and compare the result with b).



Chapter 7

Numerical integration of stochastic

processes

7.1 Introduction

A stochastic process {X (t ), t ∈Θ} is a collection of random variables. The setΘ is called the index

set of the process. For each index t in Θ, X (t ) is called the state of the process at time t . In this

memo we only consider the situation whereΘ is a continuum, that is we have a continuous-time

stochastic process.

7.2 Increments

An increment of a stochastic process is the difference between two random variables of the same

stochastic process. We assume that the index set (Θ) represents time, and an increment is how

much the stochastic process changes over a certain time period. Let {X (t ), t ∈Θ} be a stochastic

process and consider two non-negative numbers t1 ∈ [0,∞) and t2 ∈ [0,∞) such that t1 ≤ t2, then

the difference S = X (t2)−X (t1) is defined as the increment and is a stochastic variable.

Motivation

In maintenance modelling we often describe the state of a component with a state variable. Let

t denote the time axis, and Y (t ) the state of an item at time t . Due to many common failure

mechanisms such as wear, fatigue, corrosion it is reasonable to believe that the component de-

teriorates over time. The deterioration in a time period from t to t +∆t is usually considered

to be associated with some randomness. It is therefore natural to consider {Y (t ), t ∈Θ} as a

86
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stochastic process where:

Y (t +∆t ) = Y (t )+∆Y (7.1)

and where ∆Y is the deterioration in the interval from t to t +∆t . Typically ∆Y depends on the

time t , the interval length ∆t and the state Y (t ) at time t .

Failure

In the following we assume that high deterioration corresponds to a high value of Y (t ). Further

we assume that there is a deterioration limit L corresponding to an unacceptable deterioration

level. We now define the failure time of the stochastic process by:

T = inf{h : Y (h) ≥ L} (7.2)

Although not realistic, we often assume that L is fixed and known.

7.3 Positive increments

Physically there are arguments supporting that increments are positive, since a component can

not improve unless it is maintained in one way or another. This calls for positive increments. If

we have positive increments it follows:

FT (t ) = Pr(T ≤ t ) = Pr(Y (t ) ≥ L) (7.3)

To obtain the mean time to failure we may use:

E[T ] =
∫ ∞

0
(1−FT (t ))d t =

∫ ∞

0
Pr(Y (t ) ≤ L)d t (7.4)

Note that we so far only consider a system which is not maintained, and just runs to failure.

7.4 The gamma process

Background: X is said to be gamma distributed with shape parameter α, and rate parameter λ

if the PDF is given by:

Ga(x|α,λ) =αλxα−1e−λx/Γ(α) (7.5)

Let Y (t ) be the state of the process at time t . Y (t ) follows a stationary gamma process if:
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• Y (0) = 0

• Y (s)−Y (t ) ∼ Ga([s − t ]v,u), s > t

• Y (t ) has independent increments

We observe that the increment only depends on the length of the time interval, not the actual

time.

Assume that the component fails as soon as the state exceeds the value L. Let T denote the

time to failure. It then follows:

FT (t ) = Pr(T ≤ t ) = Pr(Y (t ) ≥ L) = Γ(v t ,Lu)/Γ(v t ) (7.6)

where Γ(a, x) is the incomplete gamma function.

7.5 Non-stationary gamma process

The gamma process could be extended to a non-stationary process by letting the shape param-

eter be a function of time, i.e., v(t ) is the shape function, and we have:

• Y (0) = 0

• Y (s)−Y (t ) ∼ Ga(v(s)− v(t ),u), s > t

• Y (t ) has independent increments

The CDF now reads

FT (t ) = Pr(T ≤ t ) = Pr(Y (t ) ≥ L) = Γ(v(t ),Lu)/Γ(v(t )) (7.7)

Note that the expected increment (deterioration) in the period from time t to s is [v(s)−v(t )]/u.

In maintenance modelling it is common to use a form for the shape function like v(t ) = at b ,

where b > 1. If this is the case, the expected increment in a fixed length interval increases with

time. This means that the deterioration goes faster and faster as the component is ageing. It

should be mentioned that it is the age that determines the deterioration, not the state in terms

of the deterioration level.

7.6 Positive and negative increments

Although we from physical arguments would believe that increments are always non-negative,

we often observe negative increments. This points to the fact that what we measure is not nec-

essarily the real underlying deterioration level. What we could do would be to establish two
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stochastic processes, {X (t ), t ∈Θ} and {Y (t ), t ∈Θ} where X (t ) is the actual state at time t and

Y (t ) is what we measure or calculate at time t . This idea is not pursued here, instead we will for

the time being focus on only {Y (t ), t ∈Θ}, and then allow increments also to be negative.

7.7 Brownian motion and the Wiener process

Brownian motion is the random motion of particles in a fluid where collisions between particles

result in a rather chaotic behaviour. The phenomenon was first described by Robert Brown in

1827. In mathematics, Brownian motion is described by a continuous-time stochastic process

named the Wiener process.

The Wiener process {W (t ), t ∈Θ} is characterized by:

• W (0) = 0

• {W (t )} is almost surely continuous

• {W (t )} has independent increments

• W (s)−W (t ) ∼N (0, s − t ) (for 0 ≤ s ≤ t )

where N (µ,σ2) denotes the normal distribution with expected value µ and variance σ2.

The Wiener process defined above is fluctuating around zero. A related stochastic process is

defined by:

Y (t ) =µt +σW (t ) (7.8)

This process is called a Wiener process with drift µ and infinitesimal variance σ2.

For the Wiener process with drift we have:

Y (t )−Y (s) ∼N (µ(s − t ),σ2(t − s)) (7.9)

Note that since the increments could be negative, the relation FT (t ) = Pr(T ≤ t ) = Pr(Y (t ) ≥ L)

does not hold for the Wiener process. However, it may be shown that the time to failure, i.e., the

time to the first passage of the limit L is inverse-Gauss distributed. That is:

FT (t ) =Φ
(p

λ

ν

p
t −

p
λ

1p
t

)
+Φ

(
−
p
λ

ν

p
t −

p
λ

1p
t

)
e2λ/ν (7.10)

and

E[T ] = ν (7.11)

Var(T ) = ν3/λ (7.12)
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where ν = L/µ and λ = L2/σ2. In terms of the original parameters this means that we have

E[T ] = L/µ and Var(T ) = Lσ2/µ3.

Now, assume that we at time t observe Y (t ) = yt . Let T̃t be the time from t until a failure

occurs. It then follows that T̃t is inverse-Gauss distributed with parameters ν̃t = (L − yt )/µ and

λ̃t = (L− yt )2/σ2.

Later on we will use the notation remaining useful lifetime (RUL) rather than T̃t .

7.8 Using Monte Carlo simulation to obtain the distribution of

T

Since we know that T is inverse-Gauss distributed it seems meaningless to find the distribution

by Monte Carlo simulation (MCS). However, we will later see that we do not have an easy expres-

sion for T in many cases, and MCS might be an easy way out. A pseudo code for the simulation

is given below:
basicstylebasicstyle

basicstylebasicstylebasicstyle basicstyle basicstylenSim = 1000

basicstylebasicstylebasicstyle basicstyle basicstyledt = some small time step , e . g . , 1/1000 of E(T)

basicstylebasicstylebasicstyle basicstyle basicstylemu = some value

basicstylebasicstylebasicstyle basicstyle basicstylesigma = some value

basicstylebasicstylebasicstyle basicstyle basicstyleL = some value

basicstylebasicstylebasicstyle basicstyle basicstyleFor n = 1 To nSim

basicstylebasicstylebasicstyle basicstyle basicstyleY = 0

basicstylebasicstylebasicstyle basicstyle basicstyleT = 0

basicstylebasicstylebasicstyle basicstyle basicstyleDo While Y < L

basicstylebasicstylebasicstyle basicstyle basicstyleY = Y + rndNormal (mu* dt , sigma* sqr ( dt ) )

basicstylebasicstylebasicstyle basicstyle basicstyleT = T + dt

basicstylebasicstylebasicstyle basicstyle basicstyleLoop

basicstylebasicstylebasicstyle basicstyle basicstyleTvector (n) = T

basicstylebasicstylebasicstyle basicstyle basicstyleNext n

basicstylebasicstylebasicstyle basicstyle basicstylemakeHistogram ( Tvector )

basicstylebasicstylebasicstyle basicstyle basicstyle. . . we are done
basicstylebasicstyle

where rndNormal() returns a pseudo normal distributed variable with the given mean and

standard deviation.
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7.9 Integrating the Wiener process to find the first passage CDF

The use of MCS is usually not recommended if we are able to apply numerical approaches for

obtaining e.g., the PDF or CDF of a quantity of interest.

Let Y (t ) denote the state (deterioration level) of an item at time t , t ≥ 0, and let f (y |t ) be the

probability density function (PDF) of the deterioration level at time t . In a small time interval

from t to t +d t it is assumed that the item deteriorates, where the deterioration is a random

quantity, say Sy,t ,d t , i.e.,

Y (t +d t ) = Y (t )+Sy,t ,d t (7.13)

Now let g (s|y, t ,d t ) be the PDF of Sy,t ,d t in a small time period from t to t +d t , given that the

degradation level at time t is y .

In the Wiener process the increments are independent both on time and state, so therefore

we will here simplify and use the notation g (s), where we also assume that we have determined

the integration step length d t .

Now, if the PDF of the degradation level at time t is known, i.e., f (y |t ), the law of total prob-

ability gives the PDF of the deterioration level at time t +d t :

f (y |t +d t ) =
∫ ∞

−∞
f (y − s|t )g (s)d s (7.14)

Since we assume a failure occurs the first time the deterioration level exceeds the threshold L,

we need a modified expression to use in the numerical integration:

f (y |t +d t ) =
∫ ∞

y−L
f (y − s|t )g (s)d s (7.15)

If we are able to integrate Equation (7.15) numerically, we can also obtain at any point of time:

FT (t ) = Pr(T ≤ t ) = 1−
∫ L

−∞
f (y |t )d y (7.16)

In a numerical implementation it is convenient to store f (y |t ) in an array which is denoted f.

Indexing starts from a negative number so low that we never go below that value. The upper

value could be e.g., n = 1000. The “points” are now defined such that f(i) = f (yi |t ), where yi =
i d y and d y = L/n is the interval length. To find the numerical solution for each step Equation

(7.15) is now rewritten:

f (yi |t +d t ) =∑
j

∫ j d y

( j−1)d y
f (yi − s|t )g (s)d s (7.17)
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where we in the sum only include “valid” values.

Note that when s runs from ( j −1)d y to j d y , the argument in f (yi −s) runs from (i − j +1)d y

down to (i − j )d y . If f (y) is approximated by the linear function f (y) = a′y +b′ in this interval,

this yields f (yi − s) = −a′s + (b′+ a′yi ) = as +b. The parameters a′ and b′ forming the linear

interpolation are calculated from the values f(i-j) and f(i-j+1) obtained from the previous

iteration of Equation (7.15).

This means that we approximate f (yi −s|t ) with a linear function on the form as+b and g (s)

is the probability density function of the normal distribution.

In many situations we are interested in calculating the “truncated expectation”
∫ β
−∞ x f (x)d x.

This is also the case here where we need
∫ β
α sg (s)d s. For the normal distribution the following

result may be used:

If X is normally distributed with parameters µ and σ then:∫ β

−∞
x f (x)d x =µΦ

(
β−µ
σ

)
−σφ

(
β−µ
σ

)
(7.18)

whereΦ() and φ() are the CDF and PDF for the standard normal distribution respectively. Since

efficient numerical routines exist for Φ() and φ() it is should be rather easy to implement Equa-

tion (7.17).

Increments depending on time and/or deterioration level

In the Wiener process with constant drift the increments are independent on both current time

and current state. Some mechanisms may develop with time. For example we could imagine

that the corrosion rate increases with time because the steel has been exposed to more and

more corrosive medium. Further Paris’ law (also known as the Paris-Erdogan equation) is a

crack growth equation stating that crack growth during one load cycle depends on the crack

length. Therefore the assumptions behind the Wiener process is not matching our physical

understanding of the failure mechanism.

In the modelling it is therefore required to investigate relevant failure mechanism and pro-

pose a model for the increments (deterioration) based on our physical understanding where fo-

cus on time and deterioration level are important to consider. The geometric Brownian motion

is a stochastic process taking the deterioration level into account when the next time interval is

considered.
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7.10 Geometric Brownian motion

A stochastic process {S(t )} is said to follow a GBM if it satisfies the following stochastic differen-

tial equation (SDE):

dS(t ) =µS(t )d t +σS(t )dW (t ) (7.19)

where W (t ) is a normalized Wiener process and the notation d is denoting the increment in a

small time interval of lengty d t . µ is “the percentage drift” and σ is “the percentage volatility”.

Note the slightly different notation here. We use dS(t ) rather than St ,d t as used in Equation

(7.13) for the increment. The term µS(t )d t is used to model deterministic trends, while the

term σS(t )dW (t ) is used to model the stochastic behaviour. The model has gain popularity in

mathematical finance to model stock prices. The fact that deterioration in this model is pro-

portional to the deterioration level also makes the model appropriate for many physical failure

mechanisms.

Note that if we start with a perfect system, i.e., S(0) = 0 there will be no development of this

process! This corresponds to a situation where a perfect piece of material will not suffer fatigue

cracks! In order to use the GMB we need to assume that the initial state is positive. Further, if the

volatility is large compared to the drift, the process might go “backwards”, and being absorbed at

zero. In fact, if µ> 0.5σ2 it seems like the process never reaches zero. This has to be investigated

further! Find some references!

There is no known easy way to find the CDF for the first passage time. But we may rewrite

Equation (7.15):

f (y |t +d t ) =
∫ ∞

y−L
f (y − s|t )g (s|y − s)d s (7.20)

where g (s|y − s) is the PDF of the increment in a small time interval of length d t when the sate

of the process at time t is y −s. From dS(t ) =µS(t )d t +σS(t )dW (t ) it follows that the PDF is the

normal density function with mean value µ(y − s)d t and standard deviation σ(y − s)
p

d t

https://en.wikipedia.org/wiki/Truncated_normal_distribution

Problems

7.1 Assume a Wiener process with L = 100, µ = 1 and σ = 0.3. Implement the numerical ap-

proach indicated above to find CDF for the first passage time (failure time). Compare with the

inverse-Gauss analytical result.

7.2 “Overshooting” in the gamma process. Consider a gamma process with shape and scale
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parametersα and β respectively. Show by numerical integration that E[T ] ≈ Lβ/α+1/(2α). Also

show that Var(T ) ≈ Lβ/α2 −1/(12α2). Hint: E[T ] = ∫ ∞
0 R(t )d t , and E

[
T 2

]= ∫ ∞
0 2tR(t )d t .

This phenomenon is denoted “overshooting”. Actually the gamma process can be seen as a

process with an infinite countable number of small jumps. Just before the threshold we may

jump slightly “above” the limit. This is called “overshooting”. This means that at the time of the

failure, Y (t ) > L, hence it takes “a bit longer” to reach the limit than one should “expect”.



Chapter 8

Offshore Wind Modelling

8.1 Introduction

This chapter presents models applicable for maintenance modelling of offshore wind farms.

First we introduce a simple model for the power that can be extracted from the wind and thus

contribute to the energy production, then we explain the concept of wakes and the negative

effects of wakes. Wind farm control is essentially about understanding how wakes can be con-

trolled to obtain a high total energy production from the wind farm and at the same time reduce

the load from wakes on the turbines.

8.2 Energy in the wind

The rotor blades convert the momentum of a wind field into aerodynamic forces that drive the

rotor. The torque from the rotor is transferred to the generator shaft through the drivetrain. The

generator finally converts rotational kinetic power into electrical power. To control the power

production and forces on the wind turbine the following control variables are typically available

Boersma et al. (2017), see Figure 8.1:

θ: Blade pitch angle - The rotor blades can rotate, with their axis of rotation aligned with

the blades, using hydraulic actuators or servo pitch motors. Pitch control can be used to

influence the power capture and the loads to the wind turbine.

τg: Generator torque - The generator converts mechanical power into electricity. Torque con-

trol is used to control the power capture.

γ: Yaw angle - The nacelle can rotate, with the axis of rotation aligned with the tower, using

a yaw motor. The yaw angle is defined as the angle between the axial rotor axis and the

incoming wind direction.

95
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Figure 8.1: Horizontal-axis wind turbine with labelled main components and control variables
(Boersma et al., 2017).

Figure 8.2 depicts the free-stream wind with velocity u0 approaching the wind turbine with rotor

diameter Dr yielding a reduced wind speed ur.

Figure 8.2: Wind energy captured by the turbine

The power that can be extracted from the wind is typically measured in megawatt (MW), and is

given by (Boersma et al., 2017):

P =CP(θ,λ,γ)
1

2
ρAu3

0 (8.1)

where θ is the blade pitch angle, λ is tip-speed ratio, γ is the yaw angle, A =π(Dr/2)2 is the rotor

swept area and u0 is the free-stream wind velocity.

The reduction factor CP(θ,λ,γ) depends on quantities we can control by the pitch angle, the

yaw angle and the generator torque. To implement a control strategy a mathematical model for

CP(θ,λ,γ) is required, but for our purpose it is sufficient to introduced a simplified reduction

factor, i.e.,(Boersma et al., 2017):

CP(a,γ) = 4a(cos(γ)−a)2 (8.2)
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where a is the axial induction factor given by:

a = u0 −ur

u0
(8.3)

For a given yaw angle γ it is easy to show that the maximum of CP(a,γ) is achieved for a = a∗ =
cos(γ)/3 and the maximum theoretical power is C∗

P = 16/27cos3(γ) also known as the Betz limit

when γ= 0.

We emphasize again that how to use the control variables (θ,τg and γ) is the challenge of

wind farm control, but for our purpose it is sufficient to know that this is possible, i.e., to ob-

tain a∗ = cos(γ)/3 yielding the maximum power C∗
P = 16/27cos3(γ) for a given γ. Intuitively we

should let γ= 0, meaning that the wind is perpendicular to the turbine swept area, but this will

then give wake effects downstream reducing the wind velocity and yielding turbulence to the

downstream turbines. Therefore we also need to discuss the concept of wind turbine wakes.

8.3 Wind turbine wakes

Wind turbine wakes are important in offshore wind maintenance because they decrease the

power production and increase the loading of downstream wind turbines. Much research has

been conducted to understand wind turbine wakes. There exist simple models and more com-

plicated models. In this presentation we only consider a simple model, i.e., the Jensen wake

model, Jensen (1983). It will do for our purpose. The motivation for the model is the control

volume downstream of the turbine shown in Figure 8.3.

Figure 8.3: The control volume of the Jensen wake model, (Jensen, 1983)

In the model it is assumed that the wake expands linearly downstream the turbine, and at a
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distance x downstream the turbine the diameter of the wake is given by

Dw = Dr +2αx (8.4)

The decay constant α determines how quickly the wake expands with distance x from the

wind turbine. There is some theoretical and experimental research to determine the numerical

value of the decay constant which is beyond the scope of this presentation. But it is common

to distinguish between onshore and offshore wind, and for offshore it is often recommended to

use α= 0.04 (Shakoor et al., 2016).

Using a mass balance between the rotor plane and the downstream flow in Figure 8.3 we

may write:

ρπ (Dr/2)2 ur +ρπ
[
(Dw/2)2 − (Dr/2)2]u0 = ρπ (Dw/2)2 uw (8.5)

assuming air density ρ is constant.

According to Betz theory the value of ur is given by (Shakoor et al., 2016):

ur = (1−2a)u0 (8.6)

where a still is the axial flow induction coefficient.

The general Jensen formula for the wake velocity at distance x for a single wind turbine is

found by combining equations (8.4), (8.6) and (8.5):

uw = uw(x) = u0

(
1−2a

(
Dr

Dr +2αx

)2)
(8.7)

Assuming ideal axially symmetric flow, no rotation, no turbulence and conic shape wake profile,

the axial induction factor can also be written as (Göçmen et al., 2016):

a = 1−√
1−CT(a,γ)

2
(8.8)

where the thrust coefficient is given by Katic et al. (1986):

CT(a,γ) = 4a(cos(γ)−a) (8.9)

and substituted into Equation (8.7) gives:

uw = uw(x) = u0

(
1−

(
1−√

1−CT(a,γ)
)(

Dr

Dr +2αx

)2)
(8.10)

Assuming that the reduction factor CP(θ,λ,γ) is maximized, i.e., the axial induction factor is
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a = a∗ = cos(γ)/3 for a given yawing angle γ, we may use:

CT(a∗,γ) =CT(γ) = 8

9
cos2(γ) (8.11)

yielding the following expression for the downstream wind speed at distance x:

uw(γ, x) = u0

(
1−

(
1−

√
1− 8

9
cos2(γ)

)(
Dr

Dr +2αx

)2
)

(8.12)

Note that in a design phase the objective is to optimize the layout in terms of determine the

distance between the turbines, i.e., x, whereas in the operation and maintenance phase x is

fixed, and we optimize wrt. the yawing angle γ.

8.4 Direction of wind turbine wakes

The aim of yawing is to direct the wake away from the column of turbines downstream the yawed

turbine. Jimenez et al. (2009) have provided an analytical formula for the centre of the down-

stream wake given by:

φ(x,γ) = d y

d x
= cos2(γ)sin(γ)

CT(a,γ)
(1+βx)2 (8.13)

where φ is the wake skew angle, β = 2α is the wake expansion factor. Howland et al. (2016)

integrate Equation (8.13) in x to obtain the centre point of the wake in the y-direction at the

downstream distance x from the wind turbine and obtain:

yC(x,γ) = Dr
cos2(γ)sin(γ)CT(a,γ)

2β

(
1− Dr

βx +Dr

)
(8.14)

Howland et al. (2016) also present various studies conducted to assess the centre of wake de-

flections. Compared to Equation (8.14) most studies show a higher deflection, up to 35% in the

extreme case. Therefore it is pragmatically proposed to adjust Equation (8.14) by 25%, i.e.,

yC(x,γ) = 1.25Dr
cos2(γ)sin(γ)CT(a,γ)

2β

(
1− Dr

βx +Dr

)
(8.15)

Figure 8.4 depicts the centre of wake deflections for a yaw angle of γ= 30◦, x/Dr = 6.

No explicit formulas are given for the diameter of the wake at downstream distance x, and

therefore we assume that the diameter is given by Equation (8.4) as a starting point. It should

be recognized that wind speed across the wake vertically is not uniform. Howland et al. (2016)

present results from experimental studies. Figure 8.5 shows the time averaged streamwise ve-
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Figure 8.4: Centre of wake deflections for a yaw angle of γ= 30◦, x/Dr = 6

locity, uw(x) for different downstream distances x and distance y from the parallel line following

the wind direction from the turbine.

Figure 8.5: Time averaged streamwise velocity, u = uw(x), contour plot at hub height, taken with
a hot-wire probe. The mean velocity is normalized by free-stream velocity U = u0 = 12 m/s. The
dark black line represents the yawed turbine. The XY centre of the wake yC(x,γ= 30◦) is shown
in filled magenta circles (Howland et al., 2016). Note that the definition of the yawing angle is
opposite as compared to Figure 8.4.

8.4.1 Wind velocity contours

Figure 8.5 clearly indicates that the velocity reduction is highest at the wake centreline. From

Equation (8.12) we may obtain the average speed at distance x downstream the turbine. The

diameter of the wake at distance x is given by Equation (8.4), i.e., Dw = Dr +2αx. Let y = y(x)

be the horizontal distance from the centreline of the wake. When y =±Dw/2 the velocity is per

definition u0. Let um = um(x) be the minimum velocity, i.e., at the centreline of the wake. Finally

let u = u(y) be the velocity at distance y from the centreline of the wake, where u(0) = um and

u(±Dw/2) = u0. An infinite number of functional forms for u(y) exist and a reasonable form
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could be:

u(y) = um + (u0 −um)(2|y |/Dw)c (8.16)

where |x| is the absolute value of x and c is a constant. Assuming a circular wake downstream

the turbine a mass balance argument requires:

ρuwπ(Dw/2)2 = ρ
∫ Dw/2

0
u(y)2πyd y (8.17)

and inserting Equation (8.16) yields:

uw(Dw/2)2 =
∫ Dw/2

0

(
um y + (u0 −um)2c+1 yc+1/Dc

w

)
d y (8.18)

= um
1

4
D2

w + (u0 −um)
1

2(c +2)
Dc+1

w (8.19)

simplifying:

uw = um + (u0 −um)
2

(c +2)
D2

w (8.20)

and solving wrt. um gives:

um =
uw −u0

2
(c+2)

1− 2
(c+2)

(8.21)

Assuming c = 1, i.e., velocity is increasing linearly from the centreline to the end of the wake, the

minimum wake velocity at distance x is given by:

um = 3uw −2u0 (8.22)

It should be noted that Howland et al. (2016) show that the the velocity contours at a given

distance downstream the turbine are not perfect circular, so the arguments leading to Equations

(8.21) and (8.22) have some limitations.

Example 8.1

We will obtain relevant velocities given the following parameters:

• γ= 30◦

• Dr = 100 (m)

• u0 = 10 (m/s)
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• x = 8Dr

The following Python script implements the relevant functions required for our calculations:

'''

alpha = Expansion factor = 0.04

gamma = Yaw angle

x = Distance downstream the Yawed turbine

u_0 = Free -stream wind velocity

u_w = Average wind velocity at distance x

D_r = Diameter of the turbine

u_m = Minimum speed of the wake at distance x, i.e., at the wake

centreline

c = Shape factor of the wind velocity profile in the y-direction at

distance x

y = Distance from the wake centreline

'''

import math

alpha = 0.04

def C_T(gamma): # Trust factor

return 8*((math.cos(gamma)) **2)/9

def u_w(x, u_0 , gamma , D_r):

return u_0 * (1-(1-math.sqrt(1-C_T(gamma))) *(D_r/(D_r+2*alpha*x))** 2)

def u_m(u_w , u_0 , c = 1):

f = 2/(2+c)

return (u_w-f*u_0)/(1-f)

def u_y(x, y, u_0 , gamma , D_r , c = 1):

y_min = u_m(u_w(x, u_0 , gamma , D_r), u_0 , c)

y = abs(y)

if y > (D_r/2 + alpha * x): # Outside the wake

return u_0

else:

return y_min + (u_0 - y_min) * (y/(D_r/2 + alpha * x)) **c

def y_C(x, gamma , D_r):

beta = 2*alpha

return 1.25*D_r*math.cos(gamma)*math.cos(gamma)*math.sin(gamma)*C_T(

gamma)*(1-D_r/(beta*x+D_r))/(2*

beta)

D_r = 100 # Turbine diameter = hundred metres

x = 8*D_r # Turbine spacing downstream is 8 times the turbine diameter

u_0 = 10 # Free wind velocity = 10 m/2

gamma = 30*math.pi / 180 # Yaw angle = 30 degrees
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The centreline of the wake at x = 8Dr is found to be yC ≈ 76 metres. The velocity at the centreline

is found to be ym ≈ 5.3 (m/s). The average wake velocity in the y−z plane is found to be yw ≈ 8.4

(m/s). Relative to the wake centreline the downstream turbine is positioned a distance yC ≈ 76

below this line, hence to find the velocity at the turbine hub we calculate uy = uy(y =−yC) ≈ 9.7

(m/s). This means that with a yaw angle of γ = 30◦ we have almost avoided the wake effect

for the downstream turbine. If we repeat the calculation for γ = 15◦ we obtain a velocity of

uy = uy(y =−yC) ≈ 8.4 (m/s) which is a significant reduction compared to u0 = 10 (m/s). □

8.4.2 Turbulence intensity

In addition to the reduced velocity caused by the wake there is also a significant negative turbu-

lence impact of the wake. The turbulence intensity is usually measured in terms of the variation

of the velocity, or more precisely as the Root-Mean-Square (RMS)of the turbulent velocity fluc-

tuations at a particular location over a specified period of time.

Experimental studies by Howland et al. (2016) indicate that the turbulence intensity con-

tours in the y − z plane are similar to the velocity contours. Although these are not circular, to

simplify we propose to model the contours as circles. The standardised turbulence intensity, TI

shows a maximum intensity around TImx = 12 at distance x = 8Dr in the study by Howland et al.

(2016). Again we propose an intuitive function for the turbulence intensity relative to the wake

centreline:

TI(y) = TImx

[
1−

(
2|y |
Dw

)d
]

(8.23)

where Dw = Dr+2αx. d is a shape parameter to be chosen. The simplest form of the turbulence

intensity function is achieved for d = 1 which is the recommended default value.

Note that TImx in Equation (8.23) has not been specified. If we can measure the turbulence

intensity under various operational conditions in the centerline of the wake, these measure-

ments can be used in Equation (8.23). If such information is not available it is reasonable to be-

lieve that the turbulence intensity is proportional to the time average centreline velocity given

by Equation (8.21). This will usually be sufficient for our modelling. The reason for such an

argument is that to explicit consider the negative impact of turbulence, we would link the tur-

bulence intensity to the degradation rate of the system or item analysed. For example if we

represent degradation by a Wiener process with drift, i.e., {X t =µt +σWt , t > 0}, the objective is

to link the drift parameterµ to the turbulence intensity. Assuming a linear relationship we could
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then define the following function for the drift parameter:

µ=µ(TI) =µ0 + (µmx −µ0)TI

TImx
(8.24)

where µ0 is the drift parameter (degradation speed) without negative turbulence impact, and

µmx is the drift parameter if the turbine is placed in the centreline of the wake.

Example 8.2

We consider two turbines as shown in Figure 8.4. The turbine to the left is denoted turbine 1 and

the downstream turbine to the right is denoted turbine 2. To simplify we assume a constant free

wind velocity u0, and the wind direction is parallel to the line connecting turbine 1 and turbine

2. The challenge is to optimize the yawing angle. To simplify we assume that degradation of

Turbine 1 is not affected by the yawing angle, hence we do not include maintenance and failure

cost related to turbine 1. For turbine 2 we consider maintenance cost and we apply the cost

model in Section 5.6.1. The following Python script shows the model parameters:

u_0 = 10 # Free wind velocity [m/s]

rho = 1.225 # Air density at 15 degrees [kg/m^3]

r = 60 # Rotor radius [m]

D_r = 2*r # Rotor diameter [m]

alpha = 0.04 # Wake decay constant

x = 7*2*r # Distance between the turbines

MTTF = 8760*5 # Mean time to failure without maintenance = 5 years

l = 100 # Failure limit , normalized to 100%

mu_0 = l/MTTF # Drift parameter , no wake effect

mu_x = 5*mu_0 # Higher degradation at wake centreline

sigma = 50*mu_0 # Infinitesimal standard deviation , volatility

T_l = 2*7*24 # Lead time of renewal/maintenance = 2 weeks

c_R = 2500000 # Cost of renewal

c_F = 7500000 # Cost of failure

p_e = 0.5 # Energy price (NOK/kWh)

To optimize the yaw angle we essentially calculate the following:

• Profit per unit time for turbine 1

• Profit per unit time for turbine 2, assuming no failures

• C (m) whis is renewal, failure and downtime cost per unit time according to Equation (5.15)

These cost per unit time can be calculated for each value of the yawing angle γ, where C (m)

also is minimized wrt the maintenance limit m. As the yawing angle increases the reduction

factor CP(γ) decreases and hence the profit. Further an increased yawing angle moves the wake
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away from turbine 2. This means that the wind velocity increases yielding higher profit, and the

turbulence intensity decreases giving less degradation on turbine 2.

Figure 8.6 shows the result from the calculations. The optimal yawing is found to be 24◦.

Note as the yawing angle approaches 30◦ the distance to the centre of the wake is starting to

decline, hence there is no reason to increase the yawing angle any more.

Figure 8.6: Profit for turbine 1 and 2, maint. and downtime cost for turbine 2, and total profit

□

Problems

8.1 Consider Example 8.1. Calculate um for γ= 5,10, . . . ,30 for x = 5Dr and x = 8Dr respectively.

8.2 Consider Example 8.2. Implement the required Python code to produce the results shown

in Figure 8.6.



Chapter 9

Grouping and opportunity maintenance

9.1 Introduction

In classical maintenance optimization the objective is to find the optimum frequency of main-

tenance of one component at a time. However, in the multi-component situation there exist

dependencies between the components, e.g., they may share a common set-up cost (economy

of scope), the costs may be reduced if the contract to a maintenance contractor is huge (econ-

omy of scale), etc.

In this presentation we will introduce some rather simple approaches for maintenance group-

ing and opportunity maintenance. We basically consider the following cost elements:

• Man-hour costs and material costs related to preventive maintenance of each component

• Set-up costs to get access to the components to be maintained, and by paying the set-up

costs access to several components is obtained. We limit the scope to consider a one level

structure of set-up costs, meaning that the set-up cost is the same for all components. In a

multi level structure the set-up cost could be split into a general set-up cost for accessing

e.g., a location/cite, and further into set-up cost for a group of components related to e.g.,

preparing of the work for these components.

• Costs of taking a component out of service. These costs are included in the set-up costs

from a modelling point of view.

• Man-hour costs and material costs related to corrective maintenance. Typically set-up

costs can not be shared by other components unless preventive maintenance is advanced

(opportunity maintenance).

• Costs related to the effect of a failure, i.e., punctuality, unavailability, safety and material

damage costs

106
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We often distinguish between the static and the dynamic planning regimes. In the static regime

the grouping is fixed during the entire system lifetime, whereas in the dynamic regime the

groups are re-established over and over again. The static grouping situation may be easier to

implement than the dynamic, and the maintenance effort is constant, or at least predictable.

The advantage of the dynamic grouping is that new information, unforeseen events, etc., may

require a new grouping and changing of plans.

The presentation here discusses how we can formalize the optimization of maintenance

grouping. I.e., we seek to group maintenance tasks so that total costs are minimized. To sum-

marize the difference between static and dynamic grouping we have:

• Static grouping where the groups are fixed

– It is always the same maintenance task that are included in the same group, and each

maintenance group is performed at a fixed interval.

– In the work order system one group is specified as one work order repeating every τi

unit of time.

• Dynamic grouping where we create the groups “on the fly”

– The time of next maintenance is recalculated in principle continuously

– The set of maintenance tasks going into a group is varying form time to time

– In principle we can plan for several groups ahead, but often we only consider the first

group of tasks

– We can update the plan if we get new information, or there are additional opportu-

nities to carry out maintenance

– The downside is significantly more administrative work and challenges in relation to

staff planning.

For an introduction to maintenance grouping we refer to Wildeman (1996) who discusses

these different regimes in detail.

Maintenance tasks are here preventive tasks where the base interval is calendar controlled

or controlled by runtime. At the end of the presentation we also discuss condition-based main-

tenance.

The costs of disassembling and re-assembling are here included in the set-up cost. In the

model presented we also assume that the set-up costs are the same for all activities. It is further

assumed that there is one and only one maintenance activity related to each component. This

simplifies notation because we then may alternate between failure of component i and execut-

ing maintenance activity i where there is a unique relation between component and activity.
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The basic notation to be used is below. The terms maintenance task and maintenance activity

are used interchangeably. Table 9.1 shows the notation used. Note that t is used to represent

calendar/global time or accumulated mileage for a car or a train. x is used to represent local

time, i.e., time since last maintenance.

Table 9.1: Notation used in grouping
cP

i Planned maintenance cost, exclusive set-up cost for activity i . Typically the costs of
replacing one unit periodically

cU
i Unplanned costs upon a failure of component i . These costs include the correc-

tive maintenance costs, safety costs, punctuality costs, unavailability costs and costs
due to material damage.

S Set-up cost, i.e., costs for preparations, access etc which can be “shared" by several
PM activities

λE,i (x) Effective failure rate for component i . Here the argument x represents local time
since last maintenance

Mi (x) = xcU
i λE,i (x) = Accumulated expected costs due to failures in a period [0, x) for com-

ponent i maintained at time 0, exclusive planned maintenance cost
Ci (x,k) = [cP

i +S/k +Mi (x)]/x = Expected total costs per unit of time for component i for a
maintenance cycle of length x if setup costs are shared by k activities

x∗
i ,k Maintenance interval that minimizesΦi (x,k) if setup costs are shared by k activities

C∗
i ,k Minimum cost for a component i maintained at optimal interval

ki Average number of components sharing the set-up costs for the i ’th component, i.e.,
the i -th component is in average maintained together with ki −1 other components

C∗
i Average minimum costs per unit time over all k-values

x∗
i Optimum value of xi over all k-values. x∗

i is measured since last maintenance on
component i

t0 Point of time when we are planning the next group of activities. Initially t0 = 0. t0 is
measured in running time since t = 0.

xi Age of component i at time t0, i.e., time since last preventive maintenance activity
t∗i t∗i , = t0 +x∗

i −xi = optimum time for execution in the average situation
G(g ) Candidate group, i.e., the set of the first g components to be maintained according

to individual schedule with t∗i ,Av as the basis for due time
li How often a component is utilizing the maintenance opportunity in static indirect

grouping
N Number of activities/components
T For dynamic grouping T is the end of planning horizon, i.e., we are planning from

t0 = 0 to T . For indirect static grouping T is used as the lowest interval.
T j Interval for group j in static direct grouping.

9.2 Static grouping

For static grouping, we distinguish between indirect and direct grouping:
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• Indirect grouping means that the groups are not established by a direct rule, but that the

groups are established based on a principle. This principle is that an activity can be exe-

cuted on each maintenance opportunity, every second opportunity and so on. How often

to be executed is then the optimization challenge.

• Direct grouping means that the groups are established by investigating the intervals one

by one and form groups of activities activities having approximately the same interval.

9.2.1 Indirect static grouping

The indirect grouping principle is that the time of each activity is determined indirectly by spec-

ifying how often the task is performed relative to a fixed repetitive time of maintenance. The

situation now is as follows:

• There is a possibility to do preventive maintenance at point of times T,2T,3T, . . .

• For component i this opportunity is utilized every li ’th time, i.e., the interval between

maintenance for this component is li T

• The challenge is to determine T and li , i = 1,2, . . .

For a given value of T and l1, l2, . . . the expected cost per unit time is:

C (T, l1, l2, . . .) = S/T +
n∑

i=1

[
cP

i +Mi (li T )
]

/(li T )

= S/T +
n∑

i=1

[
cP

i /(li T )+ cU
i λE,i (li T )

]
(9.1)

where Mi (x) is the total failure related cost in a period of length x since last maintenance.

9.2.2 Heuristic for indirect static grouping

Minimizing Equation (9.1) is a mixed-integer optimization problem. Generally such problems

need to be solved by heuristics when N becomes large. The following heuristic is suggested to

find a reasonably good solution:

1. For each activity i we find the value of τi which minimizes C (τi ) = (
S + cP

i

)
/τi +cU

i λE,i (τi )

2. An initial value of T is set equal to the lowest value of the τi -values

3. Chose li ≈ τi /T (nearest integer)

4. Keep the li ’s fixed, and minimize C (T, l1, l2, . . .) with respect to T
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5. GoTo 3 and change the li ’s ±1 one by one to search for better solutions

6. An approximate optimal solution is found when the iteration scheme does not improve

the solution, i.e., we do not find a solution with a lower expected cost

9.2.3 Direct static grouping

By direct grouping, the groups are selected directly by inspecting individual intervals. Tasks are

now split into m non-overlapping groups, G1,G2, . . .. Activities in a group are maintained at the

same time. The groups are established so that activities in a group have approximately equal

intervals. For group j , we let T j denote the interval for this group. Total expected costs per unit

time is given by

C (T1,T2,T3, . . . ,Tm) =
m∑

j=1

(
S/T j +

∑
i∈G j

[
cP

i /T j + cU
i λE,i (T j )

])
(9.2)

Heuristic for direct static grouping

The following heuristic is proposed for obtaining a reasonable good solution:

1. For each activity find the value τi which minimizes C (τi ) = (S + cP
i )/τi+ cU

i λE,i (τi )

2. Sort in increasing order, i.e., τ(1) ≤ τ(2) ≤ . . .

3. Look for natural clusters in the intervals, and let these forms groups G1,G2, . . .

4. Given a split into groups, i.e., G j , j = 1,2, . . . ,m, minimize the cost Equation (9.2) with

respect to T1,T2, . . . ,Tm

5. GoTo 3 and varying the groups to look for better solutions, for example moving one activity

from one group to another group, merge two groups, or split one group into two groups

6. An approximate optimal solution is found when the iteration scheme does not improve

the solution.

9.3 Dynamic grouping

In dynamic grouping there are no fixed group. At a given point of time, t0, we start forming the

next group based on “individual” due dates. Figure 9.1 illustrates the situation for four compo-

nents maintained at t1, t2, t3 and t4 in the past, where the due dates t∗1 , t∗2 , t∗3 and t∗4 are based on

the individual optimal intervals x∗
1 , x∗

2 , x∗
3 and x∗

4 .
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T = planning horizon

x1
*

t1 t0 t1
*

(now)(last mtnce)

t2
*

t4
*

t3
*

t3t2 t4

x2
*

x3
*

x4
*

Figure 9.1: Grouping - Due dates. The ti ’s are the point of time of last maintenance, the x∗
i ’s are

the individual optimal intervals, and the t∗i ’s are the corresponding due dates.

In the optimization we consider the time from now on, t0, up to the end of planning horizon,

T . Given the information we have at time t0 we can form the next group and when to execute

the corresponding maintenance activities. We can also form the second group, the third group

etc. But then we should realize that we might get new information later on, and hence have to

reschedule some future groups.

In this situation there is no single cost equation to optimize. We will structure the cost ele-

ments and then propose a heuristic for forming groups.

For each component i there is an expected time dependent cost which is a function of the

time since the last preventive maintenance activity, i.e., Mi (x). In order to establish Mi (x) we

need (i) to establish the accumulated expected number of failures in the period [0, x), (ii) we

need to specify the expected corrective maintenance costs for the repair of each failure, and (iii)

we have to specify the impact of the failure on safety, production, etc., and quantify these into

cost figures. In the model presented here we assume that the effective failure rate, λE[,]i (x) may

be established for the different failure characteristic, and maintenance strategies (e.g., periodic

replacement and condition monitoring). Next the costs associated with a failure of component i

may in principle be found by risk modelling, reliability modelling. The result of such modelling

is one figure for the expected unplanned cost of failure, i.e., cU
i . We have

Mi (x) = xcU
i λE,i (x) (9.3)

The planned costs comprise the costs of executing the maintenance on component i (cP
i ) and

set-up costs (S) of getting access to the component. The set-up costs may in general be shared

with k −1 other activities. The average contribution to the total costs for component i per unit

time is given by:

Ci (x,k) = [
cP

i +S/k +Mi (x)
]

/x (9.4)
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x

Cost

x*

m(x)

C*

M(x*) 

Figure 9.2: Marginal cost consideration

If the grouping was fixed, i.e. static grouping, the optimization problem would just be to mini-

mize Ci (x,k) wrt x for all k components maintained at the same time. For dynamic grouping the

mathematical challenge is now to establish the grouping either in a finite or infinite time hori-

zon. In addition to the grouping, we also have to schedule the execution time for each group

(maintenance package). The grouping and the scheduling can not be done separately. Gener-

ally, such optimization problems are NP hard (see Garey and Johnson, 1977, for a definition),

and heuristics are required. Before we propose our heuristic we present some motivating re-

sults.

Let C∗
i ,k be the minimum average costs when one component is considered individually, and

let x∗
i ,k be the corresponding optimum x value. It is rather easy to prove that

mi (x∗
i ,k ) = M ′

i (x∗
i ,k ) =C∗

i ,k (9.5)

meaning that when the instantaneous expected unplanned costs per unit time, mi (x), exceeds

the average costs per unit time, maintenance should be carried out. The way to use the result

is now the following. Assume we are going to determine the first point of time to execute the

maintenance, i.e., to find t∗i ,ki
starting at t = 0. Further, assume that we know the average costs

per unit time, C∗
i ,ki

but that we have for some reason “lost” or “forgotten” the value of the optimal

interval, x∗
i ,ki

. What we then can do is to find t such that mi (t ) = M ′
i (t ) = C∗

i ,ki
yielding the

first point of time for maintenance, see Figure 9.2 for an illustration. Then from time t and

the remaining planning horizon we can pay C∗
i ,k as the minimum average costs per unit time.

This is the traditional marginal costs approach to the problem, and brings the same result as

minimizing Equation (9.4).
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The advantage of the marginal thinking is that we now are able to cope with the dynamic

grouping. Assume that the current time is t0, and xi is the age (time since last maintenance)

for component i in the group we are considering for the next execution of maintenance. Fur-

ther assume that the planning horizon is [t0,T ). The problem now is to determine the point

of time t (≥ t0) when the next maintenance is to be executed. The total costs of executing the

maintenance activities in a group is

CP = S +∑
i

cP
i (9.6)

which we pay at time t . Further, the expected unplanned costs in the period [t0,T ) is

CU =∑
i

[Mi (t − t0 +xi )−Mi (xi )] (9.7)

where xi is the (local) age of component i at time t0. Note that Mi (t − t0 + xi ) is the expected

cost from the last maintenance of component i until it will be preventively maintained at time

t . From this value we subtract the expected cost Mi (xi ) already “paid” at time t0. Note that

at time t0 we know the “history” of component i since the last maintenance, i.e., xi time units

ago. We might use this information to get a more correct expression for the expected cost in the

interval [t0, t ). It is not always easy to obtain such an expression, hence we often approximate

with Equation (9.7).

For the remaining time of the planning horizon the total costs are

C∞ = (T − t )
∑

i
C∗

i ,ki
(9.8)

provided that each component i can be maintained at “perfect match” with ki −1 activities the

rest of the period. Since C∗
i ,k depends on how many components that share the set-up cost,

which we do not know at this time, we use some average value Φ∗
i . We assume that we know

this average value at the first planning. To determine the point of time for maintaining a given

group of components, say G(g ) with the g first activities we thus minimize:

c1(t ; g ) = S + ∑
i∈G(g )

[
cP

i +Mi (t − t0 +xi )−Mi (xi )+ (T − t )C∗]
(9.9)

The costs in Equation (9.9) depend on which components to include in the group of activities

to be executed next. The more activities we include, the higher the costs will be. For some

activities it might thus be cheaper to include them in groups to be executed later. For activities

we do not include in this first group we assume that they will be maintained at their “optimum”
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time t∗i ,> t . The total contribution to the costs related to these activities in [t0,T ) is:

c2(t ; g ) = ∑
i∉G(g )

[
cP

i +S/ki +Mi (x∗
i )−Mi (xi )+ (T − t∗i )C∗

i

]
(9.10)

provided they can be maintained at “perfect match” with other activities, i.e., the set-up costs

are shared with ki −1 activities, and executed at time t∗i . The total optimization problem related

to the next group of activities is therefore to minimize:

c(t ; g ) = S + ∑
i∈G(g )

[
cP

i +Mi (t − t0 +xi )−Mi (xi )+ (T − t )C∗
i

]
+ ∑

i∉G(g )

[
cP

i +S/ki +Mi (x∗
i )−Mi (xi )+ (T − t∗i )Φ∗

i

]
(9.11)

The idea is simple, we first determine the best group to execute next, and the best time to ex-

ecute it. Further we assume that subsequent activities can be executed at their individual op-

timum. It is expected to do better by taking the second grouping into account when planning

the first group, and not only treat the activities individually. See e.g., Buday et al (2005) for more

advanced heuristics in similar situations to those presented here. The heuristic is as follows:

Step 0 - Initialization

This means to find initial values of the ki ’s and use these k-values as basis for minimization of

Equation (9.11). This will give initial values for the x∗
i ’s and the corresponding C∗

i ’s. Finally the

time horizon for the scheduling is specified, i.e., we set t0 = 0 and choose an appropriate end of

the planning horizon (T ).

Step 1 - Prepare for defining the group of activities to execute next

Calculate tentative due dates t∗i = (x∗
i −xi )+ t0 for all activities, and sort in increasing order. See

Figure 9.1 for an illustration.

Step 2 – Establish the candidate groups

For g = 1,2, . . . , N we use the ordered t∗i ’s to find a candidate group G(g ) of size g to be executed

next. If t∗g > mini<g (t∗i + x∗
i ) this means that at least one activity in the candidate group needs

to be executed twice before activity g is scheduled which does not make sense. Hence, in this

situation the last candidate group, G(g ) is dropped and we are not searching for more candidate

groups at the time being.
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Step 3 - Find optimum execution time for each candidate group

For each candidate group G(g ), g = 1,2, . . ., minimize c(t , g ) in Equation (9.11) with respect to

execution time t . Next choose the candidate group G(g ) that gives the minimum cost. This

group should then be executed at the corresponding optimum time t .

Step 4 – Prepare for subsequent groups

We assume that all activities in the chosen candidate group are executed at time t . This corre-

sponds to setting xi = 0 for i ∈G(g ), xi = xi + t − t0 for i ∉G(g ) and then update the current time,

i.e., t0 = t . If t0 < T GoTo Step 1, else we are done.

There are several ways to improve the algorithm. One intuitive improvement is to improve the

estimates of ki and corresponding x∗
i and Φ∗

i to be specified in Step 0. This is easy, since we in

Step 4 get a new value of k for those activities included in the candidate group, and when the

algorithm terminates we simply set ki as the average for each activity i in the period [0,T ). We

may then start over again at Step 0 with these new values of ki .

9.4 Opportunity based maintenance

The dynamic scheduling regime presented above is a good basis for opportunity based mainte-

nance. The scheduling we have proposed may be used to set up an explicit maintenance plan

for the time horizon [0,T ). But even though the plan exists, we may consider changing it as new

information becomes available, either in terms of new reliability parameter estimates, or if un-

foreseen failures occur. In operation, for any time t0 we may update the scheduling of preventive

maintenance.

Now assume that the due date t for the next scheduled maintenance of group G(g ) is larger

than the current time t0. Assume that a failure has occurred or there is another event occurring

at time t0 giving an opportunity to save the setup-cost S if we execute some preventive main-

tenance activities. Some, or all of the activities in G(g ) should now be considered for execution

given the opportunity at time t0. If t∗i ≤ t0, i ≤ g this means that these activities have individual

due dates in the past, hence it is obvious that these activities should be executed at this given

opportunity.

Activities not scheduled in G(g ) should not be executed since they were not even included in

a group to be executed later than t0. The basic question is thus which of the remaining activities

in G(g ) should be executed. Assume that we have found that it is favourable to execute the first

i−1 < g activities on this opportunity. The procedure to test whether or not activity i also should

be executed is as follows:
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T = planning horizon

x1
*

t1 t0 t1
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(Opportunity)(last mtnce)

t2
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*

t3
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t3t2 t4

x2
*

x3
*

x4
*

t

G(3)

Figure 9.3: Opportunity maintenance. There is an opportunity at time t0, where group G(3) was
scheduled for execution at time t .

• First we assume that all activities up to i are executed on this opportunity , i.e., we set

x j = 0, j ≤ i , and for activities above activity i , i.e., j > i , we set x j = t0−t j , and will evaluate

the next group to be executed at some time t ′ ≥ t :

• Let C1 = cP
i +mint ′,g ′ c(t ′, g ′), i.e., the best we can do if we decide to execute activity i at

time t0

• Next, we assume that only activities up to i −1 are executed at time t0, i.e., x j = 0, j ≤ i −1,

and x j = t0 − t j , j ≥ i , where we also evaluate the next group:

• Let C2 = mint ′,g ′ c(t ′, g ′), i.e., the best we can do if we decide not to execute activity i at

time t0

• If C1 >C2 is it not beneficial to do activity i .

If it was beneficial to do activity i at t0 we should test for i = i +1 and repeat as long as i ≤ g .

Figure 9.3 illustrates the situation. Assume that at the time of the opportunity we had already

scheduled G(3) for execution at time t . The individual due date for activity 2 has been passed,

hence activity 2 will be executed. Then we consider if it pays off to execute also activity 1. If so,

typically activity 3 and 4 will be a new group, say G(2) to be executed at some time t ′ > t .

Problems

9.1 Consider a situation where we have 4 components. We will establish a standard indirect

static grouping strategy. The following data is provided: S = 2,cP
1 = 2,cP

2 = 1,cP
3 = 3,cP

4 = 1.cU
1 =

5,cU
2 = 50,cU

3 = sU
4 = 10.MTTF1 = 4,MTTF2 = 3,MTTF3 = 3,MTTF4 = 5,α1 =α2 =α3 =α4 = 3.

Find tentative optimal intervals for each component if they are maintained individually and

where we assume that we do not have to pay the set-up cost. Use this to find tentative values for

li and T . Then try some iterations to see if a better solution can be found. Note, in the heuristic
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we proposed to find the individual solutions assuming we pay the entire set-up cost. In this

exercise a slightly different approach was proposed, i.e., that we do not have to pay the set-up

cost. The two approaches should converge to the same result.

9.2 Consider the situation in Problem 9.1. Repeat the analysis if you in the initiation assume

that we have to pay the set-up cost.

9.3 Consider the situation in Problem 9.2. Apply the method of direct static grouping to the

same data.



Chapter 10

Spare part optimization

10.1 Introduction

When optimizing models for individual components in relation to the interval τ, it may be ap-

propriate to consider whether it pays to have a spare part in stock allowing us to reduce down-

time. In the analysis, we can then compare the situation with and without spare part in stock,

and find out if the cost of inventory can be justified.

In many situations there are several components that “fight” for the same spare part, and it

becomes a question of how many spare parts we need. We can compare this with the situation

at home where the question is how many light bulbs (of a given type) we will normally have in

stock to avoid not running out of light bulbs. In this lesson, we’ll look at two different ways to

model this:

• An analytical model where we can set up equations to calculate the expected share of the

time we lack one, two or more spare parts

• A Markov model where we can find the same answer, but where we have more flexibility

to give in different assumptions

10.2 An analytical model

• Constant failure rate (i.e., the total failure rate for many components that need a new spare

part in the event of failure) =λ

• Number of spare parts = s

• The spare parts are stored in a stock and are retrieved from there if necessary

• Failed components are repaired in a workshop

118
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• The number of components under repair in the workshop = X

• Repair rate for each component repaired =µ

• We have endless number of repairmen, i.e., a repairman can always start repairing a com-

ponent that comes to the workshop

Note that we have assumed that components that fail will be repaired. If we instead have to buy

new components in the event of a failure, the model will be identical if we allow the expected

time it takes to obtain a new component = 1/µ.

10.2.1 Mathematical model

• According to Palm’s theorem, X ∼ Po(λ/µ)

• From the Poisson distribution it follows by introducing p(k) = Pr(X = k) = (λ/µ)k

k ! e−λ/µ:

– p(0) = e−λ/µ

– p(s +1) = λ/µ
s+1 p(s)

• The probability of missing spare parts is: R(s) = Pr(X > s) =∑∞
k=s+1 p(k), which gives:

– R(0) = 1−p(0)

– R(s +1) =∑∞
k=s+2 p(k) =∑∞

k=s+1 p(k)−p(s +1) = R(s)−p(s +1)

• The number of units we may lack is referred to as BO (Backorders):

– EBO(s) = E(BO) = E(max(0, X − s)) =∑∞
k=s+1(k − s)p(k)

– EBO(s +1) =∑∞
k=s+2(k − s −1)p(k) =∑∞

k=s+1(k − s −1)p(k)

– EBO(s +1) = EBO(s)+∑∞
k=s+1(−1)p(k) = EBO(s)−R(s)

• The following recursive regime can then be used

– p(0) = e−λ/µ

– R(0) = 1−p(0)

– EBO(0) = E(X ) =λ/µ

– p(s +1) = λ/µ
s+1 p(s)

– R(s +1) = R(s)−p(s +1)

– EBO(s +1) = EBO(s)−R(s)
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10.2.2 Simple cost model

• Cost elements

– cU = Unavailability cost per unit of time

– cS = Capital cost per unit of time to keep a unit in stock

• Cost equation, i.e., the objective function:

– C (s) = cS s + cU EBO(s)

To minimize the cost equation, C (s) is calculated for different values of s. We must then use the

recursive formulas to find EBO(s)

10.3 Markov modelling

Markov modelling is a special way to model transitions between system states. Here we will

investigate Markov models where we have a limited number of states. Each state is given a

number (identifier). It turns out appropriate to let the identifier of a state be the number of

spare parts in stock. If the stock is empty and no one is requesting a component, we give the

state number 0, while negative state numbers correspond to the number of spare parts we have

shortages, i.e., a stock-out situation.

Markov models can in some cases be solved analytically, but we usually need a computer

program to calculate the Markov models.

The following assumptions and limitations apply:

• Failures and repair times are exponentially distributed

• We can introduce different strategies, e.g., vary how many repair men we want

• For non-exponential repair times, we can use so-called phase type distributions. This is

a little more to elaborate, but can provide reasonably good solutions with not too much

extra modelling work

• Disadvantages

– In principle, we may have infinite number of backorders, while in the model we must

limit the number of states in the transition matrix, limiting the number of backorders

the model can hold

– We must manually specify the transition matrix, which can be tedious when testing

different strategies, with programming this is not that difficult

– For very large systems, there may be challenges with computational speed
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10.3.1 Model specification

• Constant failure rate =λ, i.e., demand rate of spare parts

• Number of spare parts = s

• The spare parts are stored in a stock and are retrieved from there if necessary

• Failed components are repaired in a workshop

• The number of components under repair in the workshop = X

• Repair rate for each component being repaired =µ

• We have a limited number of repair men, and the number = m

Graphical representation

The following are transitions between states. We assume in the first place that we have a large

number of repairmen.

s 0 -1 -2 -3

� � � � �

s�� (s+1)� (s+2)� (s+3)�

….….

Shortage of sparesNumber of spares in stock

Figure 10.1: Markov transition diagram

From the Markov model we find the steady state solution, and unavailability (or expected

backorder) is given by

U (s) = EBO(s) = P−1 +2P−2 +3P−3 + ... (10.1)

where P−1 is the element in the solution vector representing shortage of exactly one item, P−2

shortage of exactly two items etc.

10.3.2 m-Repairmen

In the model so far, we have assumed that we have an infinite number of repair men. That means

that the more devices that are for repair, the greater the repair rate will be. In general, we have
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m + n n 0 -1 -2 -3

l l l l l l l l

Figure 10.2: Step 1

assumed that the repair rate is Xµ, where X is the number of units for repair in the workshop,

while µ is the repair rate (completion rate) each repairman has.

If we only have m repairmen, the transition rate is mi n(X ,m)µ , where X is most easily

determined by assessing how many units are for repair for the current state. For example, if

s = 5, and we consider state -1, X will be 5+1 = 6, and if we have only m = 4 repairers, the rate

from state -1 to state 0 will be equal to 4µ.

The cost equation is given by:

C (s,m) = cS s + cU EBO(s)+ cM m (10.2)

where C cM is the cost per unit time of having one repairman available. Note that a repair

man is doing other tasks, so CM is not necessarily very large.

10.3.3 A reorder policy model

The following model is similar to the lot size, reorder point policy, (r,Q), used in inventory man-

agement. The model assumptions are:

• Constant rate of failure λ

• Mean lead time when ordering new spares = MLT

• Lead times are Gamma (Erlang) distributed with parameters α= 4, and µ=α/MLT

• Totally m new spares are ordered when stock level equals n

Note that α= 4 may be changed to account for general value of SD(LT) =α1/2/µ

Figure 10.2 illustrates the situation for taking components out of the stock. Initially we have

m +n components in stock. Then when the level reaches n, i.e., the re-order point, an order is

placed for replenishment of the stock.

To model the lead time, we introduce intermediate states representing the gamma distribu-

tion, i.e., a transition from state n to state n1 to state n2 to state n3 and finally to state m +n.

Figure 10.3 illustrates this.
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Figure 10.3: Step 2

m + n n 0 -1 -2 -3

n1
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m
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l

l

Figure 10.4: Step 3

During the lead time, there might be a new demand for a spare (i.e., a failure). This means

that stock level is reduced by one. Figure 10.4 illustrates this by the transitions from n1 to (n−1)1

and so on.

Figure 10.5 illustrates the complete picture.

Optimization

To optimize the model, we need to specify

• cF = Fixed cost per order

• cH = Holding cost per item per unit time
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Figure 10.5: Step 4

From the Markov calculations we can obtain both expected holding cost, and expected number

of orders per unit time, together with the expected number of backorders per unit time.

Problems

10.1 Consider the following situation:

• Constant failure rate (i.e., the total demand rate of spare parts) =λ= 0.01

• Number of spare parts = s = decision variable

• The spare parts are stored in a stock and retrieved from there upon a demand

• Failed components are repaired in the workshop

• Repair rate for each components repaired =µ= 0.1

• We have endless number of repair men, i.e., a repairman can always start repairing a com-

ponent that comes to the workshop

• cU = 10 000 = Unavailability cost per unit of time

• cS = 2 = Capital cost per unit of time to keep a unit in stock

Find the optimal value of s.

10.2 Consider the situation in Problem 10.1. Solve the problem by Markov theory. Hint: Set

m =∞.

10.3 Consider the situation in Problem 10.1. We now also introduce cM = 0.25 equal the cost

per unit time per repairman available. Use Markov theory to find the optimal value of s and m.



Chapter 11

Life cycle cost and life cycle profit

11.1 Introduction

In this chapter we will give a short introduction to life cycle cost (LCC) modelling and anaylysis

in connection with prioritization of renewal projects. The term LCC is defined in IEC 60300:

“LCC is the cumulative cost of a product over its life cycle”. The LCC concept was first intro-

duced in the US Army and the idea was to establish the cost of development, production and

use (operation and maintenance) of military equipment. In the original use the revenues was

not included in the modelling. However, in order to get a complete picture we will usually also

include the possible profit of a new system or product. Hence the term ‘Life Cycle Profit’ has

been introduced. Kawacuchi and Rausand Kawauchi and Rausand (1999) suggest a process for

LCC analysis comprising the following steps:

1. Problem definition

2. Cost element definition

3. System modelling

4. Data collection

5. Cost profile development

6. Evaluation

7. Reporting

In this presentation we will focus on the cost modelling aspects, i.e. mainly step 3 in the above

procedure.
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Figure 11.1: Visualisation of the cach flow, X t

11.2 Net present value calculation

The formulas for LCC calculation are based on standard formulas used in net present value

(NPV) calculations. In the following we will summarise the most frequent used formulas. The

basic idea in NPV calculation is that money received in the future will be less valued than the

same amount of money today. To treat this formally all future amounts are discounted to the

present time, i.e. present values. We will only consider discrete time, i.e. all amounts will occur

at the end of each year, or now (beginning of year one). The cash flow is illustrated in Figure 11.1.

The net present value of an amount X t that occurs at the end of year t is:

NPV = X t (1+ r )−t (11.1)

where r is the discount rate. Similarly, we find the net present value of a cash flow X0, X1. . . . , XT :

NPV =
T∑

t=0
X t (1+ r )−t (11.2)

where X0 represents in or outgoing cash now, and T is the number of years to consider.

Sometimes we want to establish the net present value of a constant yearly (nominal) amount

X A, i.e. the same amount each year. By utilising the formula for the sum of a geometric series,∑n
i=1 q i = q(1−qn)/(1−q) we obtain:

NPV =
[

1− (1+ r )−T

r

]
X A (11.3)

Note that NPV approaches X A/r as T approaches infinity.

Now, consider a situation with a fixed increasing yearly value, were the first in or outgoing

amount is X A,v (at the end of the first year), and where the amount is increasing by a factor (1+v)

each year. The net present value for T years is then found to be:

NPV =
[

1− (1+v
1+r

)T

r − v

]
X A,v (11.4)

IF r = v in Equation (11.4) we use NPV = X A,v T /(1+ r ) obtained by l’Hopitals rule.
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The expression in Equation (11.3) assumes that the amount X A,v occurs every year. In some

situations we want to consider an amount X A,v which occurs every k year, where k > 1. The net

present value is now given by (assuming first amount now (t = 0)):

NPV =
∞∑

i=0
X A(1+ r )ki = X A

1− (1+ r )−k
(11.5)

If the first amount occurs at the end of year l we obtain:

NPV = X A(1+ r )−l

1− (1+ r )−k
(11.6)

The value in Equation (11.6) assumes that we have an infinite time horizon. If we have a finite

time horizon and m is the first year the yearly amount X A vanishes, then we just subtract the

contribution of those terms that vanish:

NPV = X A(1+ r )−l

1− (1+ r )−k
− X A(1+ r )−m

1− (1+ r )−k
(11.7)

11.2.1 Trend modelling

When modelling trend it is important to find a simple mathematical expression for the time

development. Further note that the change in the yearly amount is due to at least the following

factors:

• The monetary value increases due to general conditions, such as inflation.

• The monetary value increases due to increased operating costs, e.g. physical deterioration

and hence more maintenance is required.

Increased operating costs due to deterioration could usually be reset by a renewal of the system

we are considering, whereas external conditions like inflation is not affected by e.g. a system

renewal. In the modelling we will assume a fixed inflation rate, even if we in a more advanced

model also could let the inflation rate vary. This inflation rate will be denoted v , and we could

use Equation (11.4) to calculate the net present value of a amount that changes due to inflation.

When we want to model increased operating cost due to deterioration, we need to introduce a

local age parameter. We will let a denote the age of the system, or the age of the system since

the last system renewal. When we consider degradation, we introduce the degradation rate d

where we assume that the yearly increase due to deterioration equals (1+d). This corresponds

to an exponential growth which very often is found realistic if we have degradation mechanisms

that drive the costs. Now, let c0 be the yearly cost of operation, maintenance etc now (i.e. at time
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t = 0). We then have the yearly cost in year t (occurring at the end of year t ):

ct = c0(1+d)t (11.8)

In order to obtain the degradation rate d we usually need data about the costs as a function of

time. A very simple approach if we know that c(t ) has increased by a growth factor (GF) during

a period of T years. We then have:

d = e ln(GF)/T −1 (11.9)

11.2.2 Example areas of LCC calculations

In the following we give examples of areas where LCC analysis and calculation could be used.

We differentiate between situations were decisions are related to project execution, and the pro-

gression of one project, or a portfolio of projects, and the situation where we consider which

project are profitable, or how the profitability could be maximised. Examples related to project

execution:

• Invest in equipment to increase efficiency in project execution, e.g., a new excavator.

• Choice between construction method A and B .

• Outsourcing of truck-maintenance.

• Lease equipment rather than own by our selves.

Examples related to project profitability:

• Development of one or more oil fields.

• Construction of a new passing loop.

• Renewal of ballast in a railway track.

• Point wise refill of ballast in order to postpone the need for a full renewal (ballast cleaning).

• Grinding of rails.

• Invest in a new production line.

There are several aspects to consider when conducting an LCC analysis, for example:

• Visualise the cost picture, enabling the possibility to work actively with eliminating the

main cost drivers, or the effect of these.
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• Use the LCC model as a decision support when making decision about the profitability of

projects or measures, and when to conduct or implement these.

• Use the LCC model as a basis for contractual follow-up, e.g. LCC contracts.

Example 11.1

We will consider a railway system where the quality of the ballast has deteriorated during the last

years, and in order to compensate for this it is proposed to do a point wise replacement of the

ballast on the line. The age of the ballast is 35 years, and without this point wise refill of ballast

it is expected that a full renewal (ballast cleaning) is necessary within five years. If we conduct

the project we could postpone the ballast cleaning with another five year. The length of the line

we are considering is 10 km. The quantities to include in the LCC model is as follows:

RC = 2.5 million Euro = Renewal cost = 250 Euro per meter for ballast cleaning.

IC = 400,000 Euro= Improvement cost, e.g. cost of point wise ballast refill.

LT = 40 years = Life length of ballast = period between ballast cleaning.

a = ballast age, i.e. effective age relative to the implemented measures. Without point wise

refill of ballast a = 35 years, and with point wise refill of ballast a = 30 year. For a track that

has just being renewed a = 0.

c0 = 25,000 Euro = yearly cost of maintenance and operation of the track, for a new track, i.e.

just being renewed.

c40 = 250,000 Euro = yearly cost of maintenance and operation of the track, for a track that has

reached it’s service life, e.g. 40 years.

d = e ln(250000/25000)/40 −1 = 0.05925

ct = c0(1+d)t+a = 25000(1+ 0.05925)t+a = total maintenance and operation cost in year t

(from now), and a is the effective age of the track.

r = 6% = interest rent.

We start by calculating the various LCC-terms (in million Euros) if the improvement project

(point wise refill of ballast) is not executed. The total renewal cost if found by Equation (11.6):

LCCRC = RC(1+ r )−5

1− (1− r )−40
= 2.069
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The variable cost the next five years (up to the next renewal) is found from Equation (11.4)

LCCVC,1 =

1−
(

1+d
1+r

)5

r −d

c0(1+d)35 = 0.883

After the renewal in five year the variable costs will be reset to v0, and then start increasing again.

The net present value in one cycle is:

LCCVC,0 =

1−
(

1+d
1+r

)40

r −d

c0(1+d) = 0.986

The amount LCCVC,0 will then be repeated every 40 year, and the first time will be in five years:

LCCVC,∞ = LCCVC,0(1+ r )−5

1− (1+ r )−40
= 0.816

Finally we have the total contribution from variable costs:

LCCVC = LCCVC,1 +LCCVC,∞ = 1.699

If we execute the improvement project, the calculations are similar. We start with the total re-

newal cost (first renewal after 10 years):

LCCRC = RC(1+ r )−10

1− (1+ r )−40
= 1.546

The variable cost the next ten years (up to the next renewal) noting that the effective age after

the improvement project is a = 30:

LCCVC,1 =

1−
(

1+d
1+r

)10

r −d

c0(1+d)30 = 1.322

After the renewal in ten year the variable costs will be reset to v0, and then start increasing again.

The net present value in one cycle, LCCVC,0, is the same as without the improvement project, but

the first cycle will start in ten years:

LCCVC,∞ = LCCVC,0(1+ r )−10

1− (1+ r )−40
= 0.610
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Finally we have the total contribution from variable costs:

LCCVC = LCCVC,1 +LCCVC,∞ = 1.932

In this last situation we also need to include the investment cost:

LCCIC = 0.4

Summing up all LCC contributions we find that implementing the improvement project gives a

total LCC of 3.878 million versus not implementing the project gives a total cost of 3.768. Thus

the improvement project is not profitable. □

Problems

11.1 Write code for implementing Equations (11.1), (11.3), (11.4) and (11.7).

11.2 Consider Example 11.1. Find the value of the discount rate r that makes the two alterna-

tives equal from a LCC point of view. Why is this value of r higher than the initial one?

11.3 Consider Example 11.1 and investigate if ballast cleaning after 40 years is optimal. If not,

find the optimal period for ballast cleaning, i.e., the optimal renewal period.

11.4 We will review the yaw motor example introduced in previous chapters. The basic model

parameters are (All cost figures in kNOKs):

• cPM = 15 = cost of preventive replacement/renewal of yaw motor

• cU = 66 = total cost of failure, i.e., corrective maintenance cost and unavailability cost

• cI = 2 = inspection cost (in case of predictive maintenance)

• MTTF = 5 = mean time to failure if no maintenance is carried out

• α= 3 = ageing parameter

• ℓ = 8 = failure limit (Markov model, note that we use ℓ since r is used as the discount

factor later on)

• V = 3 = increase in degradation rate (Markov model)

• q = 0.10 = probability that an inspection will not reveal the actual degradation

a) Find the optimal maintenance interval τ if a calendar based maintenance strategy is ap-

plied. Also find the average cost per year for this strategy.
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b) Find the optimal inspection interval τ and the optimal maintenance limit m if a predictive

maintenance strategy is applied (assuming the Markov model). Also find the average cost

per year and compare with the calendar based strategy.

Predictive maintenance requires condition monitoring (CM) equipment to be installed. Fur-

ther, the CM equipment needs upgrade every six years. This makes the predictive maintenance

strategy less favourable compared to the calendar based strategy. On the other hand, the cal-

endar based strategy will result in a larger portion of time where the yaw motor is run “close to

the failure limit”. Therefore bearings and other related equipment are exposed to more wear,

which will result in extra cost, i.e., overhaul cost of the entire yawing system every five years.

The following cost figures and parameters are to be considered in an LCC analysis

• cCMI = 50 = Initial investment cost of condition monitoring system

• cCMU = 10 = Upgrade cost of CM system every 6 year

• cO = 25 = Overhaul cost of entire yawing system every 5 years

• T = 30 = time horizon to consider (years)

• r = 5% = discounting factor

c) Carry out an LCC analysis to determine if predictive maintenance pays off.
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Reliability Data Analysis

12.1 Introduction

Methods and models introduced in previous chapters require numbers for the reliability pa-

rameters such as the failure rates, repair rates, ageing parameters and so on. A parameter in this

context is a quantity in a reliability model for which we assign numerical values. To obtain such

numeric values several principle for parameter estimation exist.

12.2 Checking for trends in the data

12.2.1 Objective

In a counting process model failures are assumed to occur along the time axis, and no assump-

tion is made regarding the status of the unit after the repair is completed. The main objective of

the analysis is to reveal any trend in time, and the Nelson Aalen plot is an efficient tool.

12.2.2 Conceptual framework for counting process models

Consider one unit installed at time t = 0, observed over a period of time from t = a to t = b. The

recorded failure times (global or calendar time) are denoted T1,T2, . . . ,Tn . By definition t0 = a.

The unit is repaired after each failure, but no assumption is made about the quality of the repair.

Repair times are considered neglectable. Two extremes are often considered:

• Perfect repair in which case the unit is considered “as good as new” after each repair. In

this situation it is reasonable to believe in a Renewal Process (RP), and the theory of life

data analysis applies. In Figure 12.1, the Xi ’s can be considered as the data set.
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• Minimal repair in which case the unit is considered “as bad as old”, i.e., the status of the

component immediately before the failure occurred. In this situation it is reasonable to

believe in a Non-Homogeneous Poison Process (NHPP).

Figure 12.1: Conceptual model for a counting process

The times between each pair of failures, Xi = Ti −Ti−1 are denoted the inter-arrival times. If

the inter-arrival times tend to become shorter, the system is deteriorating. On the other hand,

the system is improving if the inter-arrival times tend to become longer (reliability growth). Note

that any trend may be caused to both internal and external circumstances. Typical causes for

improving systems are:

• Latent failures are revealed, and fixed

• Improved “organisational environment” due to gained experience of the maintenance and

operational personnel

• Improved external environmental conditions

• Failed parts are replaced with new parts with higher reliability

Causes for deteriorating systems are:

• Wear-out mechanisms (of the parts)

• Aggravated external environmental conditions (e.g. more sand in the oil)

• Less resources to maintenance

12.2.3 Nelson Aalen plot

To reveal trends, the Nelson-Aalen plot is constructed. The Nelson-Aalen plot shows the cu-

mulative number of failures on the Y-axis, and the X-axis represents the time. A convex plot

indicates a deteriorating system, whereas a concave plot indicates an improving system. The

idea behind the Nelson-Aalen plot is to plot the cumulative number of failures against time. We

recall that the ROCOF, w(t ), is the failure intensity, and W (t ) is the expected cumulative num-

bers of failures in a time interval:

W (t ) =
∫ t

0
(u)du = E[# of failures in [0, t )] (12.1)
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When estimating W (t ) we need failure data from one or more processes (systems). Each process

(system) is observed in a time interval (ai ,bi ] and ti j denotes failure time j in process i (global

or calendar time). The information could be systematized as in Table xx

In order to construct Nelson Aalen plot the following algorithm could be used:

1. Group all the ti j in Table 24, sort them, and denote the result tk ,k = 1,2, . . ...

2. For each k, let Ok denote the number of processes that are under observation just before

time tk

3. Let Ŵ0 = 0

4. Let Ŵk = Ŵk−1 +1/Ok = 1,2, . . .

5. Plot tk ,Ŵk

Note that Ok is the number of processes that are under observation just prior to time tk,

which means that the “jumps” in the estimated cumulative intensity is “adjusted” for the num-

ber of processes under observation. The points will follow a straight line if the intensity is con-

stant. If the intensity is increasing, the tk ’s will occur more and more frequent, and the cumu-

lative plot will bend upwards (convex). If the intensity is decreasing the tk ’s will occur less and

less frequent, and the cumulative plot will bend downwards (concave). Figure 66 shows the

Nelson-Aalen plot for the example data in Table 24.

In this presentation only the principle of maximum likelihood estimation will be addressed.

12.3 The MLE principle

The basic idea behind the Maximum Likelihood Estimation (MLE) principle is to choose the nu-

merical values of the parameters that are the most likely ones in light of the data. The procedure

goes as follows:

• Assume that we know the probability density function of the observations for which we

have data. Let this distribution be denoted f (t ;θ).

• The involved parameters, are unknown, and are generally denoted θ.

• We have n independent observations (data points) that we denote T1, T2, . . . ,Tn . When

we refer to the actual numerical values observed, we use the (lowercase) notation t1, t2,

. . . , tn .
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The MLE principle now tells us to estimate θ by the value which is most likely given the ob-

served data. To define “likelihood” we use the probability density function. The simultaneous

probability density for T1, T2, . . . ,Tn is given by:

f (t1;θ) f (t2;θ) . . . f (tn ;θ) =
n∏

i=1
f (ti ;θ) (12.2)

This density express how likely a given combination of the t-values are, given the value of θ.

However, in our situation the t-values are given, whereas θ is unknown. We therefore inter-

change the arguments, and consider the expression as a function of θ:

L(θ; t1, t1 . . . , tn) =
n∏

i=1
f (ti ;θ) (12.3)

where L(θ; t1, t1 . . . tn) in Equation (12.3) denotes the likelihood function. The MLE principle will

now be formulated as to choose the θ-value that maximizes the likelihood function. To denote

the MLE estimator we write a “hat” over θ, θ̂. Generally, θ will be a function of the observations:

θ̂= θ̂(T1,T2, . . . ,Tn) (12.4)

When we insert numerical values for the t-values we denote the result as the parameter estimate.

12.3.1 Estimation in the exponential distribution

We consider the situation where we have observed n failure times, and we will estimate the

failure rate, λ, under the assumption of exponentially distributed failure times.The observed

failure times are denoted t1, t2, . . . , tn . Equation (12.3) gives:

L(λ; t1, t2, . . . , tn) =∏n
i=1λe−λti (12.5)

Note that the parameter is denoted λ, whereas we generally use θ. Further we denote the ob-

servations with t because we here have failure times. The probability density function in the

exponential distribution is given by f (t ) = λe−λt . A common “trick” when maximising the like-

lihood function is to take the logarithm. Because the logarithm (ln) function is monotonically

increasing, lnL will also be maximised for the same value as for which L is maximised. We could

then find:

l (λ; t1, t2, . . . , tn) = ln L(λ; t1, t2, . . . , tn) = n lnλ−∑n
i=1λti (12.6)
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By taking the derivative wrt λ and equate to zero, we easily obtain:

λ̂= n
/∑n

i=1 ti (12.7)

12.4 How to obtain the data?

In some situations we are able to conduct experiments to get access to reliability data. We can

imagine that we put n identical lightbulbs in n sockets and observe the failure times. A challenge

might be that we do not have time to wait for all light bulbs to fail. This means that we will have

some “real” life times and some “censored” life times. The censored life times are then the period

they have survived. The fact that some light bulbs might have survived the time period of our

experiment is also an information we will utilize. In the text book different types of censoring is

discussed.

In most cases we do not have access to data in such a controlled manner. But very often

we will have access to data from computerized maintenance management systems (CMMS) in

terms of failure reports and reports from preventive maintenance.

From the CMMS it is to some extent possible to extract life time data. Several challenges are

encountered in such an attempt to get life time data to use in our parameter estimation:

• Data is not reported on the appropriate level, for example we are seeking the failure rate

of a pump bearing, but failures are only reported on the pump level

• There are several failure modes reported for an item, and we do not have any information

regarding if the item is “as good as new” with respect to all failure modes after a corrective

repair action

• Preventive maintenance is carried out, and hence we have very few “real” life times

• We have data for several items, but they are not operated under “identical” conditions,

hence merging the data to get a sufficient number of data points is not easy

12.5 Failures vs censoring life times

In experiments as well as in real life there are situations where we are not able to observe the

time of failure of an item. The reasons for this could be that the experiment is terminated before

all items have failed, or for a real life item, the item is replaced preventively before a failure

occurs. In this situations we will usually know that the item has survived a certain time period.

The point of time representing this survival period is denoted a censoring life time. It is obvious

that a censoring life time has less informative value than a real life time in order to assess the
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underlying reliability parameters. However, the censoring life time represent some information

we will not discard in the parameter estimation. We often put a star (*) on the censoring life

times to distinguish them from the real life times. In the following we also use an indicator

variable to distinguish censoring and real life times, where the value 1 means a real life time and

the value 0 means a censoring life time.

12.5.1 Estimation when life times-to-failure are Weibull distributed

Now assume that we have been able to extract life time data from either controlled experiments

or from our CMMS.

Let t1, t2, . . . tn denote the observed times-to-failure including censored life times. Further

let I1, I2, . . . In be indicator variables equal to one if the corresponding life time is a real life time,

and equal to zero if it is a censored life time.

The censored life times are assumed to be “right censored” life times in the meaning that we

know the “birth” of the item, but not the “death”. The only thing we know is thus the fact that the

item has survived the censored life time. To get “something” to put into the likelihood function,

we then use the survivor function, R(t ). R(t ) is the likelihood that an item survives t , and this is

what we need, i.e., what is “the likelihood of observing what we observed”?

Recall that the pdf of the Weibull distribution is given by f (t ;α,λ) = αλ(λt )α−1e−(λt )α and

the survivor function is given by R(t ;α,λ) = e−(λt )α . Thus the likelihood function is given by:

L(α,λ; t1, t2, . . . , I1, I2, . . . ) =∏
i

(
Iiαλ(λt )α−1e−(λt )α + (1− Ii )e−(λt )α

)
(12.8)

taking logarithm we obtain:

l (α,λ; t1, t2, . . . , I1, I2, . . . ) = lnL(α,λ; t1, t2, . . . , I1, I2, . . . )

=
n∑

i=1

(
Ii [lnα+αlnλ+ (α−1)lnti ]− (λti )α

) (12.9)

Numerical methods are required for maximizing equation (12.9)

Example 12.1

Assume we have observed the following life times: 8,9,7,6,12,18,14,18*,6,9,11, 24,30* and 28*.

Here a star (*) indicates that the life time is a censored life time. The MLE estimates are given by:

α̂≈ 1.61

λ̂≈ 0.0555

obtained by the “Solver” in Excel.
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12.6 Estimation in the Markov degradation model

This section presents ideas for estimation of model parameters, i.e., the degradation rates in the

Markov model. Assuming the perfect state is 0 and the system runs through the states 0,1, . . . ,r ,

the objective is to find estimates for λ0,λ1, . . . ,λr−1 where λ j is the transition rate from state j to

state j +1.

Data has to be retrieved from the computerized maintenance management system. It is

required that the state of the item (at the appropriate level) is reported after each inspection of

the system. For system where the Markov model apply usually off-line inspections would be the

information source, and these inspections take place in discrete point of times.

In the data retrieval process we need to find pair of observations/inspections where we cre-

ate one data point. That is for each of the created data point i , i = 1,2, . . . ,n we have the triplet

< ui , s1,i , s2,i >, where ui is the number of days between two subsequent observations, and

s1,i ∈ {0,1, . . . ,r − 1} and s2,i ∈ {0,1, . . . ,r } are the states for the first and second observation re-

spectively.

12.6.1 Simple estimation procedure

A simple estimation procedure is as follows:

1. Repeat for all states j ∈ {0,1, . . . ,r −1}

2. Set f = 0 and t = 0

3. Process all data points i , i = 1,2, . . . ,n

(a) If s1,i ̸= s2,i then let f = f +1

(b) Let t = t +ui /
[
d(s1,i , s2,i +1

]
, where d() is a distance measure between the first and

second observation, i.e., the number of states between the first and second observa-

tion. For example d(1,4) = 3.

4. The transition rate from state j to state j +1 is estimated by λ̂ j = f /t .

If we assume that transition times out of state j are exponentially distributed, we only need to

collect the number of transitions out of state j , i.e., f and the exposure time t . Since a transition

out of state j for data point i could have occurred anywhere in the interval of length ui , we

divide by the number of jumps +1, since the exposure time for that observation being in state j

is ui /
[
d(s1,i , s2,i )+1

]
. This last argument only holds if all transition rates are equal, but it will do

for the simple estimation procedure.
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12.6.2 The maximum likelihood approach

A weakness of the simple approach is that it only holds for equal transition rates. Further we

do not utilize the information contain in a data point with larger jumps. The maximum likeli-

hood approach (MLE) approach is rather simple, and it should be noted that, e.g., estimation by

utilizing Markov Chain Monte Carlo simulation has been proposed and used by e.g., Bladt and

Sørensen (2009) and Laskowska et al. (2023) in a similar situation.

Figure 6.1 depicts the physical states with the corresponding transition rates. The transition

rates, i.e., the λ’s in Figure 6.1 are above diagonal elements in the transition matrix A, for ex-

ample a0,1 = λ0. The below diagonal elements are vanishing since we do not have data points

representing improvements. The objective of the estimation is to obtain numerical values for

λ0,λ1, . . . ,λr−1 as for the simple approach.

The main idea in an MLE approach is to compare the actual transitions taking place be-

tween subsequent observations with the probability of that transition should occur, given the

parameters in the model, i.e, the λ-vector.

Assume that the system is in state s at time t and we consider a later point of time t+u where

no maintenance has been conducted in the period between. Since we know the system state at

time t the P(t )-vector is given by

Ps(t ) = 1

P j (t ) = 0 for j ̸= s (12.10)

For a given λ-vector in A we have:

P(t +u) = P(t ) ·eAu (12.11)

To calculate the exponential of a matrix, i.e., eAu is numerically time consuming, and requires

efficient library functions. The calculation in Eq. (12.11) must be carried out for each data point,

and for each evaluation of the log-likelihood function, and in Section 12.6.3 below we propose

an efficient approach to speed up the calculation.

To calculate Eq. (12.11) we let t = 0 and let u = ui for data point i . Further si ,1 defines the

starting point, i.e., when setting up P(0). Equation (12.12) shows the log-likelihood function:

l (λ0,λ1, . . .) = ∑
i=1

lnPsi ,2 (ui ) (12.12)

Table 12.1 shows the structure of the data needed for the ML estimation:
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Table 12.1: Typical data for ML estimation

i ui si ,1 si ,2

1 140 0 0
2 200 1 0
:

12.6.3 Approximating matrix exponentials

In our MLE approach we need to calculate P(t ) = P(0)eAt for each observation each time we have

to evaluate the likelihood function. Since calculating the exponential of a matrix is numerically

time consuming an approximation is proposed. Recall that P(t ) = P(0)eAt was obtained from

the Kolmogorov Markov equations:

P(t ) ·A = Ṗ(t ) (12.13)

But rather than solving the exponential, we realize that for ∆t being small, we have:

P(t ) ·A ≈ [P(t +∆t )−P(t )]/∆t (12.14)

which leads to an iterative procedure where we repeatedly use:

P(t +∆t ) ≈ P(t ) [A∆t + I] (12.15)

and where I is the identity matrix. Calculating Eq. (12.15) is numerically fast. However, if we

need to calculate for e.g., one year, i.e., t = 365 this will be time consuming. Now let M0 =
[A∆t + I], and calculate subsequently:

Mi = Mi−1 ·Mi−1 (12.16)

as long as 2i−1 < tmax. Now it follows that for t = 1,2,4,8 . . ., we use

P(t ) ≈ P(0) ·Mi (12.17)

where 2i−1 = t . If t ∉ {1,2,4,8} let b be a vector for the binary representation of t , for example

b = [0,1,0,1,0,0,0, ...] corresponds to t = 0·20+1·21+0·22+1·23+0·24+. . . = 0+2+0+8+0. . . = 10.

In a similar way we calculate P(t = 10) = P(0) ·M1 ·M3.

Note that if the longest observation period is 2048 days, i.e., five and a half year, we only

need 11 matrix multiplication to generate all the Mi matrices. This is done only once for each
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evaluation of the likelihood function. For each observation we typically need in average five or

six matrix multiplications to calculate P(t ).

12.6.4 Including explanatory variables in the model

The elements in the λ-vector, i.e., λ3→2b,λ2b→2a . . . are assumed to be dependent on so-called

explanatory variables also denoted stressors. If we have knowledge about the values of the ex-

planatory variables at each defect it is possible to estimate the effect of these, i.e., the regression

coefficients. If this is the case, the data in Table 12.1 is extended as indicated in Table 12.2 The

Table 12.2: Typical data for ML estimation with explanatory variables

i ui si ,1 si ,2 zi ,1 zi ,2 . . .
1 140 0 0 153 86 . . .
2 200 0 1 137 92 . . .
:

vector of explanatory variables (zi = [z1, z2, . . .]) then represents the average value in the time

interval between the two subsequent observations of each defect. Explanatory variables could

be tonnage passing each year, curvature, age and type of rails and so on.

Motivated by Cox regression, see Cox (1972), we assume that each transition rate in the

Markov matrix could be written on the form

λ= eβ0+β1z1+β2z2... (12.18)

The impact of the regression variables may in principle vary between the various transitions,

e.g., that the effect of extra load is larger as the defect grows. To simplify, we will assume that the

effect are the same for all transition rates, i.e., λ3→2b,λ2b→2a . . .. This means that for transition

rate k,k ∈ {3,2b,2a,1,0} we have:

λk =λ0
k eβ1z1+β2z2... (12.19)

where λ0
k is a baseline transition rate. The log-likelihood function contribution from observa-

tion i now reads:

l (λ0
0,λ0

1, . . . ,β1,β2, . . .) = ∑
i=1

lnPsi ,2 (ui ) (12.20)

Note that neither the λ’s nor the β’s are explicitly expressed in the right hand side of the log-

likelihood function, but are implicitly specified first by Equation (12.19) and then by Equa-
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tion (12.11)

12.7 Graphical techniques

Several graphical techniques may be used to analyse life time data, see e.g., Rausand et al. (2021).

In the following we only present the total time on test (TTT) plot and the Kaplan-Meier plot.

The TTT-plot gives a direct impression of the ageing parameter of time-to-failures, whereas the

Kaplan-Meier plot presents the estimate for the survivor function. The Kaplan-Meier estimate

can handle both real life times and censoring life times, whereas the TTT-plot can only handle

complete data sets, i.e., censoring life times could not be treated.

12.8 TTT-plot

Assume we have n independent and identically distributed time-to-failure observations. The

data could be obtained from items that have been operated under approximately the same con-

ditions, and they are as good as new after a repair if we observe several failures for one item.

The observed time-to-failures are denoted t1, t2, t3, . . . , tn . It may be shown that we always

may sort our life time data since the ordering of collected data will in any case be arbitrary given

that data are independent and identically distributed. Lett(1), t(2), t(3), . . . , t(n) be the sorted time-

to-failure observations, that is t(1) ≤ t(2) ≤ t(3) ≤ . . . ≤ t(n). The so-called TTT observator is defined

for each point of time t as the total observed time (Total Time on Test) up to time t :

T (t ) =
i∑

j=1
t( j ) + (n − i )t (12.21)

where i is such that t(i ) ≤ t < t(i+1)

The TTT plot is given by plotting the normalized TTT observator againts a normalized index,

i.e., (
i

n
,
T (t(i ))

T (t(n))

)
(12.22)

12.9 Kaplan-Meier plot

Let the sorted data be denoted t(1), t(2), . . . , t(n) where also censored life times are included.

Further let ni be the number of items “under risk” at time t(i ), i.e., the number of items still

operating just prior to t(i ). Now at time t(i ) there might be no failure if this was a censoring time,

it might be one failure, or it might even be more than one failure if two failures occurred at the
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same time. Theoretically it is not possible to have two failures exactly at the same time, but due

to limitation in “number of digits” to represent the failure times, we may have more than one

failure at the same time. Let si be the number of life times observed at time t(i ).

To obtain the Kaplan-Meier estimate we use more or less the same type of arguments as

given by Rausand et al. (2021). First consider a small time interval around time t(i ). In the be-

ginning of this interval it will be ni items at risk. Let pi be the probability that one arbitrary of

these items will survive this small interval. A natural estimator for pi is given by

p̂i =
n(i ) − s(i )

n(i )
(12.23)

since n(i )−s(i ) of the items we had survived this interval. Now, assume that we have an estimate,

R̂−
i for the probability that an item has survived up to the interval we are considering, then it

follows that an estimate for the probability that an item will survive from t = 0 to the end of the

interval is given by

R̂+
i = R̂−

i p̂i (12.24)

Following such arguments we obtain the Kaplan-Meier estimate for the survivor function at time

t :

R̂(t ) = ∏
t(i )<t

n(i ) − s(i )

n(i )
(12.25)

Example 12.2

Assume we have observed the following life times: 8,9,7,6,12,18,14,18*,6,9,11, 24,30* and 28*.

Here a star (*) indicates that the life time is a censored life time. Table 12.3 shows tje tableau for

the Kaplan-Meier plot:

The following link shows the Excel file: http://folk.ntnu.no/jvatn/eLearning/TPK4120/

Excel/MLE_Kaplan_Meier.xlsx.

12.10 Bayesian Reliability Analysis

12.10.1 Introduction

In classical estimation approaches the main idea is that we believe in “true” reliability parame-

ters. The objective of the statistician is to “reveal” these true parameters in an “objective” man-

ner. The statistician makes assumption regarding the observed data in terms of for example

independent and identical distributed life times from some distribution class, for example the

Weibull distribution. The more data available, the better will be the result.

http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx
http://folk.ntnu.no/jvatn/eLearning/TPK4120/Excel/MLE_Kaplan_Meier.xlsx
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Table 12.3: Kaplan Meier plot

ti Ii ni si (ni − si )/ni R(ti )

6 1 14 2 12/14=0.86 0.86
6 1 13 0 13/13=1 0.86
7 1 12 1 11/12=0.92 0.79
8 1 11 1 10/11=0.91 0.71
9 1 10 2 8/10=0.8 0.57
9 1 9 0 9/9=1 0.57

11 1 8 1 7/8=0.88 0.5
12 1 7 1 6/7=0.86 0.43
14 1 6 1 5/6=0.83 0.36
18 1 5 1 4/5=0.8 0.29
18 0 4 0 4/4=1 0.29
24 1 3 1 2/3=0.67 0.19
28 0 3 0 3/3=1 0.19
30 0 3 0 3/3=1 0.19

Bayesian methods takes another starting point. The Bayesian statistician treats the parame-

ters as stochastic variables. Before he or she looks into the data, a subjective judgement is made

about the parameters. This judgement is denoted the prior distribution, i.e., prior to observ-

ing the data. The prior distribution for each of the relevant parameters are described by some

distribution class, for example the normal distribution, the gamma distribution and so on.

There are various ways to establish the prior distribution. The statistician may utilize state-

ments from experts having domain knowledge relevant for the problem at hand, he or she might

utilize data from similar components or systems and so forth. In this presentation we will not

elaborate on how to establish the prior distribution. To find out more the key words “expert

judgement” would be a starting point.

When the prior distribution is established, the statistician consider the data, t as evidence.

This means that he or she will update the prior distribution to what is called the posterior distri-

bution which also takes the evidence into account.

12.10.2 Procedure

The procedure for Bayesian estimation could briefly be described as follows:

1. Specify a prior uncertainty distribution of the reliability parameter, π(θ).

2. Structure reliability data information into a likelihood function, L(θ;t) (The likelihood

function was discussed in Chapter 14 in the textbook).
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3. Calculate the posterior uncertainty distribution of the reliability parameter vector, π(θ|t).

The posterior distribution is found by π(θ|t) ∝ L(θ;t)π(θ), and the proportionality con-

stant is found by requiring the posterior to integrate to one.

4. The Bayes estimate for the reliability parameter is given by the posterior mean, which in

principle could be found by integration.

Note that the relationπ(θ|t) ∝ L(θ;t)π(θ) follows from Bayes’ theorem and the law of total prob-

ability: If B1,B2, . . .,Br (corresponding to the θ-vector) represent a division of the sample space,

and A is an arbitrary event (corresponding to t = the data vector), then:

Pr(B j |A) = Pr(A|B j ) ·Pr(B j )

Pr(A)
= Pr(A|B j ) ·Pr(B j )

r∑
i=1

Pr(Bi ) ·Pr(A|Bi )

Since we in the denominator sum over all possible Bi values (corresponding to the θ-vector) it

will not contain θ, hence it may be regarded as a constant wrt θ. Further Pr(B j ) corresponds to

the prior distribution, and Pr(A|B j ) corresponds to the likelihood function (in terms of the the

product of the pdf’s for each data point).

It is not obvious that we in step 4. should use the posterior mean. But if we aim for a single

parameter estimate, and we have a posterior uncertainty distribution, it is reasonable to choose

the mean value in this distribution. It might be proven that the posterior mean is the optimal

value under “quadratic loss”.

Example 12.3 Exponential distribution

In the following we give an example showing the main elements of the procedure. In the exam-

ple we will estimate the failure rate in the constant failure rate situation. Assume that we express

our prior believe1 about the failure rate λ of a certain component (gas detector used on an oil

and gas platform), in terms of the mean value µ = 0.7 ·10−6 (failures / hour), and the standard

deviationσ= 0.3 ·10−6. For mathematical convenience, it is common to choose a gamma distri-

bution2 with parametersα and ξ for the prior distribution. The expected value and the variance

in the gamma distribution are given by µ = α/ξ and σ2 = α/ξ2 respectively, and we obtain the

following expressions for α and ξ:

ξ=µ/σ2 = (0.7 ·10−6)/(0.3 ·10−6)2 = 7.78 ·106

α= ξµ≈ (7.78 ·106) · (0.7 ·10−6) ≈ 5.44

1This could be based on statements from experts, see Øien et.al (1998), or by analysis of similar components
(empirical Bayesian analysis).

2π(λ) ∝λα−1e−ξλ for the gamma distribution.
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To establish the likelihood function, we look at the data. In this example we assume that we have

observed identical units for a total time in service, t , equal to 525 600 hours (e.g., 60 detector

years). In this period we have observed n = 1 failure. If we assume exponentially distributed

time-to-failures, we know that the number of failures in a period of length t , N (t ), is Poisson

distributed with parameter λ · t . The probability of observing n failures is thus given by:

L(λ;n, t ) = Pr(N (t ) = n) ∝λne−λ·t

and we have an expression for the likelihood function L(λ;n, t ).

The posterior distribution is found by multiplying the prior distribution with the likelihood

function:

π(λ|n) ∝ L(λ;n, t ) ·π(λ) ∝λne−λ·t ·λα−1e−ξλ∝λ(α+n)−1e−(ξ+t )λ

and we recognize the posterior distribution as a gamma distribution with new parameters α′ =
α+n, and ξ′ = ξ+ t . The Bayes estimate is given by the mean in this distribution:

λ̂= α+n

ξ+ t
≈ 5.44+1

7.78 ·106 +525600
≈ 0.78 ·10−6

We note that the maximum likelihood estimate gives a much higher failure rate estimate

(t/n = 1.9 · 10−6), but the “weighing procedure” favours the prior distribution in our example.

Generally we could interpret α and ξ here as “number of failures” and “time in service” respec-

tively for the “prior information”. Note that as more and more data becomes available, the data

will dominate, and the effect of the prior distribution will be wiped out.

In Bayesian probability theory, if the posterior distribution π(θ|t) is in the same probability

distribution family as the prior probability distribution π(θ), the prior and posterior are then

called conjugate distributions, and the prior is called a conjugate prior for the likelihood func-

tion L(θ;t).

A conjugate prior is an algebraic convenience, giving a closed-form expression for the pos-

terior. If we cannot establish a conjugate prior we usually need numerical integration to solve

the denominator in Bayes’ theorem. The conjugate priors may also give some intuition because

it shows how the data updates the prior distribution. In the example we had α′ = α+n, and

ξ′ = ξ+ t .

Problems

12.1 Assume we have 4 systems each with with states 0,1,2, . . . ,r where λi+1 = (1+ v)λi+1. The

systems are proof-tested every τ time units.
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Numerical values are given by r = 5,λ0 = 0.001, v = 0.2, and τ= 730. The maintenance limit

is l = r −1. Upon a proof test (inspection to reveal state) nothing is done for states 1,2, . . . , l −1. If

a system is in a state ≥ l at a proof-test, an instantaneous repair takes place bringing the system

back to state 1.

Use Monte Carlo simulation to simulate the observation set. Assume you simulate over 60

months (5 years).

12.2 In this exercise we will use the data from the previous exercise. There are only two param-

eters to estimate, i.e., λ1 and v . To get an initial guess for λ1 we may do the following:

1. Count the number of situations in the data set where there is a transition from state 1 to

another state, and let this number be denoted n1

2. Count the number of occurrences where one system remains in state 1 from one inspec-

tion to the next inspection, or jumps from state 1 to another state from one inspection to

the next inspection. Let this number be denoted t1

3. An initial guess for λ1 is now given by λ̂1 = n1/t1

We can repeat for λ2,λ3, . . . ,λl−1. Note that we cannot estimate the transition rate into the fault

state, i.e., λl by this procedure because there are no observed jumps from state l to state r due

to our maintenance strategy.

We may now get an initial guess for v by v̂ = λ̂2/λ̂1 −1. We could also use v̂ = λ̂3/λ̂2 −1 and

so forth, so an average of these v-values could be a reasonable approach to obtain an initial

estimate, v̂ .

a) Calculate initial estimates for λ1 and v as indicated above for your simulated dataset

b) Keep v fixed, find the LS-estimate for λ1 according to the procedure described. Use any

numerical routine for minimizing a univariate function.

c) Keep λ1 fixed, i.e., the estimate from b), and find the LS-estimate for v

d) Keep v fixed, i.e., from c), and find the LS-estimate for λ1 according to the procedure

described.

e) Keep λ1 fixed, i.e., the estimate from d), and find the LS-estimate for v

f) Compare the result with using a minimization routine that allows for several variables.



Chapter 13

Machine learning

13.1 Introduction

Machine learning (ML) is a field of computer science that gives computers the ability to learn

without being explicitly programmed. The classical textbook still used in many courses is Ma-

chine Learning by Tom M. Mitchell, Mitchell (1997). In this chapter we give a very short intro-

duction to ML and some few examples.

Z Learning: A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P if its performance at tasks in T , as measured by P ,

improves with experience E , Mitchell (1997).

Example 13.1 - Classification

Objects with (x,y)-coordinates are either of type A or type B. A limited training set, E , of objects

is available where the correct type is known. The task, T , is to determine the type of new objects

if only the (x,y) coordinates are known. As the training set increases we expect to be better in

determining the type. Figure 13.2 shows an example of such data.

13.2 Type of data

The dataset essentially contain the following two types of data

• x = Feature vector, for example weight and height

• y = label data, for example slim or fat

A dataset of n data points is said to be labelled if both x and y are known, and is said to unlabelled

if only x is known. All x-vectors is denoted the feature set, and all y-values is denoted the label

set for a dataset of n data points.

149



CHAPTER 13. MACHINE LEARNING 150Example data – Labeling problem

0

50

100

150

200

250

40 50 60 70 80 90 100 110 120

Height as a function of weight

Height fat Height slim

Figure 13.1: Example data - Labelling problem

In machine learning, an unknown universal dataset is assumed to exist, which contains all

the possible data points, but this dataset is not known to us. What is available is a training set

(training data) which is used to learn the properties and knowledge of the universal dataset

13.3 Categorization of Machine Learning

In machine learning we essentially deals with three types of learning:

• Supervised learning

• Unsupervised learning

• Reinforcement learning

13.3.1 Supervised Learning

The training set given for supervised learning is a labelled dataset . The aim of the learing is

to find the relationships between the feature set and the label set, which is the knowledge and

properties we can learn from labelled dataset

• If each feature vector x corresponds to y = categorical data the learning problem is de-

noted as classification
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• If each feature vector x corresponds to y = a real value the learning problem is defined as

regression problem

13.3.2 Unsupervised Learning

The training set given for unsupervised leaning is the unlabelled dataset. The aim of could be

clustering, probability density estimation, finding association among features, and dimension-

ality reduction. Unsupervised learning can later be input to supervised learning.

13.3.3 Reinforcement learning

Reinforcement learning is about how a computer program interacts with the environment, i.e.,

a real world situation like driving a car or deciding when to ask for maintenance. The computer

program shall then make decisions or at least give decision support. As the time goes by the

result of actions will be successful to some degree. This successfulness is then translated to a

“reward” measure which the computer program tries to maximize.

13.4 Hypothesis set

Learning is about confirming hypotheses. A hypothesis, h, among other hypothesis in the hy-

pothesis set H is a mapping function that uniquely assigns a feature vector to a label value. The

objective of supervised learning is to find the best h within the set H .

It is assumed that there exist an ideal mapping function, f , which we most likely never find,

but the best one found, say g , is used for future predictions

13.5 Learning algorithm

A learning algorithm, A, is required to obtain the best hypothesis within the set H . A comprises:

• An objective function, i.e., the function to be optimized for searching g

• Optimization methods used to optimize the objective function

Example 13.2 Labelling problem

Figure 13.2 shows the labelled data with three hypotheses:

• h1 - Non-linear mapping function that assigns the label “slim” to observations above the

curve, and “fat” to those below the curve
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• h2 - Linear mapping function that assigns the label “slim” to observations above the curve,

and “fat” to those below the curve

• h3 - Flat mapping function that assigns the label “slim” to observations above the curve,

and “fat” to those below the curve

From the data it appears almost impossible to have a flat mapping function that uniquely sep-

arate the “slim” from the “fat”, making h3 not feasible. h2 performs better, but having the “body

mass index” (BMI) in mind, a linear classifier may not be very efficient, and therefore a non-

linear mapping functions as given by hypothesis h1 seems more efficient. To find the “best”

classifier, i.e., some hypothesis g we need to define a objective function, for example based on

least squares, and then fit the classifier function minimizing the square distance from the points

to this function.Example data – Labelling problem
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Figure 13.2: Hypothesis in the labelling problem

13.6 Support vector machines

Support vector machines (SVM) are supervised learning models with associated learning algo-

rithms that analyse data used for classification and regression analysis. SVM training algorithm

builds a model that assigns new observations to one category or the other, making it a non-

probabilistic binary linear classifier.
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Figure 13.3 shows three classifiers. The line in the middle separates “slim” and “fat” with the

maximal margin. The upper line will classify new observations to “fat” if they do not follow the

pattern, whereas the lower line will tend to classify them as “slim”.“BMI”-example
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Height fat Height slim SVM SVM_Fat SVM_Slim

Figure 13.3: Hypothesis in the labelling problem

In addition to performing linear classification, SVMs can efficiently perform a non-linear

classification using what is called the “kernel trick” which is not pursued here.

Example 13.3 Practical maintenance example

Assume that we measure the condition of a machine by the vector x (vibration, temperature,

noise etc). Assume further that we have observed x-values each day for one or more machines

until they reach the alarm limit where we have to stop the machine.

By easy data manipulation we can then for each observation, i , calculate the number of days

until the alarm/maintenance limit is reached, say di . In order to plan maintenance we need say

D days in advance. Often D is denoted the lead time. To label the data, we now calculate yi for

each observation according to:

yi =
{

-1 if di ≤ D

1 if di > D
(13.1)

The feature vector xi and the calculated value yi for all observations constitute the training set.

This training set is then used to obtain a classification rule. For a new observation, say x0 we can

predict the corresponding y0. If y0 =−1 the model advocates starting maintenance.

It should be noted that if we train the model by this rather simple approach we will hopefully

be quite good classifying whether whether we have sufficient time for planning maintenance if
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we use the result as decision support. A weakness is obviously that we in average have a good

hit, but the decision support is not very valuable since the cost of being too late is much higher

than being too early. A first approach to overcome this bias, we could establish another rule for

labelling the data, e.g.,

yi =
{

-1 if di ≤ D −5

1 if di > D −5
(13.2)

where “5” is some contingency. But it will be hard to argue for such a number. Such a classifica-

tion regime is

13.7 Other learning algorithms

There are many other learning algorithms, for example

• Artificial Neural Networks (ANN)

• Deep Learning - multiple hidden layers in an artificial neural network

• Bayesian Networks

• Decision trees

• ... and many more

13.8 Artificial neural networks

Artificial neural networks (ANNs) are computing systems inspired by the biological neural net-

works that constitute animal brains. Compared to Support vector machines where the label is

scalar, we can now have a vector of labels, i.e., the output vector. Figure 13.4 shows an ANN with

one so-called hidden layer.

An artificial neural network is a network of simple elements called neurons. These are the

nodes in the network. To the left we have a set of input nodes corresponding to the feature

vector x. To the right we have the output nodes corresponding to a vector of labelled data, i.e.,

a y-vector. In the middle we have a set of hidden nodes. Figure 13.4 shows only one hidden

layer, but there could be several such hidden layers which is used in so-called “deep learning”

methods.

A neuron may receive input, change their internal state (= activation) according to the input

and an activation function and produce some output

The network connects the output of certain neurons to the input of other neurons forming

a directed and weighted graph:
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Source: Wikipedia
Figure 13.4: Artificial neural network (source: Wikipedia)

• Neurons = nodes item The connection between the neurons are weighted directed edges

Both the weights and the activation functions used contain parameters. Training the model

means to estimate these parameters. In the estimation process an objective function is required

to measure the performance of each parameter set.

13.9 Hybrid approaches

Machine learning do not require all cause-and-effects to be known (black-box), whereas prob-

abilistic models and first principle model require an explicit model specification (grey-box and

white-box). This means that ML in many cases are attractive because we do not need to work

out realistic models explicitly. If we have sufficient data and we have a huge number models

to be established, we can imagine that automated processes to come up with reasonable ML in

short time would be possible.

However, machine learning is greedy with respect to data. Probabilistic and first principle

models requires less data , and hybrid approaches could be an alternative:

• We may combine machine learning with e.g., probabilistic models

• Machine learning to search for good “health indicators”

• Use probabilistic models to assign RUL predictions (Remaining Useful Lifetime)

Example 13.4 Silicon furnace

The silicon furnaces have for many years been equipped with sensors that collect information
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about various factors such as temperatures, water flow, pressure and so on. The information

from these measurements are used for process control and optimization but has so far only to a

small extent been used to inform maintenance decisions of the furnace equipment.

An example of furnace equipment that are monitored by sensors today are the water-cooled

flexible power cables which go out to the electrode, i.e., the flexibles. The flexibles are consid-

ered as a good candidate to test the potential of using available sensor data as input to mainte-

nance. This is because this is simple equipment with a limited number of failure modes

Assume that we on an hourly basis measure the following variables:

• p = pressure

• v = flow rate

• T = Temperature

The variables are expected to be related to each other by various physical laws, e.g., Bernoulli’s

equation

v2/2+ g z +p/ρ = constant (13.3)

Under normal operation the relation between the variables are expected to be rather consistent.

After some time it is expected that some chipping takes place. The initial damage could occur

according to a shock process having the PF-model in mind.

We will use simple linear regression as our ML method where we simplify and assume:

v =β0 +β1T +β2p + error term (13.4)

MS Excel is a natural choice for estimating β0,β1 and β2. We can easily calculate the residuals

and the standard deviation of the residuals.

The anomaly detection rule is as follows:

• 3 subsequent predictions outside +/- one standard deviation

After a potential failure, we can estimate drift every day, i.e., the slope of the deviation between

the predicted and the observed value.

13.1 The datafile for this exercise is found at folk.ntnu.no/jvatn/eLearning/MLdata/. The tasks

are as follows

a) Discuss first principle models for linking the three variables, and set up a regime for early

warning, i.e., anomaly detection.

https://folk.ntnu.no/jvatn/eLearning/MLdata/
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b) Repeat the approach with machine learning approaches

c) Discuss what type of data you will need to train the models

Use the data under “NormalOperation” in the Excel data file to set up your model

13.2 Given that an initial damage, i.e., chipping has started, assume that the deviation between

the predicted pressure and the actual pressure follows a Wiener process with constant drift.

Further, assume that chipping has been observed for several flexible power cables and “fail-

ure times” for these have been observed.

a) Discuss how you can use the result from the first principle model also for prognostics.

b) Propose a regime for estimating the RUL in this situation, given a known and fixed failure

threshold

c) Use the “RunToFailure data” in the Excel file to (i) estimate the point of time when there is

an anomaly, then (ii) estimate the model parameters in the Wiener process, as well as the

failure threshold, assuming that there is a failure for the last observation point

d) Assume that the parameters in c) are the correct one, use the observation in RunToFailure

to make RUL predictions with 90% uncertainty bands for each time steps. Compare with

the “true” value.

13.10 The LS principle

The least squares (LS) principle for estimation is used when we have observations that do not

come from the same distribution, but we know the expectation of each variable as a function of

a set of parametersθ, and a set of explanatory variables. Previously we denoted the observations

by the letter ‘X ’, but we will now change the notation to let ‘Y ’ denote the observations, whereas

we reserve the letter ‘X ’ for explanatory variables. We now let φi (θ) denote the expectation

of Yi (the i ’th observation), where the functions φi are all known, but the parameter vector θ

is unknown and shall be estimated. The LS principle now states that we may estimate θ by

the value that minimises the square sum of the deviations between the observed and expected

values, i.e.:

Q(θ) =
n∑

i=1
[yi −φi (θ]2 (13.5)

Equation (13.5) is the starting point for estimating the parameters in so-called regression mod-

els. The most simple formula is given by:

E[Yi ] =β0 +β1xi (13.6)
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In this model x is denoted the independent variable, whereas Y is denoted the dependent vari-

able because it depends on the independent variable, x.

The model in equation (13.6) could be extended to cover more independent variables. These

are denoted regression variables , or explanatory variables. To extend the model we introduce

an extra index for each x. We write xi j , where index i denotes the i ′th data point, whereas index

j denotes the j ’th explanatory variable. The model then reads:

E[Yi ] =β0 +β1xi ,1 +β2xi ,2 +·· ·+βr xi ,r (13.7)

To obtain the LS estimators in this situation, we introduce matrix notation. Let y = [y1,y2, . . . ,

yn]T be a column vector containing the dependent variables, and let X be the design matrix

given by:

X =


1 x11 ...... x1r

1 x21 x1r

: xi j

1 xi 1 ....... xnr

 (13.8)

It could be shown that the LS estimator for β= [β0,β1,β2, · · · ,βr ]T is given as the solution of the

following matrix equation:

XTy = XTXβ (13.9)

If the design matrix has full rank, XTX will be non-singular, and the solution is given by:

β̂= (XTX)−1XTy (13.10)

If one has access to a tool for matrix calculus, we easily obtain the LS estimates. We could also

use commercial available statistical programs, or the “analysis” module of MS Excel.

Example 13.5 Estimation of the effects of regression variables

This example is not explicit relevant for maintenance, but given in another course. Will be

updated later....

We will consider a situation where we have observed the duration of construction the foun-

dation wall of houses. The different values are shown in the Y-column below. The variable x1

denotes the base in square meters, whereas x2 is an indicator of ground frost. A value is given as

1 if there is ground frost, 0 otherwise. We have also introduced the variable x3 that denotes the

walking distance from the workmen’s hut to the building site:
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Y x1 x2 x3

8.4 100 1 100

7.8 150 1 50

11.4 250 1 50

6.1 80 0 75

6.1 100 0 200

8.3 90 1 30

7.5 180 0 25

7.2 200 0 50

6.0 110 0 75

From MS Excel we obtain the following parameters: β̂0 = 4.211, β̂1 = 0.0167, β̂2 = 2.196, and

β̂3 = 0.0011

Note that we in equation (13.7) have written the expected value of Yi . Generally we write:

Yi =β0 +β1xi ,1 +β2xi ,2 +·· ·+βr xi ,r +εi (13.11)

where εi is an error-term. Very often we assume εi to be normally distributed, but we might

also assume that εi is PERT distributed. To estimate the parameters in an underlying PERT

distribution we calculate the predicted values:

ŷi = β̂0 + β̂1xi ,1 + β̂2xi ,2 +·· ·+ β̂r xi ,r (13.12)

then we estimate the error-terms by the residuals:

ε̂i = yi − ŷi (13.13)
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Reliabilty centred maintenance

14.1 Introduction

Reliability centred maintenance (RCM) is a method for maintenance planning developed within

the aircraft industry and later adapted to several other industries and military branches. The

first comprehensive documentation of RCM was given by Nowlan and Heap (1978).A major ad-

vantage of the RCM methodology is a structured, and traceable approach to determine type of

preventive maintenance. This is achieved through an explicit consideration of failure modes

and failure causes. A major challenge in an RCM analysis is to limit the scope of the analysis so

that it is possible to carry out the analysis within the limits of time and budget. Most implemen-

tations of RCM put main focus on the identification of maintenance tasks, but do not carry out

explicit optimisation of maintenance intervals. We will, however, present an approach to RCM

that also enables optimisation of maintenance intervals. In order to do so, we need to structure

the analysis much more than what is common in most RCM approaches.

Structuring take place at several steps in the RCM analysis. Because the failure mode and

effect analysis (FMECA) is very time consuming, and because the basis for maintenance opti-

misation also is established through the FMECA we will introduce several means to simplify and

structure this part of the analysis:

• Introduction of so-called TOP-events in the analysis. Such a TOP event could be “derail-

ment”, “fire”, “collision train-train” for safety, and “Slow speed -40 km/h” and “Full stop”

etc for punctuality. For these identified TOP events a general assessment is carried out

where the total risk or cost for each such TOP event is “calculated”. The “consequence”

analysis is thus reduced to totally 10-15 items, which is a very low number compared to

the number of “rows” in the FMECA, which could be thousands or more.

• Introduction of generic RCM templates. A generic RCM template is the result of a general

analysis of an equipment such as a turnout (mechanical part), a switch motor (electrical

160
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part), the traction system of a train etc. In such a generic analysis we make an “average”

assessment of important reliability parameters. Experience has shown that the number of

“generic” RCM templates is in the order of 50, where each generic template comprise 5 to

10 “components”.

• When the maintenance program is established for a specific line, or a specific train set, the

generic RCM template is taken as a starting point. For this general template we make local

adjustment in terms of adjustment factors. When the local adjustment factors have been

defined, it is straight forward to “update” the generic template to a local analysis, where

the optimisation of maintenance intervals also could be automated.

• When we know that we have several hundred or thousand physical components to treat

when the maintenance program is defined, we can imagine the value of such a “generic”

and “local adjustment” approach.

The RCM analysis may be carried out as a sequence of activities. Some of these activities, or

steps, are overlapping in time. The RCM process comprises the following steps:

1. Study preparation

2. System selection and definition

3. Functional failure analysis (FFA)

4. Critical item selection

5. Data collection and analysis

6. Failure modes, effects and criticality analysis (FMECA)

7. Selection of maintenance actions

8. Determination of maintenance intervals

9. Preventive maintenance comparison analysis

10. Treatment of non-critical items

11. Implementation

12. In-service data collection and updating

13. Local adjustments
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The various steps are discussed in the following sections with a focus on Steps 1-8. Note that the

basis for step 1-12 would be the “generic approach”. That is, we typically carry out these steps for

“generic” systems or components, and then in step 13 we make explicit assessments reflecting

the conditions related to each physical unit.

Step 1: Study preparation

The main objectives of an RCM analysis are:

1. to identify effective maintenance tasks,

2. to evaluate these tasks by some cost-benefit analysis, and

3. to prepare a plan for carrying out the identified maintenance tasks at optimal intervals.

If a maintenance program already exists, the result of an RCM analysis will often be to eliminate

inefficient maintenance tasks.

Before an actual RCM analysis is initiated, an RCM project group should be established. The

RCM project group should include at least one person from the maintenance function and one

from the operations function, in addition to an RCM specialist.

In Step 1 “Study preparation” the RCM project group should define and clarify the objectives

and the scope of the analysis. Requirements, policies, and acceptance criteria with respect to

safety and environmental protection should be made visible as boundary conditions for the

RCM analysis.

The part of the plant to be analysed is selected in Step 2. The type of consequences to be

considered should, however, be discussed and settled on a general basis in Step 1. Possible

consequences to be evaluated may comprise:

• (i) risk to humans,

• (ii) environmental damages,

• (iii) delays and cancellation of travels,

• (iv) material losses or equipment damage,

• (v) loss of marked shares, etc.

The possible consequence classes can not be measured in one common unit. It is therefore

necessary to prioritise between means affecting the various consequence classes. Such a priori-

tisation is not an easy task and will not be discussed in this presentation. The trade-off problems

can to some extent be solved within a decision theoretical framework (Vatn 1995 and Vatn et al.

1996).
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RCM analyses have traditionally concentrated on PM strategies. It is, however, possible to

extend the scope of the analysis to cover topics like corrective maintenance strategies, spare part

inventories, logistic support problems, etc. The RCM project group must decide what should be

part of the scope and what should be outside. The resources that are available for the analysis

are usually limited. The RCM group should therefore be sober with respect to what to look into,

realizing that analysis cost should not dominate potential benefits.

In many RCM applications the plant already has effective maintenance programs. The RCM

project will therefore be an upgrade project to identify and select the most effective PM tasks, to

recommend new tasks or revisions, and to eliminate ineffective tasks. Then apply those changes

within the existing programs in a way that will allow the most efficient allocation of resources.

When applying RCM to an existing PM program, it is best to utilise, to the greatest extent pos-

sible, established plant administrative and control procedures in order to maintain the structure

and format of the current program. This approach provides at least three additional benefits:

(i) It preserves the effectiveness and successfulness of the current program.

(ii) It facilitates acceptance and implementation of the project”s recommendations when they

are processed.

(iii) It allows incorporation of improvements as soon as they are discovered, without the ne-

cessity of waiting for major changes to the PM program or analysis of every system.

Since we are heading for a sound basis for interval optimisation, we will need an explicit quan-

tification of the risk associated with each “TOP event”. On a general basis, we therefore need

to establish the relevant risk models, both with respect to safety and punctuality. See Chapter

11 for a preliminary assessment of these risks. It is not the maintenance department that is

responsible for establishing these “generic” risk models. Usually risk analyses, or safety cases

exists, and these could be used as a basis for the appropriate structuring of the risk picture.

Step 2: System selection and definition

Before a decision to perform an RCM analysis is taken, two questions should be considered:

• To which systems are an RCM analysis beneficial compared with more traditional main-

tenance planning?

• At what level of assembly (plant, system, subsystem ...) should the analysis be conducted?

Regarding the first question, all systems may in principle benefit from an RCM analysis. With

limited resources, we must, however, usually make priorities, at least when introducing the RCM

approach for the first time. We should start with the systems that we assume will benefit most

from the analysis. The following criteria may be used to prioritise systems for an RCM analysis:
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(i) The failure effects of potential system failures must be significant in terms of safety, envi-

ronmental consequences, production loss, or maintenance costs.

(ii) The system complexity must be above average.

(iii) Reliability data or operating experience from the actual system, or similar systems, should

be available.

Most operating plants have developed an assembly hierarchy, i.e., an organization of the system

hardware elements into a structure that looks like the root system of a tree. In the offshore

oil and gas industry this hierarchy is usually referred to as the tag number system. In railway

infrastructure maintenance it is common to use the disciplinary areas as the highest level in the

plant register, typically we have:

• Superstructure

• Substructure

• Signalling

• Telecommunications

• Power supply (overhead line with supporting systems)

• Low voltage systems

For the rolling stock we similarly have a system breakdown:

• The breaking system including automatic train protection (ATP)

• The traction system

• The door system with interlocking connections to traction system

• The pantograph with supporting system

• The bogie system

• The coupler system

• The wagon

• The locomotive
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The following terms will be used for the levels of the assembly hierarchy:

Plant: A logical grouping of systems that function together to provide an output or product by

processing and manipulating various input raw materials and feed stock. An offshore gas pro-

duction platform may e.g. be considered as a plant. For railway application a plant might be a

maintenance area, where the main function of that “plant” is to ensure satisfactiory infrastruc-

ture functionality in that area.

System: A logical grouping of subsystems that will perform a series of key functions, which often

can be summarized as one main function, that are required of a plant (e.g. feed water, steam

supply, and water injection). The compression system on an offshore gas production platform

may e.g. be considered as a system. Note that the compression system may consist of several

compressors with a high degree of redundancy. Redundant units performing the same main

function should be included in the same system. It is usually easy to identify the systems in a

plant, since they are used as logical building blocks in the design process.

The system level is usually recommended as the starting point for the RCM process. This

means that on an offshore oil/gas platform the starting point of the analysis should be for ex-

ample the compression system, the water injection system or the fire water system, and not the

whole platform. In railway application the systems were defined above as the highest level in

the plant hierarchy.

The systems may be further broken down in subsystems, and subsubsystems, etc. For the

purpose of the RCM-process the lowest level of the hierarchy should be what we will call an RCM

analysis item:

RCM analysis item: A grouping or collection of components which together form some iden-

tifiable package that will perform at least one significant function as a stand-alone item (e.g.

pumps, valves, and electric motors). For brevity, an RCM analysis item will in the following

be called an analysis item. By this definition a shutdown valve, for example, is classified as an

analysis item, while the valve actuator is not. The actuator is a supporting equipment to the

shutdown valve, and only has a function as a part of the valve. The importance of distinguish-

ing the analysis items from their supporting equipment is clearly seen in the FMECA in Step

6. If an analysis item is found to have no significant failure modes, then none of the failure

modes or causes of the supporting equipment are important, and therefore do not need to be

addressed. Similarly if an analysis item has only one significant failure mode then the support-

ing equipment only needs to be analyzed to determine if there are failure causes that can affect

that particular failure mode. Therefore only the failure modes and effects of the analysis items

need to be analysed in the FMECA in Step 6. An analysis item is usually repairable, meaning that
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it can be repaired without replacing the whole item. In the offshore reliability database (OREDA)

the analysis item is called an equipment unit. The various analysis items of a system may be at

different levels of assembly. On an offshore platform, for example, a huge pump may be defined

as an analysis item in the same way as a small gas detector. If we have redundant items, e.g. two

parallel pumps, each of them should be classified as analysis items. When we in Step 6 of the

RCM process identify causes of analysis item failures, we will often find it suitable to attribute

these failure causes to failures of items on an even lower level of indenture. The lowest level is

normally referred to as components.

Component: The lowest level at which equipment can be disassembled without damage or de-

struction to the items involved. Some authors refers to this lowest level as Least Replaceable

Assembly (LRA), while OREDA uses the term maintainable item. It is very important that the

analysis items are selected and defined in a clear and unambiguous way in this initial phase

of the RCM-process, since the following analysis will be based on these analysis items. If the

OREDA database is to be used in later phases of the RCM process, it is recommended as far as

possible to define the analysis items in compliance with the “equipment units” in OREDA.

Step 3: Functional failure analysis (FFA)

The objectives of this step are:

(i) to identify and describe the systems required functions,

(ii) to describe input interfaces required for the system to operate, and

(iii) to identify the ways in which the system might fail to function.

Step 3(i): Identification of system functions

The objective of this step is to identify and describe all the required functions of the system. In

is often recommended that the various functions are expressed in the same way, as a statement

comprising a verb plus a noun - for example, “close flow”, “contain fluid”, “transmit signal”.

A complex system will usually have a high number of different functions. It is often difficult

to identify all these functions without a checklist. The checklist or classification scheme of the

various functions presented below may help the analyst in identifying the functions. The same

scheme will be used in Step 6 to identify functions of analysis items. The term item is therefore

used in the classification scheme to denote either a system or an analysis item.

• Essential functions: These are the functions required to fulfil the intended purpose of the

item. The essential functions are simply the reasons for installing the item. Often an es-
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sential function is reflected in the name of the item. An essential function of a pump is for

example to pump a fluid.

• Auxiliary functions: These are the functions that are required to support the essential

functions. The auxiliary functions are usually less obvious than the essential functions,

but may in many cases be as important as the essential functions. Failure of an auxiliary

function may in many cases be more critical than a failure of an essential function. An

auxiliary function of a pump is for example containment of the fluid.

• Protective functions: The functions intended to protect people, equipment and the envi-

ronment from damage and injury. The protective functions may be classified according

to what they protect, as:

• safety functions

• environment functions

• hygiene functions

An example of a protective function is the protection provided by a rupture disk on a pressure

vessel, e.g., a separator.

1. Information functions: These functions comprise condition monitoring, various gauges

and alarms etc.

2. Interface functions:These functions apply to the interfaces between the item in question

and other items. The interfaces may be active or passive. A passive interface is for example

present when an item is a support or a base for another item.

3. Superfluous functions: According to Moubray (1991) “Items or components are sometimes

encountered which are completely superfluous. This usually happens when equipment

has been modified frequently over a period of years, or when new equipment has been

over specified”. Superfluous functions are sometimes present when the item has been

designed for an operational context that is different from the actual operational context.

In some cases failures of a superfluous function may cause failure of other functions.

For analysis purposes the various functions of an item may also be classified as:

(a) On-line functions:These are functions operated either continuously or so often that the

user has current knowledge about their state. The termination of an on-line function is

called an evident failure.
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(b) Off-line functions:These are functions that are used intermittently or so infrequently that

their availability is not known by the user without some special check or test. The protec-

tive functions are very often off-line functions. An example of an off-line function is the

essential function of an emergency shutdown (ESD) system on an oil platform. Many of

the protective functions are off-line functions. The termination of an off-line function is

called a hidden failure.

Note that this classification of functions should only be used as a checklist to ensure that all

relevant functions are revealed. Discussions about whether a function should be classified as

“essential” or “auxiliary” etc. should be avoided. Also note that the classification of functions

here is used at the system level. Later the same classification of functions is used in the failure

modes, effects and criticality analysis (FMECA) in Step 6 at the analysis item level. The system

may in general have several operational modes (e.g., running, and standby), and several func-

tions for each operating state.

The essential functions are often obvious and easy to establish, while the other functions

may be rather difficult to reveal.

Step 3(ii): Functional block diagrams

The various system functions identified in Step 3(i) may be represented by functional diagrams

of various types. A popular approach is the structured analysis and design technique (SADT).

The SADT uses the concept of a function block with five main elements:

• Function: Definition of the function to be performed

• Input: The energy, materials, and information that are necessary to perform the function

• Control: The controls and other elements that constrain or govern how the function will

be carried out

• Mechanism: The people,system, facilities or equipment necessary to carry out the func-

tion

• Output: The result of the function

Figure 14.1 illustrates this in relation to the traction system of a bike:

The necessary inputs to a function are illustrated in the functional block diagram together

with the necessary control signals and the various environmental stressors that may influence

the function.

It is generally not required to establish functional block diagrams for all the system functions.

The diagrams are, however, often considered as efficient tools to illustrate the input interfaces
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Figure 14.1: SADT for the bike example

to a function. In some cases we may want to split system functions into subfunctions on an in-

creasing level of detail, down to functions of analysis items. The functional block diagrams may

be used to establish this functional hierarchy in a pictorial manner, illustrating series-parallel

relationships, possible feedbacks, and functional interfaces.

Step 3(iii): System failure modes

The next step of the FFA is to identify and describe how the various system functions may fail.

In Section 4.1.5 a failure mode is defined as “The manner in which a failure occurs, independent

of the cause of the failure”. It is important to realize that a failure mode is a manifestation of the

failure as seen from the outside, i.e. the termination of one or more functions.

In most of the RCM references the system failure modes are denoted “functional failures”.

Failure modes / functional failures may be classified in three main groups related to the function

of the item (component, system etc):

• Total loss of function: In this case a function is not achieved at all, or the quality of the

function is far beyond what is considered as acceptable.

• Partial loss of function: This group may be very wide, and may range from the nuisance

category almost to the total loss of function.

• Erroneous function: This means that the item performs an action that was not intended,

often the opposite of the intended function.

The system failure modes (functional failures) may be recorded on a specially designed FFA-

form, that is rather similar to a standard FMECA form. Figure 14.2 shows an example of an FFA

form.



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 170

System: Traction system  Performed by: Jørn Vatn 

Ref. drawing no.:#123  Date:  2023-10-18           Page: 1 of: 9 

Opera-

tional 

mode 

Function Function 

requirements 

Functional 

failure 

Frequency Criticality 

S E A C 

Running Convert 

rider force 

to rotation 

of wheel 

Possibility to have 

different exchange, 

i.e., use of gears 

No torque 

on back 

wheel 

LL - - H M 

   Cannot 

change 

gear 

L - - M L 

 

 Figure 14.2: Part of the FFA form for the bike example

In the first column of Figure 14.2 the various operational modes of the system are recorded.

For each operational mode, all the relevant functions of the system are recorded in column 2.

The performance requirements to the functions, like target values and acceptable deviations

are listed in column 3. For each system function (in column 2) all the relevant system failure

modes are listed in column 4. In column 5 a criticality ranking of each system failure mode

(functional failure) in that particular operational mode is given. The reason for including the

criticality ranking is to be able to limit the extent of the further analysis by disregarding insignif-

icant system failure modes. For complex systems such a screening is often very important in

order not to waste time and money.

The criticality ranking depends on both the frequency/probability of the occurrence of the

system failure mode, and the severity of the failure. The severity must be judged at the plant

level.

The severity ranking should be given in the four consequence classes; (S) safety of personnel,

(E) environmental impact, (A) production availability, and (C) economic losses. For each of

these consequence classes the severity should be ranked as for example (H) high, (M) medium,

or (L) low. How we should define the borderlines between these classes, will depend on the

specific application.

If at least one of the four entries are (M) medium or (H) high, the severity of the system

failure mode should be classified as significant, and the system failure mode should be subject

to further analysis.

The frequency of the system failure mode may also be classified in the same three classes.

(H) high may for example be defined as more than once per 5 years, and (L) low less than once

per 50 years. As above the specific borderlines will depend on the application. The frequency

classes may be used to prioritise between the significant system failure modes.



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 171

If all the four severity entries of a system failure mode are (L) low, and the frequency is also

(L) low, the criticality is classified as insignificant, and the system failure mode is disregarded

in the further analysis. If, however, the frequency is (M) medium or (H) high the system failure

mode should be included in the further analysis even if all the severity ranks are (L) low, but with

a lower priority than the significant system failure modes.

Step 4: Critical item selection

The objective of this step is to identify the analysis items that are potentially critical with respect

to the system failure modes (functional failures) identified in Step 3(iii). These analysis items

are denoted functional significant items (FSI). Note that some of the less critical system failure

modes have been disregarded at this stage of the analysis. Further, the two failure modes “total

loss of function” and “partial loss of function” will often be affected by the same items (FSIs).

For simple systems the FSIs may be identified without any formal analysis. In many cases it is

obvious which analysis items that have influence on the system functions. For complex systems

with an ample degree of redundancy or with buffers, we may need a formal approach to identify

the functional significant items. If failure rates and other necessary input data are available for

the various analysis items, it is usually a straightforward task to calculate the relative importance

of the various analysis items based on a fault tree model or a reliability block diagram. A number

of importance metrics are discussed in Appendix D.

The main reason for performing this task is to screen out items that are more or less irrele-

vant for the main system functions, i.e., in order not to waste time and money analysing irrele-

vant items.

In addition to the FSIs, we should also identify items with high failure rate, high repair costs,

low maintainability, long lead time for spare parts, or items requiring external maintenance per-

sonnel. These analysis items are denoted maintenance cost significant items (MCSI). The sum

of the functional significant items and the maintenance cost significant items are denoted main-

tenance significant items (MSI).

In some cases it may be beneficial to focus on critical items, in other cases we should analyse

all items.

In the RCM project for the Norwegian Railway Administration the use of generic RCM anal-

yses made it possible to analyse all identified MSIs. Thus this step tend to be less critical if a

generic approach is taken.

In the FMECA analysis of Step 6, each of the MSIs will be analysed to identify their possible

impact upon failure on the four consequence classes: (S) safety of personnel, (E) environmental

impact, (A) production availability (punctuality), and (C) economic losses. This analysis is partly

inductive and will focus on both local and system level effects.



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 172

Step 5: Data collection and analysis

The purpose of this step is to establish a basis for both the qualitative analysis (relevant failure

modes and failure causes), and the quantitative analysis (reliability parameters such as MTTF,

PF intervals and so on).

Step 6: Failure modes, effects and criticality analysis

The objective of this step is to identify the dominant failure modes of the MSIs identified during

Step 4. The FMECA methodology is discussed in Appendix C.

Step 7: Selection of Maintenance Actions

This phase is the most novel compared to other maintenance planning techniques. A decision

logic is used to guide the analyst through a question-and-answer process. The input to the RCM

decision logic is the dominant failure modes from the FMECA in Step 6. The main idea is for

each dominant failure mode to decide whether a preventive maintenance task is suitable, or

it will be best to let the item deliberately run to failure and afterwards carry out a corrective

maintenance task. There are generally three reasons for doing a preventive maintenance task:

1. to prevent a failure

2. to detect the onset of a failure

3. to discover a hidden failure

Only the dominant failure modes are subjected to preventive maintenance. To obtain appropri-

ate maintenance tasks, the failure causes or failure mechanisms should be considered. The idea

of performing a maintenance task is to prevent a failure mechanism to cause a failure. Hence,

the failure mechanisms behind each of the dominant failure modes should be entered into the

RCM decision logic to decide which of the following basic maintenance tasks that is applicable:

1. Continuous on-condition task (CCT)

2. Scheduled on-condition task (SCT)

3. Scheduled overhaul (SOH)

4. Scheduled replacement (SRP)

5. Scheduled function test (SFT)

6. Run to failure (RTF)
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Continuous on-condition task (CCT) is a continuous monitoring of an item to find any poten-

tial failures. An on-condition task is applicable only if it is possible to detect reduced failure

resistance for a specific failure mode from the measurement of some quantity.

Example:

A distance gauge on the turnout might be used to measure the distance between the switch

point and stock rail to detect that the 3mm limit will be reached. At a predefined level (i.e. 2.7

mm), the system alerts the maintenance crew, which carry out an appropriate maintenance ac-

tion. □

Scheduled on-condition task (SCT) is a scheduled inspection of an item at regular intervals

to find any potential failures. There are three criteria that must be met for an on-condition task

to be applicable:

1. It must be possible to detect reduced failure resistance for a specific failure mode.

2. It must be possible to define a potential failure condition that can be detected by an ex-

plicit task.

3. There must be a reasonable consistent age interval between the time of potential failure

and the time of failure.

Examples:

A manual inspection every second month will reveal whether the “3 mm limit” is soon being

reached. Appropriate maintenance action can be issued. Ultrasonic inspection of rails every

year to detect cracks in the rails. □

There are two disadvantage of a scheduled versus a continuous on-condition task:

• The man-hour cost of inspection is often larger than the cost of installing the sensor

• Since the scheduled inspection is carried out at fixed points of time, one might “miss”

situations where the degradation is faster than anticipated.

An advantage of a scheduled on-condition task is that the human operator is then able to “sense”

information that a physical sensor will not be able to detect. This means that traditional “Walk

around checks” should not be totally skipped even if sensors are installed.

Scheduled overhaul (SOH) is a scheduled overhaul of an item at or before some specified

age limit, and is often called “hard time maintenance”. An overhaul task can be considered

applicable to an item only if the following criteria are met (Nowlan Heap 1978):
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1. There must be an identifiable age at which the item shows a rapid increase in the item’s

failure rate function.

2. A large proportion of the units must survive to that age.

3. It must be possible to restore the original failure resistance of the item by reworking it.

Examples:

Rehabilitation of wooden sleepers borings every three year. Lubrication of the char/slideplate

every three day. Cleaning every month. □

Scheduled replacement (SRP)is scheduled discard of an item (or one of its parts) at or before

some specified age limit. A scheduled replacement task is applicable only under the following

circumstances (Nowlan Heap 1978):

1. The item must be subject to a critical failure.

2. Test data must show that no failures are expected to occur below the specified life limit.

3. The item must be subject to a failure that has major economic (but not safety) conse-

quences.

4. There must be an identifiable age at which the item shows a rapid increase in the failure

rate function.

5. A large proportion of the units must survive to that age.

Example:

Replacement of the motor every one year The motor is then either overhauled to “a god as new”

condition, or replaced in the maintenance depot. □

Scheduled function test (SFT)is a scheduled inspection of a hidden function to identify any

failure. A scheduled function test task is applicable to an item under the following conditions

(Nowlan Heap 1978):

1. The item must be subject to a functional failure that is not evident to the operating crew

during the performance of normal duties.

2. The item must be one for which no other type of task is applicable and effective.



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 175

Does a failure alerting

measurable indicator

exist?

Is aging parameter

>1?

Is the function

hidden?

Is overhaul

feasible?

Scheduled overhaul

(SOH)

Scheduled 

replacement

(SRP)

Scheduled function

test (SFT)

No

Yes

Yes

Yes

No

No

No

No PM activity

found (RTF)

Yes Is continuous

monitoring

feasible?

Yes

No

Scheduled on-

condition

task (SCT)

Scheduled on-

condition

task (SCT)

Continuous on-

condition

task (CCT)

Figure 14.3: Maintenance Task Assignment/Decision logic

Example:

Sighting or hammer blow every year to detect loose lockspikes fastening chars/baseplates on

wooden sleepers. □

Run to failure (RTF)is a deliberate decision to run to failure because the other tasks are not

possible or the economics are less favourable. In many situations one maintenance task may

prevent several failure mechanisms. Hence in some situations it is better to put failure modes

rather than failure mechanisms into the RCM decision logic.

Note also that if a failure cause for a dominant failure mode corresponds to a supporting

equipment, the supporting equipment should be defined as the “item” to be entered into the

RCM decision logic.

The criteria given for using the various tasks should only be considered as guidelines for

selecting an appropriate task. A task might be found appropriate even if some of the criteria are

not fulfilled.

Figure 14.3 shows the RCM decision logic. Note that this logic is much simpler than those

found in standard RCM references, e.g., Moubray (1991). It should be emphasized that such

a logic can never cover all situations. For example in the situation of a hidden function with

ageing failures, a combination of scheduled replacements and function tests is required.



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 176

1.8 Step 8: Determination of Maintenance Intervals

Usually formalised methods for optimisation of maintenance interval is not a part of the RCM

analysis. In order to optimise maintenance intervals we need to structure the analysis in such

a way that it fits into the maintenance optimisation models that exists. See Chapter 11 for a

discussion of determination of maintenance intervals using optimisation models.

Step 9: Preventive maintenance comparison analysis

Two overriding criteria for selecting maintenance tasks are used in RCM. Each task selected

must meet two requirements:

• It must be applicable

• It must be effective

Applicability: meaning that the task is applicable in relation to our reliability knowledge and

in relation to the consequences of failure. If a task is found based on the preceding analysis, it

should satisfy the Applicability criterion.

A PM task will be applicable if it can eliminate a failure, or at least reduce the probability of

occurrence to an acceptable level - or reduce the impact of failures!

Cost-effectiveness: meaning that the task does not cost more than the failure(s) it is going to

prevent. The PM task’s effectiveness is a measure of how well it accomplishes that purpose and

if it is worth doing. Clearly, when evaluating the effectiveness of a task, we are balancing the

“cost” of “performing the maintenance with the cost of not performing it. In this context, we

may refer to the cost as follows:

1. The “cost” of a PM task may include:

• the risk of maintenance personnel error, e.g. “maintenance introduced failures”

• the risk of increasing the effect of a failure of another component while the one is out

of service

• the use and cost of physical resources

• the unavailability of physical resources elsewhere while in use on this task

• production unavailability during maintenance

• unavailability of protective functions during maintenance of these

• “The more maintenance you do the more risk you will expose your maintenance per-

sonnel to”

2. On the other hand, the “cost” of a failure may include:
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• the consequences of the failure should it occur (i.e., loss of production, possible vi-

olation of laws or regulations, reduction in plant or personnel safety, or damage to

other equipment)

• the consequences of not performing the PM task even if a failure does not occur (i.e.,

loss of warranty)

• increased premiums for emergency repairs (such as overtime, expediting costs, or

high replacement power cost).

Step 10: Treatment of non-MSIs

In Step 4 critical items (MSIs) were selected for further analysis. A remaining question is what

to do with the items which are not analysed. For plants already having a maintenance program

it is reasonable to continue this program for the non-MSIs. If a maintenance program is not in

effect, maintenance should be carried out according to vendor specifications if they exist, else

no maintenance should be performed.

Step 11: Implementation

A necessary basis for implementing the result of the RCM analysis is that the organizational

and technical maintenance support functions are available. A major issue is therefore to ensure

the availability of the maintenance support functions. The maintenance actions are typically

grouped into maintenance packages, each package describing what to do, and when to do it.

Many accidents are related to maintenance work. When implementing a maintenance pro-

gram it is therefore of vital importance to consider the risk associated with the execution of the

maintenance work. Checklists could be used to identify potential risk involved with mainte-

nance work:

• Can maintenance people be injured during the maintenance work?

• Is work permit required for execution of the maintenance work?

• Are means taken to avoid problems related to re-routing, by-passing etc.?

• Can failures be introduced during maintenance work?

Task analysis, see e.g., Kirwan and Ainsworth (1997), may be used to reveal the risk involved

with each maintenance job.
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Step 12: In-service data collection and updating

As mentioned earlier, the reliability data we have access to at the outset of the analysis may be

scarce, or even second to none. In our opinion, one of the most significant advantages of RCM

is that we systematically analyze and document the basis for our initial decisions, and, hence,

can better utilize operating experience to adjust that decision as operating experience data is

collected. The full benefit of RCM is therefore only achieved when operation and maintenance

experience is fed back into the analysis process.

The process of updating the analysis results is also important due to the fact that nothing

remain constant, best seen considering the following arguments:

• The system analysis process is not perfect and requires periodic adjustments.

• The plant itself is not a constant since design, equipment and operating procedures may

change over time.

• Knowledge grows, both in terms of understanding how the plant equipment behaves and

how technology can increase availability and reduce costs.

Reliability trends are often measured in terms of a non-constant ROCOF (rate of occurrence of

failures). The ROCOF measures the probability of failure as a function of calendar time, or global

time since the plant was put into operation. The ROCOF may change over time, but within one

cycle the ROCOF is assumed to be constant. This means that analysis updates should be so

frequent that the ROCOF is fairly constant within one period. Opposite to the ROCOF, the failure

rate fimctopm is measuring the probability of failure as a function of local time, i.e., the time

elapsed since last repair/replacement. However, the failure rate function can not be considered

constant, if so there is no rationale for performing scheduled replacement/repair. The updating

process should be concentrated on three major time perspectives:

• Short term interval adjustments

• Medium term task evaluation

• Long term revision of the initial strategy

The short term update can be considered as a revision of previous analysis results. The input to

such an analysis is updated reliability figures either due to more data, or updated data because

of reliability trends. This analysis should not require much resources, as the framework for the

analysis is already established. Only Step 5 and Step 8 in the RCM process will be affected by

short term updates.
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The medium term update will also review the basis for the selection of maintenance actions

in Step 7. Analysis of maintenance experience may identify significant failure causes not consid-

ered in the initial analysis, requiring an updated FMECA analysis in Step 6. The medium term

update therefore affects Step 5 to 8.

The long term revision will consider all steps in the analysis. It is not sufficient to consider

only the system being analysed, it is required to consider the entire plant with it’s relations to the

outside world, e.g., contractual considerations, new laws regulating environmental protection

etc.

Generic and local RCM analysis

In principle, the RCM analysis should be conducted for physical units in an explicit operational

context. This means that we for example conduct an RCM analysis for a given turnout at loca-

tion X at line Y. For this turnout we identify all functions, failure modes etc. Then we propose

a set of maintenance tasks, and finally chose the maintenance intervals based on the reliabil-

ity performance parameters for that turnout, and the personnel and punctuality risk for that

turnout. Now, there might be several hundreds of similar turnouts, but where both the reliability

performance and the risk profile might vary, which again should ask for different maintenance

intervals. The question is whether we need to repeat the entire RCM analysis for all the (similar)

turnouts? The proposed answer to this question is to first conduct a generic RCM analysis, and

then perform local adjustment to risk parameters. The following steps would then be required:

1. Conduct a generic RCM analysis for selected components. In this analysis we use generic, or

average values of reliability parameters, and consequences parameters describing safety,

punctuality, availability, environmental risk.

2. Generic RCM database. The results from the generic RCM analysis is stored in a generic

RCM database, i.e., generic analyses for selected equipment types. These types could be

e.g. a turnout, a main signal, traction system, break system etc. In the first place we might

restrict ourselves to consider a broad class of e.g., turnouts (different manufactures). In

a later phase we might want to refine our analysis to also consider qualitative different

turnouts (with different failure modes).

3. Selection of local analysis objects. In the local analysis we work with a subset of the railway

system. This could be for example one specific line, turnouts in the main track of one

specific line, one specific train set, one specific train set operating on one specific line etc.

4. Find an appropriate generic RCM template. For a local analysis object, we now recall

the corresponding generic RCM analysis from the RCM database. We first verify that the
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generic RCM analysis object (template) is appropriate in terms of qualitative properties,

i.e. the different functions, failure modes etc that are considered. At this point it might be

necessary to add more failure modes, regard some failure modes etc. If this is the case, we

add the “new” RCM object to the generic RCM database in order to make the generic RCM

database more and more comprehensive.

5. Adjust parameters. At the local level we identify differences from the generic parame-

ters used in the generic RCM database. For example a specific line might have very old

turnouts, and hence the MTTF is shorter than the average MTTF. At this step of the proce-

dure we have to consider all parameters that are involved in the optimisation model.

6. Re-run the optimisation procedure. Based on the new “local” parameters we will re-run

the optimisation procedure to adjust maintenance intervals taking local differences into

account. To carry out this process we need a computerised tool to streamline the work.

7. Document the results. The results from the local analysis is stored in a local RCM database.

This is a database where only the adjustment factors are documented, for example for

turnouts A, B, C and D on line Y the MTTF is 30% higher than the average. Hence the

maintenance interval is also reduced accordingly.

14.2 Risk based inspection

Risk based inspection (RBI) is an approach to establish an inspection strategy for a plant. The

methodology is in many aspects similar to the RCM approach. Some main differences between

RCM and RBI are:

• RCM is a general method that could be applied a wide range of applications, whereas RBI

is a tailor-made method which only applies typically for structural elements where the

degradation could be measured, i.e. by means of inspection.

• RBI manuals usually cover a wide range of inspection methods and a discussion of the

applicability of the various methods in different situations.

• The RBI method is much more integrated with the risk management system than usually

is the case for RCM. This means that the safety implication of failures are more explicitly

treated, and risk is often quantified on a detailed level, and compared with the overall risk

acceptance criteria for the plant.

DNV-RP-G101 (2021) is a reference to RBI for mehanical equipment. Wintle et al. (2001) propose

the following steps in a process diagram for plant integrity management by RBI:



CHAPTER 14. RELIABILTY CENTRED MAINTENANCE 181

1. Assess the requirements for integrity management and risk based inspection

2. Define the systems, the boundaries of systems, and the equipment requiring integrity

management

3. Specify the integrity management team and responsibilities

4. Assemble plant database

5. Analyse accident scenarios, deterioration mechanisms, and assess and rank risks and un-

certainties

6. Develop inspection plan within integrity management strategy

7. Achieve effective and reliable examination and results

8. Assess examination results and fitness-for-service

9a. Update plant database and risk analysis, review inspection plan and set maximum inter-

vals to next examination

9b. Repair, modify, change operating conditions

10 Audit and review integrity management process



Appendix A

Acronyms and Greek letters

A.1 Acronyms

AI Artificial intelligence

ANN Artificial neural networks

ARP Age replacement policy

BIM Buildiing information management systems

BRP Block replacement policy

CCT Continuous on-condition task

CDF Cumulative distribution function

CM Corrective maintenance

CMMS Computerized maintenance management system

CMS Condition monitoring system

DT Digital twin

EBO Expected backorder

ETA Event tree analysis

FFA Functional failure analysis

FMECA Failure mode, effect and criticality analysis

FRACAS Failure reporting, analysis, and corrective action system

182



APPENDIX A. ACRONYMS AND GREEK LETTERS 183

FTA Fault tree analysis

HPP Homogeneous Poison process

LCC Life cycle cost

LCP Life cycle profit

LS Least squares

LT Lead time

MDT Mean down time

ML Machine learning

MLD Mean logistic delay

MLE Maximum likelihood estimation

MOCUS Method of obtaining cut sets

MRT Mean active repair time

MSI Maintenance significant item

MTBR Mean time between renewals

MTTF Mean time to failure

NHPP Non-homogeneous Poison process

NPV Net present value

PDF Probability density function

PFD Probability of failure on demand

PM Preventive maintenance

RAMS Reliability, availability, maintainability, and safety

RBD Reliability block diagram

RCM Reliability centred maintenance

RP Renewal process
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RTF Run to failure

RUL Remaining useful lifetime

SADT Structured analysis and design technique

SCADA Supervisory control and data acquisition systems

SCT Scheduled on-condition task

SD Standard deviation

SFT Scheduled function test

SOH Scheduled overhaul

SRP Scheduled replacement

SVM Support vector machines

TTT Total time on test

VBA Visual basic for applications, i.e., programming language in Excel

A.2 Greek letters
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Table A.1: Greek letters and interpretation

Letter Name Explanation
α alpha Ageing parameter, and wake decay factor in offshore wind
β beta Used for common cause factor and regression parameter vector
λ lambda Failure rate in the exponential distribution,

intensity parameter in the Weibull distribution,
and effective failure rate as function of maintenance interval

τ tau Maintenance interval
φ phi Structure function
∆ Delta Used together with t to express a small time interval, i.e., ∆t
µ mu Used for repair rate, and mean drift in the Wiener process
σ sigma Volatility in the Wiener process
Γ Gamma Gamma function
γ gamma Yaw angle in offshore wind
θ theta Used for the parameter vector in estimation
Φ Phi Used for CDF in the standard normal distribution



Appendix B

Probability theory

B.1 Basic probability notation

In this chapter basic elements of probability theory are reviewed. Readers familiar with proba-

bility theory can skip this chapter. Readers which are very unfamiliar with this topic are advised

to read an introductory textbook in probability theory.

B.1.1 Event

In order to define probability, we need to work with events. Let as an example A be the event

that there is an operator error in a control room. This is written:

A = {operator error}

An event may occur, or not. We do not know the outcome in advance prior to the experiment

or a situation in the “real life”. We also use the word event to denote a set of distinct events. For

example the event that we get an even number when throwing a die.

B.1.2 Probability

When events are defined, the probability that the event occurs is of interest. Probability is de-

noted by Pr(·), i.e.,

Pr(A) = Probability that A occur

The numeric value of Pr(A) may be found by:

• Studying the sample space.

186
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• Analysing collected data.

• Look up the value in data hand books.

• “Expert judgement” Øien et al. (1998).

The sample space defines all possible events. As an example let A = {It is Sunday}, B = {It is

Monday}, .. , G = {It is Saturday}. The sample space is then given by S = {A,B ,C ,D,E ,F,G}.

So-called Venn diagrams are useful when we want to analyse a subset of the sample space

S. A rectangle represents the entire sample space, and closed curves such as a circle are used

to represent subsets of the sample space as illustrated in Figure B.1. In the following we will

Figure B.1: Venn diagram

illustrate frequently used combinations of events:

Union. We write A ∪B to denote the union of A and B , i.e., the occurrence of A or B or (A and

B). Let A be the event that tossing a die results in a “six”, and B be the event that we get an odd

number of eyes. We then have A∪B = {1,3,5,6}.

Intersection. We write A ∩B to denote the intersection of A and B , i.e. the occurrence of both

A and B . As an example, let A be the event that a project is not completed in due time, and let

B be the event that the budget limits are exceeded. A ∩B then represent the situation that the

project is not completed in due time and the budget limits are exceeded.

Disjoint events. A and B are said to be disjoint if they can not occur simultaneously, i.e. A∩B =

Ø = the empty set. Let A be the event that tossing a die results in a “six”, and B be the event that

we get an odd number of eyes. A and B are disjoint since they cannot occur simultaneously, and

we have A∩B = Ø.

Complementary events. The complement of an event A is all events in the sample space S

except for A. The complement of an event is denoted by AC . Let A be the event that tossing a

die results in an odd number of eyes. AC is then the event that we get an even number of eyes.
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B.1.3 Probability and Kolmogorov’s axioms

Probability is a set function Pr() which maps events A1, A2,... in the sample space S to real

numbers. The function Pr(·) can only take values in the interval from 0 to 1, i.e. probabilities are

greater or equal than 0, and less or equal than 1. Kolmogorov established the following axioms

Figure B.2: Mapping of events on the interval [0,1]

which all probability rules could be derived from:

1. 0 ≤ Pr(A)

2. Pr(S) = 1

3. If A1, A2, A3,... is a sequence of disjoint events we shall then have:

Pr(A1 ∪ A2 ∪ . . .) = Pr(A1)+Pr(A2)+ . . .

The axioms are the basis for establishing calculation rules when dealing with probabilities, but

they do not help us in establishing numerical values for the basic probabilities Pr(A1), Pr(A2),

etc. Historically two lines of thoughts have been established, the classical (frequentiest) and the

Bayesian approach. In the classical thinking we introduce the concept of a random experiment,

where Pr(Ai ) is the relative frequency with which the event Ai occurs. The probability could

then be interpreted as a property of the experiment, or a property of the world. By letting na-

ture reveal itself by doing experiments, we could in principle establish all probabilities that are

of interest. Within the Bayesian framework probabilities are interpreted as subjective believe

about whether Ai will occur or not. Probabilities is then not a property of the world, but rather

a measure of the knowledge and understanding we have about a phenomenon.

Before we set up the basic rules for probability theory that we will need, we introduce the

concepts of conditional probability and independent events.

Conditional probability. Pr(A|B) denotes the conditional probability that A will occur given

that B has occurred.
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Independent events. A and B are said to be independent if information about whether B has

occurred does not influence the probability that A will occur, i.e., Pr(A|B) = Pr(A).

Basic rules for probability. The following calculation rules for probability apply:

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) (B.1)

Pr(A∩B) = Pr(A) ·Pr(B) if A and B are independent (B.2)

Pr(AC ) = Pr(A does not occur) = 1−Pr(A) (B.3)

Pr(A|B) = Pr(A∩B)

Pr(B)
(B.4)

Example

Let the two events A and B be defined by A = {It is Sunday} and B = {It is between 6 and 8 pm).

First we note that A and B are independent but not disjoint. We will find Pr(A∩B), Pr(A∪B)

and Pr(A|B)

Pr(A∩B) = Pr(A) ·Pr(B) = 1

7
· 2

24
= 1

84

Pr(A∪B) = Pr(A)+Pr(B)−Pr(A∩B) = 1

7
+ 2

24
− 1

84
= 9

42

Pr(A|B) = Pr(A∩B)

Pr(B)
= 1/84

2/24
= 1

7

□

B.1.4 The law of total probability

In many situations it is easier to assess the probability of an event B conditionally on some other

events, say A1, A2, . . ., Ar , than unconditionally. The law of total probability could then be used

to assess the unconditional probability. Now, we say that A1, A2, . . ., Ar is a division of the sample

space if the union of all Ai ’s covers the entire sample space, i.e. A1∪ A2∪ . . . ∪ Ar = S and the Ai ’s

are pair wise disjoint, i.e. Ai∩ A j = Ø for i ̸= j . An example is shown in Figure B.3.

Let A1, A2, . . ., Ar represent a division of the sample space S, and let B be an arbitrary event in S.

The law of total probability now states:

Pr(B) =
r∑

i=1
Pr(Ai ) ·Pr(B |Ai ) (B.5)

Example

A special component type is ordered from two suppliers A1 and A2. Experience has shown that
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Figure B.3: Divition of the sample space

components from supplier A1 has a defect probability of 1%, whereas components from sup-

plier A2 has a defect probability of 2%. In average 70% of the components are provided by sup-

plier A1. Assume that all components are put on a common stock, and we are not able to trace

the supplier for a component in the stock. A component is now fetched from the stock, and we

will calculate the defect probability, Pr(B):

Pr(B) =
r∑

i=1
Pr(Ai ) ·Pr(B |Ai ) = Pr(A1) ·Pr(B |A1)+Pr(A2) ·Pr(B |A2) =

0.7 ·0.01+0.3 ·0.02 = 1.3%

□

B.1.5 Bayes theorem

Now consider the example above, and assume that we have got a defect component from the

stock (event B). We will derive the probability that the component originates from supplier A1.

We then use Bayes formula that states if A1, A2, . . ., Ar represent a division of the sample space,

and B is an arbitrary event then:

Pr(A j |B) = Pr(B |A j ) ·Pr(A j )
r∑

i=1
Pr(Ai ) ·Pr(B |Ai )

(B.6)

Example

We have

Pr(A1|B) = Pr(B |A1) ·Pr(A1)
r∑

i=1
Pr(Ai ) ·Pr(B |Ai )

= 0.01 ·0.7

0.013
= 0.54
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Thus, the probability of A1 is reduced from 0.7 to 0.54 when we know that the component is

defect. The reason for this is that components from supplier A1 are the best ones, and hence

when we know that the component was defect, it is less likely that it was from supplier A1. □

B.1.6 Stochastic variables

Stochastic variables are used to describe quantities which can not be predicted exactly. Note

that the term ‘random quantity’ is often used to denote a stochastic variable.

X is stochastic ⇔ Cannot say precisely the value X has or will take

To be more precise, a stochastic variable X is a real valued function that assigns a quantitative

measure to each event ei in the sample space S, i.e., X = X (ei ). Often the underlying events,

ei are of little interest. We are only interested in the stochastic variable X measured by some

means.

Examples of stochastic variables are given below:

• X = Life time of a component (continuous)

• R = Repair time after a failure (continuous)

• T = Duration of a construction project (continuous)

• C = Total cost of a renewal project (continuous)

• M = Number of delayed trains next month (discrete)

• N = Number of customers arriving today (discrete)

• S = Service time for the first customer arriving today (continuous)

• W = Maintenance and operational cost next year (continuous)

Remark: We distinguish between continuous and discrete stochastic variables. Continuous

stochastic variables can take any value among the real numbers, whereas discrete variables can

take only a finite (or countable finite) number of values. □

Cumulative distribution function (CDF). A stochastic variable X is characterized by it’s cumu-

lative distribution function:

FX (x) = Pr(X ≤ x) (B.7)
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We use subscript X to emphasise the relation to the cumulative distribution function of the

quantity X . The argument (lowercase x) states which values the stochastic variable X could

take, or is of our interest. From the expression we observe that FX (x) states the probability that

the random quantity X is less or equal than (the numeric value of) x. A typical distribution

function is shown in Figure B.4. Note that the distribution function is strictly increasing, and

0 ≤ FX (x) ≤ 1. From FX (x) we can obtain the probability that X will be within a specified interval,

[a,b):

Pr(a < X ≤ b) = FX (b)−FX (a) (B.8)

Figure B.4: Cumulative distribution function, FX (x)

Note that the index X representing the stochastic variable X often is dropped if it is obvious

which stochastic variable we are working with. Note also the distinction between lowercase and

uppercase letters. The uppercase X is used to denote a stochastic variable, for example number

of customers arriving next day. The lowercase x is just a representation of possible values X can

take. For example X = 3.

Example

Assume that the probability distribution function of X is given by FX (x) = 1− e−(0.01x)2
, and we

will find the probability that X is in the interval (100,200]. From Equation (B.8) we have:

Pr(100 < X ≤ 200) = FX (200)−FX (100) =[
1−e−(0.01·200)2

]
−

[
1−e−(0.01·100)2

]
= e−1 −e−4 ≈ 0.35

□

Probability density function (PDF). For a continuous stochastic variable, the probability den-
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sity function is given by

fX (x) = d

d x
FX (x) (B.9)

The probability density function expresses how likely the various x-values are.

Figure B.5: Probability density function, fX (x)

Note that for continuous random variables the probability that X will take a specific value van-

ishes. However, the probability that X will fall into a small interval around a specific value is

positive. For each x-value given in Figure B.5 fX (x) could be interpreted as the probability that

X will fall within a small interval around x divided by the length of this interval. Especially we

have:

FX (x) =
x∫

−∞
fX (u)du (B.10)

and

Pr(a < X ≤ b) =
b∫

a

fX (x)d x (B.11)

The last expression is illustrated in Figure B.6.

Figure B.6: The shadded area equals Pr(a < X ≤ b)

Random quantities that take discrete values are said to be discretely distributed. For such
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quantities we introduce the point probability for X in the point x j :

p(x j ) = Pr(X = x j ) (B.12)

where x1, x2, . . . are possible values X could take.

Expectation. The expectation (mean) of X is given by

E[X ] =


∞∫

−∞
x · fX (x)d x if X is continuous∑

j
x j ·p(x j ) if X is discrete

(B.13)

The expectation can be interpreted as the long time run average of X , if an infinite amount of

observations are available.

Median. The median of a distribution is the value m0 of the stochastic variable X such that

Pr(X ≤ m0) ≥ 1/2 and Pr(X ≥ m0) ≥ 1/2. In other words, the probability at or below m0 is at least

1/2, and the probability at or above m0 is at least 1/2.

Mode. The mode of a distribution is the value M of the stochastic variable X such that the

probability density function, or point probability at M is higher or equal than for any other value

of the stochastic variable. We sometimes used the term ‘most likely value’ rather than mode.

Variance. The variance of a random quantity expresses the variation in the value X will take in

the long run. We denote the variance of X by:

Var(X ) =


∞∫

−∞
(x −E[X ])2 · fX (x)d x if X is continuous∑

j

(
(x j −E[X ]

)2 ·p(x j ) if X is discrete
(B.14)

Standard deviation. The standard deviation of X is given by

SD(X ) =+
√

Var(X ) (B.15)

The standard deviation defines an interval which observations are likely to fall into, i.e., if 100

observations are available, we expect that approximate1 67 of these observations fall in the in-

terval [E[X ]−SD(X ),E[X ]+SD(X )].

1This result is valid for the normal distribution. For other distributions there may be deviation from this result.
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Precision. The precision, P , is the reciprocate of the variance, i.e. P = 1
Var(X ) .

α-percentiles. The upper α-percentile, xα, in a distribution FX (x) is the value satisfying α =
Pr(X > xα) = 1−FX (xα).

We end this section by giving some results regarding expectation and variances. These re-

sults apply when it is easier to express the expectation and variance of one variable if we condi-

tion on the value of another variable.

Result

Double expectation

Let X and Y be stochastic variables. We then have:

E[X ] = E[E[X Y ]] (B.16)

Var(X ) = E[Var(X Y )]+Var(E[X Y ]) (B.17)

□

It follows easily that

E[X ] = E[X B ]Pr(B)+E
[

X BC ]
Pr(BC ) (B.18)

Var(X ) = Var(X |B)Pr(B)+Var(X |BC )Pr(BC )

+ (E[X |B ]−E[X ])2 Pr(B)+ (
E

[
X |BC ]−E[X ]

)2
Pr(BC ) (B.19)

B.2 Common probability distributions

In this section we will present some common probability distributions. We write X ∼ <Name

of distribution>(<parameters>) to express that X belongs to <Name of distribution>, and with

parameters <parameters>. Sometimes we also use an abbreviation for the distribution, for ex-

ample we write X ∼ N (3,4) to express that X is normally distributed with expectation 3 and

variance 4.
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B.2.1 The normal distribution

X is said to be normally distributed if the probability density function of X is given by:

fX (x) = 1p
2π

1

σ
e− (x−µ)2

2σ2 (B.20)

where µ and σ are parameters that characterise the distribution. The mean and variance are

given by:

E[X ] =µ
Var(X ) =σ2 (B.21)

The distribution function for X could not be written on closed from. Numerical methods are

required to find FX (x). It is convenient to introduce a standardised normal distribution for this

purpose. We say that U is standard normally distributed if it’s probability density function is

given by:

fU (u) =φ(u) = 1p
2π

e− u2

2 (B.22)

We then have

FU (u) =Φ(u) =
u∫

−∞
φ(t )dt =

u∫
−∞

1p
2π

e− t2

2 dt (B.23)

and we observe that the distribution function of U does not contain any parameters. We there-

fore only need one look-up table or function representingΦ(u). A look-up table is given in Table

B.1. To calculate probabilities in the non-standardised normal distribution we use the following

result:

Result

If X is normally distributed with parameters µ and σ, then

U = X −µ
σ

(B.24)

is standard normally distributed. □

In many situations we are interested in calculating the “truncated expectation”
∫ a
−∞ x f (x)d x.

For the normal distribution the following result may be used:
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Result

Let X be normally distributed with parameters µ and σ. We then have:

Result

∫ a

−∞
x f (x)d x =µΦ

(a −µ
σ

)
−σφ

(a −µ
σ

)
(B.25)

whereΦ() and φ() are the CDF and PDF for the standard normal distribution respectively. □

To prove Equation (B.25) first introduce u = (x −µ)/σ yielding
∫ a
−∞ x f (x)d x = ∫ (a−µ)/σ

−∞ (σu −
µ)φ(u)du. The µφ(u) part of the integral is directly found by the Φ() function whereas for the

σuφ(u) part introduce z =−u2/2 yielding −σ/
p

2π
∫ (a−µ)2/2σ2

−∞ e−zd z. The result then follows.

Example Calculation in the normal distribution

Let X be normally distributed with parameters µ = 5 and σ = 3. We will find Pr(3 < X ≤ 6). We

have:

Pr(3 < X ≤ 6) = Pr(
3−µ
σ

< X −µ
σ

≤ 6−µ
σ

) = Pr(
3−5

3
<U ≤ 6−5

3
)

=Φ
(

1

3

)
−Φ

(−2

3

)
=Φ(0.33)− (1−Φ(0.67)) = 0.629−1+0.749 = 0.378

□

Problem

Consider the example in Example B.2.1, and carry out the calculations. □

Problem

Let X be the height of men in a population, and assume X is normally distributed with param-

eters µ = 181 and σ = 4. How large percentage of the population is more than 190 cm? □

B.2.2 The exponential distribution

X is said to be exponentially distributed if the probability density function of X is given by:

fX (x) =λe−λx (B.26)
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The cumulative distribution function is given by:

FX (x) = 1−e−λx (B.27)

and the mean and variance are given by:

E[X ] = 1/λ

Var(X ) = 1/λ2 (B.28)

Note that for the exponential distribution, X will always be greater than 0. The parameter λ

is often denoted the intensity in the distribution Example

We will obtain the probability that X is greater than it’s expected value. We then have:

Pr(X > E[X ]) = 1−Pr(X ≤ E[X ]) = 1−FX (E[X ]) = e−λE[X ] = e−1 ≈ 0.37

□

B.2.3 The Weibull distribution

X is said to be Weibull distributed if the probability density function of X is given by:

fX (x) =αλ(λx)α−1e−(λx)α (B.29)

The cumulative distribution function is given by:

FX (x) = 1−e−(λx)α (B.30)

and the mean and variance are given by:

E[X ] = 1

λ
Γ

(
1

α
+1

)
Var(X ) = 1

λ2

[
Γ

(
2

α
+1

)
−Γ2

(
1

α
+1

)]
(B.31)

where Γ(·) is the gamma function. Note that in the Weibull distribution X will always be positive.

The Weibull distribution is often used as a distribution for time to failure of components,

partly because it is rather simple, and flexible. For time to failure distributions we introduce the
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concept of the failure rate function. The failure rate function is given by:

z(t ) = f (t )

1−F (t )
(B.32)

here we use t for running time, and we skip the index for the name of the stochastic variable

when it is obvious from the context. It follows that the failure rate function for the Weibull dis-

tribution is given by:

z(t ) =αλαtα−1 (B.33)

B.2.4 The gamma distribution

X is said to be gamma distributed if the probability density function of X is given by:

fX (x) = λα

Γ(α)
(x)α−1e−λx (B.34)

α is denoted the intensity parameter whereas λ is denoted the intensity parameter. For integer

values of α the gamma distribution is often denoted the Erlang distribution. The cumulative

distribution function could then be found on closed form:

FX (x) = 1−
α−1∑
n=0

(λx)α

n!
e−(λx) (B.35)

For non-integer values of α numerical methods are required to obtain the cumulative distribu-

tion function. The mean and variance are given by:

E[X ] = α

λ

Var(X ) = α

λ2
(B.36)

If we know the expectation E and the variance V in the gamma distribution, we may obtain the

parameters α and λ by: λ = E/V , and α= λ ·E . The gamma distribution is often used as a prior

distribution in a Bayesian approach.

For integer values ofα the gamma distribution and in particular the Erlang distribution may

be seen as a distribution for a sum of exponentially distributed stochastic variables:

Result

Let Z1, Z2, . . . Zk be independent and exponentially distributed with parameter λ. The variable

X =∑k
i=1 Zi is then gamma distributed with shape parameter k and scale parameter λ. □
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B.2.5 The inverted gamma distribution

X is said to be inverted gamma distributed if the probability density function of X is given by:

fX (x) = λα

Γ(α)

(
1

x

)α+1

e−λ/x (B.37)

The mean and variance are given by:

E[X ] =λ/(α−1)

Var(X ) =λ2(α−1)−2(α−2)−1 (B.38)

Note that if X is gamma distributed with parameters α and λ, then Y = X −1 has an inverted

gamma distribution with parametersα and 1/λ. If we know the expectation, E and the variance,

V , of an inverted gamma distribution we could obtainα andλ byα= E 2/V +2, andλ= E ·(α−1).

B.2.6 The lognormal distribution

X is said to be lognormally distributed if the probability density function of X is given by:

eqStream: Lognormal Distribution

fX (x) = 1p
2π

1

τ

1

x
e− 1

2τ2 (log x−ν )2

(B.39)

We write X ∼ LN(v ,τ). The mean and variance of X is given by

E[X ] = eν+
1
2 τ

2

Var(X ) = e2ν(e2τ2 −eτ
2
) (B.40)

The following result could be utilised:

Result

If X is lognormally distributed with parameters ν and τ, then Y = ln X is normally distributed2

with expected value ν and variance τ2. □

2ln(·) is the natural logarithm function
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B.2.7 The binomial distribution

Before the binomial distribution is defined, binomial trials are defined. Let A be an event, and

assume that the following holds:

i) n trials are performed, and in each trial we record whether A occurrs or not.

ii) The trials are stochastic independent of each other.

iii) For each trial Pr(A) = p

When i)-iii) is satisfied, we say that we have binomial trials. Now let X be the number of times

event A occurs in such a binomial trial. X is then a stochastic variable with a binomial distribu-

tion. This is written X ∼ Bi n(n, p).

The probability function is given by

Pr(X = x) =
(

n

x

)
px(1−p )n−x for x = 0,1,2, ..,n (B.41)

The cumulative distribution function Pr(X ≤ x) is given in statistical tables. For the binomial

distribution, expectation and variance are given by:

E[X ] = np

Var(X ) = np(1−p) (B.42)

B.2.8 The Poisson distribution

The Poisson distribution is often appropriate in the situation where the stochastic variable may

take the values 0,1,2,. . ., and where the expected number of occurrences is proportional to an

exposure measure such as time or space. For the Poisson distribution we have the following

point distribution:

p(x) = Pr(X = x) = λx

x!
e−λ (B.43)

For the poison distribution, expectation and variance are given by:

E[X ] =λ
Var(X ) =λ (B.44)

It can be proved that the Poisson distribution is appropriate if the following situation applies:

Consider the occurrence of a certain event (e.g., a component failure) in an interval (a,b), and

assume the following:
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1. A could occur anywhere in (a,b), and the probability that A occurs in (t , t +∆t ) is approx-

imately equal to λ∆t , and is independent of t (∆t should be small).

2. The probability that A occurs several times in (t , t +∆t ) is approximately 0 for small values

of ∆t .

3. Let I1og I2 be disjoint intervals in (a,b). The event A occurs within I1 is independent of if

the event A occurs in I2.

When the criteria above are fulfilled we say we have a Poisson point process with intensity λ. The

number of occurrences (X ) of A in (a,b) is then Poisson distributed with parameter λ(b −a):

p(x) = Pr(X = x) = [λ(b −a)]x

x!
e−λ(b−a) (B.45)

Result: Times between occurrence in the Poisson process

In a Poisson point process with parameter λ the times between the occurrence of the event A

are exponentially distributed with parameter λ. □

B.2.9 The inverse-Gauss distribution

The inverse-Gauss distribution is often used when we have an “under laying” deterioration pro-

cess. If this deterioration process follows a Wiener process with drift η and diffusion constant δ2,

the time3 T , until the first time the process reaches the valueωwill be Inverse-Gauss distributed

with parameters µ=ω/η, and λ = ω2/δ2.

If the failure progressionΩ(t ) follows a Wiener process it could be proven thatΩ(t ) -Ω(s) is

normally distributed with expected value η(t − s) and variance δ2(t - s). That is η is the average

growth rate in the process, whereas δ2 is an expression for the variation of the growth around

the average value.

For the inverse-Gauss distribution we have:

FT (t ) =Φ
√

λ

t

(
t

µ
−1

))+Φ
−

√
λ

t

(
t

µ
+1

)e2λ/µ (B.46)

and

E[T ] =µ (B.47)

Var(T ) =µ3/λ (B.48)
3We use the symbol T rather than the more general symbol X here since this modell is so explicitly linked to the

time.
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B.3 Distribution of sums, products and maximum values

B.3.1 Distribution of sums

If X1, X2,. . . ,Xn are random variables we might obtain the expected value, the variance and the

standard deviation of the sum of the x-es:

E[X1 +X2 + . . .+Xn] = E
[∑n

i=1 Xi
]=∑n

i=1 E[Xi ] (B.49)

Var(X1 +X2 + . . .+Xn) = Var
(∑n

i=1 Xi
)=∑n

i=1 Var(Xi ) (B.50)

SD
(∑n

i=1 Xi
)=√∑n

i=1 [SD(Xi )]2 (B.51)

Note that Equations (B.50) and (B.51) are only valid if the x-es are stochastically independent.

If there is dependency between the x-es we need to include a covariance term, e.g., if we only

have two variables X1 and X2 we have:

Var(X1 +X2) = Var(X1)+Var(X2)+2Cov(X1, X2) (B.52)

where Cov(X1, X2) is the covariance between X1 and X2.

The results above help us in determine the expectation and variance of a sum of stochastic

variables, but the results could not be used to establish the probability distribution of the sum.

In the following we refer some results we could utilise in many situations.

Result: Sum of normally distributed stochastic variables

Let X1, X2,. . . ,Xn be independent normally distributed. Let Y be the sum of the x-es, i.e. Y =∑n
i=1 Xi . Y is then normally distributed with E[Y ] =∑n

i=1 E[Xi ] and Var(Y ) =∑n
i=1 Var(Xi ). □

Result: Sum of exponentially distributed stochastic variables

Let X1, X2,. . . ,Xn independent exponentially distributed with parameter λ. Let Y be the sum of

the x-es, i.e. Y =∑n
i=1 Xi . Y is then gamma distributed with parameters n and λ. □
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Result: Sum of gamma distributed stochastic variables

Let X1, X2,. . . ,Xn independent gamma distributed with parameters α and λ. Let Y be the sum

of the x-es, i.e. Y =∑n
i=1 Xi . Y is then gamma distributed with parameters nα and λ. □

Result: Central limit theorem

Let X1, X2,. . . ,Xn be a sequence of identical independent distributed stochastic variables with

expected value µ and standard deviation σ. As n approaches infinity, the average value of the

x-es will asymptotically have a normal distribution with expected value µ and standard devia-

tion σ/
p

n. Similarly, the sum of the x-es will asymptotically have a normal distribution with

expected value nµ and standard deviation σ
p

n. □

Several generalizations for finite variance exist which do not require identical distribution

but incorporate some conditions which guarantee that none of the variables exert a much larger

influence than the others. Two such conditions are the Lindeberg condition and the Lyapunov

condition. Now, as n approaches infinity, the sum of the x-es will asymptotically have a normal

distribution with expected value
∑n

i=1 E[Xi ] and variance
∑n

i=1 Var(Xi ).

B.3.2 Distribution of a product

If X1, X2,. . . ,Xn are independent stochastic variables we might obtain the expected value, the

variance and the standard deviation of the product of the x-es:

E[X1 ·X2 · . . . ·Xn] = E

[
n∏

i=1
Xi

]
=

n∏
i=1

E[Xi ] (B.53)

The results for the variance and standard deviation is more complicated, and we only present

the results for n=2.

Var(X1X2) = Var(X1)Var(X2)+Var(X1) (E[X2])2 +Var(X2) (E[X1])2 (B.54)

SD(X1X2) =
√

Var(X1)Var(X2)+Var(X1) (E[X2])2 +Var(X2) (E[X1])2 (B.55)
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Table B.1: The Cumulative Standard Normal Distribution

Φ(z) = Pr(Z ≤ z) =
z∫

−∞

1p
2π

e− u2

2 du

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

.500

.540

.579

.618

.655

.691

.726

.758

.788

.816

.841

.864

.885

.903

.919

.933

.945

.955

.964

.971

.977

.982

.986

.989

.992

.994

.995

.997

.997

.998

.999

.504

.544

.583

.622

.659

.695

.729

.761

.791

.819

.844

.867

.887

.905

.921

.934

.946

.956

.965

.972

.978

.983

.986

.990

.992

.994

.995

.997

.998

.998

.999

.508

.548

.587

.626

.663

.698

.732

.764

.794

.821

.846

.869

.889

.907

.922

.936

.947

.957

.966

.973

.978

.983

.987

.990

.992

.994

.996

.997

.998

.998

.999

.512

.552

.591

.629

.666

.702

.732

.767

.797

.824

.849

.871

.891

.908

.924

.937

.948

.958

.966

.973

.979

.983

.987

.990

.992

.994

.996

.997

.998

.998

.999

.516

.556

.595

.633

.670

.705

.739

.770

.800

.826

.851

.873

.893

.910

.925

.938

.949

.959

.967

.974

.979

.984

.987

.990

.993

.994

.996

.997

.998

.998

.999

.520

.560

.599

.637

.674

.709

.742

.773

.802

.829

.853

.875

.894

.911

.926

.939

.951

.960

.968

.974

.980

.984

.988

.991

.993

.995

.996

.997

.998

.998

.999

.524

.564

.603

.641

.677

.712

.745

.776

.805

.831

.855

.877

.896

.913

.928

.941

.952

.961

.969

.975

.980

.985

.988

.991

.993

.995

.996

.997

.998

.999

.999

.528

.567

.606

.644

.681

.716

.749

.779

.808

.834

.858

.879

.898

.915

.929

.942

.953

.962

.969

.976

.981

.985

.988

.991

.993

.995

.996

.997

.998

.999

.999

.532

.571

.610

.648

.684

.719

.752

.782

.811

.836

.860

.881

.900

.916

.931

.943

.954

.962

.970

.976

.981

.985

.989

.991

.993

.995

.996

.997

.998

.999

.999

.536

.575

.614

.652

.688

.722

.755

.785

.813

.839

.862

.883

.901

.918

.932

.944

.954

.963

.971

.977

.982

.986

.989

.992

.994

.995

.996

.997

.998

.999

.999

Φ(-z) = 1 -Φ(z)



Appendix C

Failure Modes, Effects, and Criticality

Analysis

C.1 Introduction

Failure Mode and Effects Analysis (FMEA) was one of the first systematic techniques for failure

analysis. It was developed by reliability engineers in the late 1950’s to determine problems that

could arise from malfunctions of military systems. A Failure Mode and Effects Analysis is often

the first step in a systems reliability study. It involves reviewing as many components, assem-

blies and subsystems as possible to identify possible failure modes and the causes and effects

of such failures. For each component, the failure modes and their resulting effects on the rest of

the system are written onto a specific FMEA form. There are numerous variations of such forms.

An example of an FMEA form is shown below.

A Failure Mode and Effects Analysis is mainly a qualitative analysis, which is usually carried

out during the design stage of a system. The purpose is then to identify design areas where

improvements are needed to meet the reliability requirements. The Failure Mode and Effect

Analysis can be carried out either by starting at the component level and expanding upwards

(the “bottom up” approach), or from the system level downwards (the “top down” approach).

The component level to which the analysis should be conducted is often a problem to define.

It is often necessary to make compromises since the workload could be tremendous even for a

system of moderate size. It is, how¬ever, a general rule to expand the analysis down to a level

at which failure rate estimates are available or can be obtained. Most Failure Mode and Effects

Analyses are carried out according to the “bottom-up” approach. One may, however, for some

particular systems save a considerable amount of effort by adopting the “top down” approach.

With this approach, the analysis is carried out in two or more stages. The first stage is an analysis

on the functional block diagram level. The possible failure modes and failure effects of each

functional block are identified based on knowledge of the block’s required function, or from

206
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experience on similar equipment. One then proceeds to the next stage, where the components

within each functional block are analysed. If a functional block has no failure modes which are

critical, then no further analysis of that block needs to be performed. By this screening, it is

possible to save time and effort. A weakness of this “top down” approach lies in the fact that it is

not possible to ensure that all failure modes of a functional block have been identified.

An FMEA becomes a Failure Modes, Effects and Criticality Analysis (FMECA) if practicalities

or priorities are assigned to the failure mode effects.

More detailed information on how to conduct a Failure Mode and Effects Analysis (and an

FMECA) may be found in:

• MIL-STD 1629 “Procedures for performing a failure mode and effect analysis”

• IEC 60812 “Procedures for failure mode and effect analysis (FMEA)”

• SAE ARP 5580 “Recommended failure modes and effects analysis (FMEA) practices for

non-automobile applications”

• SAE J1739 “Potential Failure Mode and Effects Analysis in Design (Design FMEA) and Po-

tential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes (Pro-

cess FMEA) and Effects Analysis for Machinery (Machinery FMEA)”

C.2 FMECA procedure

1. FMECA prerequisites

2. System structure analysis

3. Failure analysis and preparation of FMECA worksheets

4. Team review

5. Corrective actions

Important aspects of FMECA prerequisites are:

1. Define the system to be analysed in terms of (a) System boundaries (which parts should be

included and which should not), (b) Main system missions and functions (incl. functional

requirements), and (c) Operational and environmental conditions to be considered

2. Collect available information that describes the system to be analysed; including draw-

ings, specifications, schematics, component lists, interface information, functional de-

scriptions, and so on
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3. Collect information about previous and similar designs from internal and external sources;

including FRACAS (Failure reporting, analysis, and corrective action system) interviews

with design personnel, operations and maintenance personnel, component suppliers,

and so on.

Various methods for the system structure analysis exist. An SADT analysis may be a good start-

ing point.

A suitable FMECA worksheet for the analysis has to be decided. In many cases the client

(customer) will have requirements to the worksheet format - for example to fit into his mainte-

nance management system. A sample FMECA worksheet covering the most relevant columns is

given in Figure C.1.

FMECA  
System:  Performed by:  
Subsystem:  Date: 
Function: Page: 

DESCRIPTION OF UNIT  DESCRIPTION OF FAILURE  EFFECT OF FAILURE  FAILURE 

RATE  
CRITICALITY  CORRECTIVE  

ACTION  
REMARKS 

IDENTI -  
FICATION  

OPERATIONAL 

MODE  
FUNCTION  FAILURE MODE  FAILURE 

MECHANISM  
HOW TO 

DETECT  
LOCAL  SYSTEM  OPERAT .  

STATUS  
    

 
 
 
 

            

Figure C.1: Relevant columns in an FMECA form.

C.3 Columns in the FMECA form

Please refer to the listed references to get a comprehensive discussion of the various columns in

an FMECA form. In the following we highlight some important aspects.

C.3.1 Operational mode

Example of operational modes are: idle, standby, and running. Operational modes for an air

plane include, for example, taxi, take-off, climb, cruise, descent, approach, flare-out, and roll.

Also note that operational mode at the system level is not the same as operational mode at the

component level.

C.3.2 Failure mechanisms and failure causes

Failure mechanisms relates to physical, chemical or other processes that deteriorates the entity,

and leads to a failure The term “failure cause” is often used in two different ways:

• Proximate cause, e.g., failure on a lower level in the system hierarchy such as a defect

bearing in a pump
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• Root cause, for example bad maintenance, inadequate design etc.

Figure C.2 illustrates the relation between function, failure mode, failure cause and failure mech-

anism:

Failure mech. 2Failure cuase 2Failure mode 2

Function n

Function 2

Function1

Pump water

Minimum 800 

litre per 

minute

Failure mode 1

Does not pump 

sufficient water

Failure cuase 1

(subsystem)

Defect bearing

Failure 

mechanims 1

Wear

Failure cause 2

Failure cuase 1

(root cause)

Bad 

maintenance

Figure C.2: Relation between function, failure mode, failure cause and failure mechanism

C.3.3 Hidden versus evident failures

We often distinguish between hidden and evident failures. The term “hidden” often relates to

entities that is not continuously demanded. For example the SIFA valve on a train (bleed of the

air pressure by activation) is a hidden function, and a failure will not be detected automatically.

The term “evident” relates to entities that are continuously demanded, and a failure will most

likely be detected immediately. Note that the same SIFA-valve will also have a evident function

(“not bleed of air pressure under normal operation”) because an unintended activation imme-

diately will be detected (breaks are activated).

C.4 Example of FMECA form

Figure C.3 shows an example FMECA form for a bike.

FMECA  
System:  Performed by:  
Subsystem:  Date: 
Func�on: Page: 

DESCRIPTION OF UNIT  DESCRIPTION OF FAILURE  EFFECT OF FAILURE  FAILURE 

RATE  
CRITICALITY  CORRECTIVE  

ACTION  
REMARKS 

IDENTI -  
FICATION  

OPERATIONAL 

MODE  
FUNCTION  FAILURE MODE  FAILURE 

MECHANISM  
HOW TO 

DETECT  
LOCAL  SYSTEM  OPERAT .  

STATUS  
    

 
 
 
 

            

Bike
Trac�on
Convert pedal force from the rider to wheel torque

Jørn
Some date
1

Chain Running Convert 
torque from 
crank to 
gear

Not conver�ng
Uneven movement

Fa�gue Inspec�on No gear 
torque

Bike is 
not 
moving  

Can◌͛t 
reach 
lecture 
today  

Low High Bring chain 
lock 

Figure C.3: Example FMECA for a bike
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Fault tree analysis

D.1 Introduction

A fault tree is a logic diagram that displays the relationships between a potential critical event

(accident) in a system and the reasons for this event. The reasons may be environmental condi-

tions, human errors, normal events (events which are expected to occur during the life span of

the system) and specific component failures. A properly constructed fault tree provides a good

illustration of the various combinations of failures and other events which can lead to a speci-

fied critical event. The fault tree is easy to explain to engineers without prior experience of fault

tree analysis.

An advantage with a fault tree analysis is that the analyst is forced to understand the failure

possibilities of the system, to a detailed level. A lot of system weaknesses may thus be revealed

and corrected during the fault tree construction.

A fault tree is a static picture of the combinations of failures and events which can cause the

TOP event to occur. Fault tree analysis is thus not a suitable technique for analysing dynamic

systems, like switching systems, phased mission systems and systems subject to complex main-

tenance strategies.

A fault tree analysis may be qualitative, quantitative or both, depending on the objectives of

the analysis. Possible results from the analysis may e.g. be:

1. A listing of the possible combinations of environmental factors, human errors, normal

events and component failures that can result in a critical event in the system.

2. The probability that the critical event will occur during a specified time interval.

Figure D.1 shows an example fault tree for the bike.

The analysis of a system by the fault tree technique is normally carried out in five steps:

1. Definition of the problem and the boundary conditions.

210
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Figure D.1: FTA example for a bike

2. Construction of the fault tree.

3. Identification of minimal cut and/or path sets.

4. Qualitative analysis of the fault tree.

5. Quantitative analysis of the fault tree.

In the following we will present the basic elements of standard fault tree analysis. Then we

will conclude this chapter by presenting a numerical example illustrating how the technique

could be utilised in relation to maintenance optimisation.

D.2 Fault tree construction

D.2.1 Fault tree diagram, symbols and logic

A fault tree is a logic diagram that displays the connections between a potential system failure

(TOP event) and the reasons for this event. The reasons (Basic events) may be environmental

conditions, human errors, normal events and component failures. The graphical symbols used

to illustrate these connections are called “logic gates”. The output from a logic gate is deter-

mined by the input events.
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The graphical layout of the fault tree symbols are dependent on what standard we choose to

follow.

D.2.2 Definition of the Problem and the Boundary Conditions

This activity consists of:

1. Definition of the critical event (the accident) to be analysed.

2. Definition of the boundary conditions for the analysis.

The critical event (accident) to be analysed is normally called the TOP event. It is very im-

portant that the TOP event is given a clear and unambiguous definition. If not, the analysis will

often be of limited value. As an example, the event description “Fire in the plant” is far too gen-

eral and vague. The description of the TOP event should always answer the questions: What,

where and when?

What: Describes what type of critical event (accident) is occurring, e.g., collision between

two trains.

Where: Describes where the critical event occurs, e.g., on a single track section.

When: Describes when the critical event occurs, e.g., during normal operation.

A more precise TOP event description is thus: “Collision between two trains on a single track

section during normal operation”.

1. To get a consistent analysis, it is important that the boundary conditions for the analysis

are carefully defined. By boundary conditions we mean: The physical boundaries of the

system. What parts of the system are to be included in the analysis, and what parts are

not?

2. The initial conditions. What is the operational state of the system when the TOP event is

occurring? Is the system running on full/reduced capacity? Which valves are open/closed,

which pumps are functioning etc.?

3. Boundary conditions with respect to external stresses. What type of external stresses

should be included in the analysis? By external stresses we here mean stresses from war,

sabotage, earthquake, lightning etc.

4. The level of resolution. How far down in detail should we go to identify potential rea-

sons for a failed state? Should we as an example be satisfied when we have identified the

reason to be a “valve failure”, or should we break it further down to failures in the valve

housing, valve stem, actuator etc.? When determining the required level of resolution, we

should remember that the detail in the fault tree should be comparable to the detail of the

information available
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D.2.3 Construction of the Fault Tree

The fault tree construction always starts with the TOP event. We must thereafter carefully try to

identify all fault events which are the immediate, necessary and sufficient causes that result in

the TOP event. These causes are connected to the TOP event via a logic gate. It is important that

the first level of causes under the TOP event is developed in a structured way. This first level is

often referred to as the TOP structure of the fault tree. The TOP structure causes are often taken

to be failures in the prime modules of the system, or in the prime functions of the system. We

then proceed, level by level, until all fault events have been developed to the required level of

resolution. The analysis is in other words deductive and is carried out by repeated asking “What

are the reasons for...?”

A

E2E1 E3

Figure D.2: OR-gate

Figure D.2 shows the OR-gate indicating that the output event A occurs if any of the input

events Ei occurs. In relation to the bike example with TOP event “No breaking effects” the two

events: “No friction” and “both wheels spinning” are connected by an OR gate since any of these

events will lead to the TOP event.

A

E2E1 E3

Figure D.3: AND-gate

Figure D.3 shows the AND-gate indicating that the output event A occurs only when all the

input events Ei occurs simultaneously. In the bike example, “Front wheel is spinning” and “Rear

wheel is spinning” are connected by an AND gate, since both these event have to occur in order

to full fill the requirement that both wheels are spinning.

Figure D.3 shows the Basic event representing a basic equipment fault or failure that requires

no further development into more basic faults or failures. An example of a basic event in the bike

example is “Breakage in break wire”.
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Figure D.4: BASIC-event

D.3 Identification of Minimal Cut- and Path Sets

A fault tree provides valuable information about possible combinations of fault events which

can result in a critical failure (TOP event) of the system. Such a combination of fault events is

called a cut set.

Acut set in a fault tree is a set of Basic events whose (simultaneous) occurrence ensures that

the TOP event occurs. A cut set is said to be minimal if the set cannot be reduced without loosing

its status as a cut set.

Apath set in a fault tree is a set of Basic events whose non-occurrence (simultaneously) ensures

that the TOP event does not occur. A path set is said to be minimal if the set cannot be reduced

without loosing its status as a path set.

In practice only minimal cut sets are used for evaluation of fault trees. To find the minimal

cut sets we apply the MOCUS algorithm (Method Of obtaining Cut Sets). The MOCUS algorithm

essentially contains the following elements:

1. Start with the TOP event

2. As the algorithm proceeds, the result is stored in a matrix like format of rows and columns

3. AND- and OR-gates are resolved by replacing the gate with it’s “children” in the fault tree

diagram

4. An AND-gate means that the gate is replaced by new elements for the row(s) it is found

5. An OR-gate means that the gate is replaced by as many rows that the gate has children,

where each child is inserted at the position of the OR-gate being replaced

6. When all gates are replaced, we remain with only the basic events, where each row corre-

sponds to a cut set

Note that the the cut sets will not necessarily be be minimal. To make the cut sets minimal we

have to:

1. Replace duplicates of one event with only one occurrence of that event in each row

2. If one row is a sub set of another row, then the larger of these two rows (representing non-

minimal cut sets) is removed
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The MOCUS algorithm is demonstrated here: http://folk.ntnu.no/jvatn/eLearning/TPK4120/

Examples/MOCUS.html in relation to the example used in the lectures.

D.3.1 koon gate

The koon gate is something “between” the AND and OR gate. A koon gate occurs if k out of

the n inputs occur. Note that in FTA we focus on fault states, i.e., an event occurring means a

failure, hence the “voting” in FTA is different from in RBD. To clarify, the following notation is

often used:

• koon : G is used if we consider the functioning of components (G=Good). The system

(block) functions if k or more out of the n components are functioning

• koon : F is used if we consider the fault of components (F=Fault state). The system (gate/-

TOP event) occurs if k or more out of the n inputs are occurring (i.e., in a fault state)

Note the following relation:

koon : G = (n–k +1)oon : F

koon : F = (n–k +1)oon : G

Consider a system with three pumps each having 50% capacity. The system functions if at least

2 of the pumps are functioning. In an RBD we then use the 2oo3 : G block for this system, and

for the FTA we use the koon : F = n–k +1oon : G = 3−2+1oo3 = 2oo3 gate.

If we have 4 such pumps, the RBD representation is 2oo4 : G , and in FTA we use the koon :

F = n–k +1oon : G = 4−2+1oo4 = 3oo4 gate meaning that 3 or more pumps must be in a fault

state in order to give a system failure (TOP event).

Computerized FTA programs will offer the koon : F as part of the drawing palette. For man-

ual construction of a fault tree with a koon : F gate we can use an OR-gate followed by several

AND-gates. Each AND-gate is then a sub-set with k out of the n inputs. There are altogether
(n

k

)
ways we may choose k inputs out of n inputs, hence we will have

(n
k

)
AND-gates to put under

the OR-gate.

D.4 Qualitative Evaluation of the Fault Tree

A qualitative evaluation of the fault tree may be carried out on the basis of the minimal cut sets.

The importance of a cut set depends obviously on the number of Basic events in the cut set. The

number of different Basic events in a minimal cut set is called the order of the cut set. A cut set

of order one is usually more critical than a cut set of order two, or higher. When we have a cut

http://folk.ntnu.no/jvatn/eLearning/TPK4120/Examples/MOCUS.html
http://folk.ntnu.no/jvatn/eLearning/TPK4120/Examples/MOCUS.html
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set with only one Basic event, the TOP event will occur as soon as this Basic event occurs. When

a cut set has two Basic events, both of these have to occur at the same time to cause the TOP

event to occur.

Another important factor is the type of Basic events in a minimal cut set. We may rank the

criticality of the various cut sets according to the following ranking of the Basic events:

1. Human error

2. Failure of active equipment

3. Failure of passive equipment

The ranking is based on the assumption that human errors occur more frequently than active

equipment failures, and that active equipment is more failure-prone than passive equipment

(an active or running pump is for example more exposed to failures than a passive standby

pump).

D.5 Quantitative analysis

In the quantitative part of a fault tree analysis the main objective is to calculate the following

metrics:

• Q0(t ) = Probability that the TOP-event occurs at time t

• F0(t ) = Expected number of TOP-event occurrence per unit time at time t

• I (i | t ) = Importance metric for basic event i at time t

For the calculations we need the minimal cut set as well as basic event frequencies and proba-

bilities.

D.5.1 Upper Bound Approximation, Q0(t )

Assume that we have found the minimal cut sets of the fault tree, i.e., K j . Further assume that

the minimal cut sets do not contain common components, hence they are independent (also

provided that the components are independent). We may now arrange the cut set in a series

structure as indicated in Figure D.5: Let E j denote the event that cut set number j is occurring.

The probability that cut set number j is occurring is found by:

Pr(E j ) = Q̌ j (t ) = ∏
i∈K j

qi (t )
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1

2

3

a b
4

5

2

K1 K2 K3

Figure D.5: Example cut set structure

We now have

Q0(t ) = Pr(TOP event occurs at time t ) = 1−Pr(TOP event does not occur at time t )

= 1−Pr(No cut set occurs at time t )

Since the cut sets are independent, and the probability that cut set number j is occurring is

given by Q̌ j (t ), we have:

Q0(t ) = 1−
k∏

j=1
(1−Q̌ j (t ))

where

Q̌ j (t ) = ∏
i∈K j

qi (t )

Generally there might be some basic events that occur in two or more cut sets, hence the cut

sets are dependent, and it may be proven that the formula represents an upper bound for the

TOP event probability:

Q0(t ) ≤ 1−
k∏

j=1
(1−Q̌ j (t ))

Hence, we may use:

Q0(t ) ≈ 1−
k∏

j=1
(1−Q̌ j (t ))

which is referred to as the upper bound approximation and is usually considered to be a good

approximation when the qi (t )s are small.

To argue for the less or equal sign we realize that cut sets are “positive dependent” if they
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have common components. For two cut sets we have

Pr(EC
1 ∩EC

2 ) = Pr(EC
1 |EC

2 )Pr(EC
2 ) > Pr(EC

1 )Pr(EC
2 )

and

Q0 = 1−Pr(EC
1 ∩EC

2 ) < 1−Pr(EC
1 )Pr(EC

2 ) = 1− (1−Q̌1)(1−Q̌2)

and we may give similar arguments for more two or more cut sets.

D.5.2 The Inclusion-Exclusion Principle, Q0(t )

Referring to Figure D.5 it is also obvious that we may write:

Q0(t ) = Pr(∪ j E j )

A challenge here is to find the probability of the union of events. For two events A and B we

have Pr(A ∪B) = Pr(A)+Pr(B)−Pr(A ∩B). For more than two events (cut sets) this becomes

more complicated, and we have to use the general addition theorem in probability:

Q0(t ) = Pr(∪ j E j ) =∑
j

Pr(E j )− ∑
i< j

Pr(Ei ∩E j )+ ∑
i< j<k

Pr(Ei ∩E j ∩Ek )− . . .

To find Pr(Ei ∩E j ), Pr(Ei ∩E j ∩Ek ) is straight forward since these intersections of events are in

fact intersection of a set of basic events, and we may multiply the corresponding probabilities

as we have done for a single minimal cut set. The challenge is the number of terms we have to

calculate. As a starting point we can only take the first sum, i.e., adding the cut set occurrences

for each cut set. A slightly better approach would be to subtract the next sum. There are some

ways we can optimize the calculations, and finding bounds for the answer to use as a stopping

rule, see the textbook. Very often the inclusion-exclusion principle is used by only adding the

cut set probabilities:

Q0(t ) ≈
k∑

j=1
Q̌ j (t ) (D.1)

which is faster than the upper bound approximation, but less accurate.

The next challenge is to find the basic event probabilities, qi (t ). Three situations are often

considered:
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D.5.3 Non-repairable components

If a component cannot be repaired, the probability that it is in a fault state at time t equals 1−
R(t ), and provided that the component has an exponentially distributed life time, we therefore

have:

qi (t ) = 1−e−λi t (D.2)

where λi is the constant failure rate of the component.

D.5.4 Repairable components

To derive qi (t ) for a repairable components we may use Markov analysis. The probability that

the component is in a fault state at time t is then shown to be (according to eq. 8.22):

qi (t ) = λi

µi +λi

(
1−e−(λi+µi )t

)
(D.3)

where λi is the constant failure rate of the component, and µi = 1/MDTi is the constant

repair rate. When t is large compared to 1
λi+µi

we have

qi (t ) ≈ λi

µi +λi
≈λi MDTi (D.4)

if repair times are short compared to failure times. If this holds, it is safe to use this approxima-

tion when t > 3MDTi , where MDTi is the mean time to restoration for the component.

D.5.5 Periodically tested components

For components with a hidden function, it is usual to perform a functional test at fixed time

intervals, say τi , to verify that the component is able to carry out it’s function. Imay be shown

that the (on demand) failure probability of such a component is given by:

qi (t ) ≈λiτi /2 (D.5)

qi is often referred to as the probability of failure on demand (PFD).

D.5.6 TOP event frequency, F0(t )

F0(t ) denotes the expected number of occurrences of the TOP event per unit time. In princi-

ple we may calculate F0(t ) at various point of times, but usually we focus on the steady state

situation, and therefore we omit the time dependency, i.e., we seek F0.
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The arguments are as follows:

• We know the minimal cut sets

• If one cut set should be the “contributor” to the TOP event to occur, the other cut sets

cannot be occurring

• For a basic event in one cut set to bring the cut set to occur, requires that all other basic

events in that cut set are occurring

Let CK denote a minimal cut set, then the cut set occurrence frequency is given by:

w̌K = ∑
i∈CK

wi
∏

ℓ∈CK ,ℓ̸=i
qℓ (D.6)

where wi is the ROCOF of basic event i , and ql is the probability that basic event l is occurring.

The ROCOF is the rate of occurrence of failures. To define the ROCOF we need to have a

stochastic process perspective, i.e., we consider what is happening in a time interval rather

when things are happening in this interval. Let N (t ) be the number of failures that occur in

(0, t ] and let W (t ) = E[N (t )]. The ROCOF at time t is now defined by

w(t ) = lim
∆t→0

E[N (t +∆t )−N (t )]

∆t
= lim
∆t→0

W (t +∆t )−W (t )

∆t
= d

d t
W (t ) (D.7)

To obtain the TOP event frequency we may now sum over the w̌K ’s. However, note that w̌K will

not contribute to the TOP event frequency if one of the other cut set is already in a fault state,

hence the TOP event frequency is better approximated by:

F0 = wTOP ≈
k∑

K =1
w̌K

k∏
j=1, j ̸=K

(1−Q̌ j ) ≈
k∑

K =1
w̌K

1−Q0

1−Q̌K

(D.8)

The formula in Equation (D.8) is the best we can do, but usually Q̌ j is rather small, and it will be

sufficient to use

F0 ≈
k∑

K =1
w̌K =

k∑
K =1

∑
i∈CK

wi
∏

ℓ∈CK ,ℓ̸=i
qℓ (D.9)

The ROCOF of the basic events is usually found by the failure rate, say λi . However, a more exact

calculation will also take into account the downtime on basic event level, i.e., we may use:

wi =λi (1−qi ) ≈λi (D.10)
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D.6 Reliability Importance Metrics

In the literature very many reliability importance metrics are presented. We only focus on the

following:

• Birnbaum’s metric

• Improvement Potential

• The criticality importance metric

• Fussel-Vesley’s metric

In principle a metric is linked to basic events. Very often these basic events are component

failures, hence the term component importance is often used. There are many reasons to inves-

tigate component importance:

• Considering improving the inherent reliability of critical components

• Establish a preventive maintenance program for the most critical components

• Ensure that we have sufficient spare parts for critical components

• Considering implementing (extra) redundancy at component level for the most critical

components

• Given that we have a system failure, which component is the most likely to have caused

this?

Several measures are discussed, and the various measures will have their strength and weakness

to answer the questions above.

D.6.1 Birnbaum’s Metric of Reliability Importance

Birnbaum’s metric of reliability importance of a component is a sensitivity measure expressing

the change in system reliability if component i is slightly changed, i.e.,;

I B(i | t ) = ∂Q0(t )

∂qi (t )
(D.11)

It follows that a small change ∆pi (t ) in the component reliability will result in the following

change in system reliability:

∆Q0(t ) = I B(i | t )∆qi (t ) (D.12)
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A disadvantage with Birnbaum’s metric is that it is difficult to calculate. If we are able to write

down the system reliability function, it should be rather easy to find Birnbaum’s measure. But

in practice we will not be able to write down the TOP event probability, and hence we cannot

derive Birnbaum’s metric. In some cases we may utilize that:

I B(i | t ) =Q0(t | qi = 1)−Q0(t | qi = 0)

It may be shown that I B(i | t ) is the probability that component i is critical at time t . This is

a valuable result used in maintenance optimization. Often we need to calculate the expected

cost of a failure of a specific component. The contribution to downtime depends on whether

the system is down or not, and if a failure will cause a system failure. The Birnbaum’s metric

is exactly what we need, i.e., we should only include downtime cost if the component under

consideration is critical, and I B(i | t ) is then used for calculating this probability.

D.6.2 Improvement Potential

The Iimprovement Potential states how much the system reliability will increase if component

i is replaced with a perfect component:

I IP(i | t ) =Q0(t )−Q0(t | qi = 0) (D.13)

It is easy to show the following relation to Birnbaum’s metric:

I IP(i | t ) = I B(i | t )qi (t ) (D.14)

D.6.3 Criticality Importance

The criticality importance metric I CR(i | t ) of component i at time t is the probability that com-

ponent i is critical for the system and is failed at time t , when we know that the system is failed

at time t . It is easy to show the following relation to Birnbaum’s metric:

I CR(i | t ) = I B(i | t ) ·qi (t )

Q0(t )

Fussell-Vesely’s Metric

The Fussell-Vesely’s importance metric I FV(i | t ) of component i at time t is the probability that

at least one minimal cut set that contains component i is failed at time t , when we know that

the system is failed at time t .
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In order to calculate I VF(i | t ) we need some reasoning. We simplify and skip the index t .

Now introduce the following notation (we use the terminology “component” whereas the pre-

cise word would be “basic event”):

• Di : At least one minimal cut containing component i is failed

• C : The system is failed

• mi : Number of minimal cut set containing component i

• E i
j : Minimal cut set j containing component i is failed

From the definition we have:

I FV(i ) = Pr(Di |C ) = Pr(Di ∩C )

Pr(C )
(D.15)

Since Di is a subset of C , then Di ∩C = Di and we have:

I FV(i ) = Pr(Di )

Pr(C )
(D.16)

To find Pr(Di ) we use the same approach as for the “upper bound’ approximation for Q0. How-

ever, note that Di = E i
1 ∪E i

2 ∪·· ·∪E i
mi

where the union is only taken over minimal cut sets con-

taining component i . This gives:

Pr(Di ) = 1−Pr(E i
1

C ∩E i
2

C ∩·· ·∩E i
mi

C
) ≤ 1−Pr(E i

1
C

)Pr(E i
2

C
) · · ·Pr(E i

mi

C
)

Pr(E i
j

C
) is then obtained by one minus the probability for the event that minimal cut set j is

failed, i.e., Pr(E i
j

C
) = 1− Q̌ i

j = 1−∏
l∈K j

ql . The following approximation is usually sufficient to

calculate Fussell-Vesely’s measure:

I FV(i ) ≈
1−∏mi

j (1−Q̌ i
j )

Q0

where the product is over minimal cut sets which contain component i .

If cut set failure probabilities are small, a faster approximation is given by:

I FV(i ) ≈
∑mi

j Q̌ i
j

Q0
(D.17)

where the sum is over minimal cut sets which contain component i .

By comparing the definition of I CR(i ) and I FV(i ), we see that these measures are rahter close

to each other. Thus by assuming I CR(i ) ≈ I FV(i ), we could easily get an approximation of Birn-
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baum’s measure from:

I B(i ) = I CR(i ) ·Q0

qi
≈ I VF(i ) ·Q0

qi

D.6.4 System failure frequency obtained by I B(i )

An alternative way to calculate system failure frequency, F0, is to start with Birnbaum’s measure.

First we recall that I B(i ) is the probability that the system is in such a state that component i is

critical. That a component is critical means that the system is in such a state that the system is

functioning if component i is functioning, and in a fault state if component i is failed. Then it

follows that:

F0 =
∑

i
I B(i )(1−qi )λi (D.18)

where pi = 1−qi is the probability that component i is functioning, and λi is the failure rate of

component i . Thus, the contribution of component i to F0 is given as the product of:

• The probability that component i is critical, i.e., the state of other components

• The probability that component i is functioning

• The failure rate of component i



Appendix E

Event Tree Analysis (ETA)

E.1 Introduction

An event tree is a logical diagram which displays possible event sequences following a speci-

fied critical event in a system. An event tree analysis (ETA) is a method for systematic analysis

of a system after a critical event has occurred. The result of an ETA is a list of possible event

sequences that follows the initiating event. The critical, initiating event may be a technical fail-

ure or some human error. In the development of the event sequences, the effects of possible

barriers and safety functions, which are designed to prevent the occurrence of the critical event

or reduce the consequences of this event, are taken into account. The analysis is both qualita-

tive and quantitative. The qualitative content is primarily a visualisation of different scenarios

(the event tree) with corresponding end consequences, while the quantitative analysis gives fre-

quencies for the different end consequences. Figure E.1 shows an ETA example. The initial event

could be for example SPAD = Signal passed at danger (obtained from for example an FTA), and

then the various barriers are shown as B1, B2 etc. Each barrier has a Y=Yes output and a N=No

output.

C1

C2
Y
N

Y
N

Y
N

B2

B3

B4

Init Y
N

B1

Figure E.1: ETA example
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E.2 Procedure

The event tree analysis is usually carried out in six steps:

1. Identification of a relevant initiating event (which may give rise to unwanted consequences).

2. Identification of the barriers and safety functions which are designed to prevent the oc-

currence of the initiating event, or to reduce the consequences of this event.

3. Construction of the event tree.

4. Description of the resulting event sequences.

5. Calculation of probabilities/frequencies for the identified consequences.

6. Compilation and presentation of the results from the analysis.

E.3 Identification of a relevant initiating event

As for the fault tree it is important to define an unambiguous initiating event, use the “what”,

“where” and “when” keywords to structure the definition of the initiating event. How early in

the course of event the initiating event should be placed depends on the scope and available

resources for the analysis. As a starting rule we often define the initiating event as the first sig-

nificant deviation from normal operations.

E.4 Identification of the barriers and safety functions

Usually, a number of measures are taken to prevent accidents or limit their consequences These

measures are referred to by different names, e.g. “barriers”, “security functions” or “protection

layer” (defence in depth). The measures are modelled in the event tree. Other factors related to

the physical course are also modelled, e.g.,

• Whether a leak ignites or not

• Whether the fire is large or small

• Whether it’s day or night

• and so forth
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E.5 Construction of the event tree

The event tree is constructed by thinking logical sequences by answering Yes/No questions. The

questions should be formulated systematically. Either one uses consistent questions where the

“Yes” answer is "success”, or Then the "Yes” answer is systematic failure or error in barrier/safety

function The branches corresponding to "Yes” must either systematically go “upwards”, or sys-

tematically go “down” in the event tree.

If we adopt the convention that the “No” branch (“barrier fails to hold”) is the down-hand

branch from the barrier symbol. The most severe consequences will then normally be located

to bottom right corner of the consequence spectrum. Note that in some presentations “Yes” is

used to describe that the barrier fails. This will then give a different interpretation of the most

critical events.

If we consider a SPAD event, the first barrier, B1, could be {Automatic train protection (ATP)

OK}. When constructing the event tree the output from a barrier symbol may lead to another

barrier symbol. The development is continued to the resulting consequences, illustrated by

consequence symbols, C1, C2 etc in Figure E.1. We should aim at identifying the barriers in the

sequence they are expected to be activated. In this way, there will be an implicit time line from

left to right. However, in some situations this is demanding because it is not always easy to say

which barriers are activated first.

E.6 Description of the resulting event sequences

The qualitative analysis of the event tree is typically to list the events leading up to the most se-

vere end consequences, and discuss barriers and other circumstances that influence the course

of events.

E.7 Calculation of probabilities/frequencies for the identified

end consequences

In order to carry out the quantitative analysis we need the frequency of the initiating event, and

the barrier probabilities. During construction of the event tree, we enter the probability that the

various barriers fails, i.e., the “No” results. For each barrier, i , we need:

• qi = probability that barrier i fails (“No”), and similarly

• pi = 1−qi probability that barrier i functions as intended (“Yes”)

In addition to the barrier probabilities, we enter the frequency of the initiating event:
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• f = frequency of initiating event

When establishing the barrier probabilities and the initiating frequency it might be required to

perform separate analyses, e.g., FTA. Also for the barrier probabilities we usually need separate

analyses like FTA for the ATP system, failure statistics and “load/strength” methods.

To calculate the frequencies of the various consequences we may multiply the frequency

of the initiating event by the barrier probabilities for each barrier along the path leading to the

actual consequence . Now, consider consequence C j , and assume that S = is the set of barriers in

the path leading to consequence C j , and that represents “success” of the barrier (Yes-terminal),

and further F = is the set of those barriers on the path leading to consequence C j , and that

represent “the barrier fails” (No-terminal) we have that the frequency of consequence C j is given

by:

F j = f
∏
i∈S

pi
∏
i∈F

qi

This formula is only valid if the barriers are “independent”. This is not always the case, and to

overcome the problem of “stochastic” dependent barriers, we should in principle specify the

barrier probabilities as conditional probabilities given the course of events up to the current

barrier. This is not always easy.



Appendix F

Reliability Block Diagram (RDB)

F.1 Introduction

Reliability block diagrams are valuable when we want to visualise the performance of a system

comprised of several (binary) components.

Figures F.1 and F.2 shows the reliability block diagram for simple structures. The interpreta-

tion of the diagram is that the system is functioning if it is a connection between a and b, i.e.,

there exists a path of functioning components from a to b. The system is in a fault state (is not

functioning) if it does not exist a path of functioning components between a and b.

1 2 3 n
a b

. . . .

Figure F.1: Reliability block diagram for a series structure

1

2

3

n

a b

.

.

Figure F.2: Reliability block diagram for a parallel structure
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F.2 Structure function

Recall that we for components have

xi (t ) =
{

1 if component i is functioning at time t

0 if component i is in a fault state at time t
(F.1)

For the system we now introduce

φ(x, t ) =
{

1 if the system is functioning at time t

0 if the system is in a fault state (not functioning) at time t
(F.2)

φ denotes the structure function, and depends on the xi s (x is a vector of all the xi ’s). φ(x, t ) is

thus a mathematical function that uniquely determines whether the system functions or not for

a given value of the x -vector. Note that it is not always straight forward to find a mathematical

expression for φ(x, t ).

To simplify notation we skip the index t in the following.

F.3 The structure function for some simple structures

In the following we omit the time dependence from the notation.

For a series structure we have:

φ(x) = x1 · x2 · ... · xn =
n∏

i=1
xi (F.3)

For a parallel structure we have

φ(x) = 1− (1−x1)(1−x2). . . (1−xn) = 1−
n∏

i=1
(1−xi ) =

n∐
i=1

xi (F.4)

Note that we for two components in parallel may simplify:

φ(x1, x2) = x1 ⨿ x2 = 1− (1−x1)(1−x2) = x1 +x2 −x1x2 (F.5)

where the notation ⨿ (“ip”) is used for the co-product. For a k-out-of-n (koon : G) structure we

have

φ(x) =


1 if

n∑
i=1

xi Ê k

0 if
n∑

i=1
xi < k

(F.6)
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A k-out-of-n system is a system that functions if and only if at least k out of the n components

in the system is functioning. We often write k oo n to denote a k-out-of-n system, for example

2 oo 3.

The expression for the structure function of a k-out-of-n structure is not attractive from a

calculation point of view, i.e., we cannot multiply this expression with other parts of the struc-

ture function. We may instead represent the structure by a parallel structure where each of the

parallels comprises a series structure of k components. Such a parallel will then function if k or

more components are functioning. There are altogether
(n

k

)
ways we may choose k components

out of n components, hence we will have
(n

k

)
branches. As an example a 2-out-of-3 system may

be written as
(3

2

)= 3 parallels, i.e., {1,2},{1,3} and {2,3}.

For structures comprised of series and parallel structures we may combine the above formu-

las by splitting the reliability block diagram into sub-blocks, and then apply the formulas within

a block, and then treat a sub-block as a block on a higher level. Figure F.3 shows how we may

1

2

3

a b
1

2

3

a b

I
II

Figure F.3: Splitting the reliability block diagram in sub-blocks

split the reliability block diagram into sub-blocks, here I and II. We may then write φ(x) =φI×φII

because I and II are in series. Further, we have φI = x1, and φII = 1-(1-x2)(1- x3), thus we have

φ(x) = x1(1-(1-x2)(1- x3)).

Note when we multiply the structure functions we might end up with terms comprising ex-

ponents. Since the state variables are binary the exponent will have no influence on the value,

i.e., x = x2 = x3 = . . .. Hence we can always remove the exponent. Also we should do that, be-

cause later on we need to use the rule for expected value of a product, and for that rule we need

to remove the exponents, else the rule is not valid.

F.3.1 Pivotal Decomposition

Pivotal decomposition is often used to analyse complex structures where one or more compo-

nents are causing “trouble” when we search for series and parallel structures. Typically we use

this method for solving “bridge structures”. Introduce the following notation:

• φ(1i ,x) = The structure function of the structure when it is given that component i is in a

functioning state, i.e., xi = 1.
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• φ(0i ,x) = The structure function of the structure when it is given that component i is in a

fault state, i.e., xi = 0.

We then have:

φ(x) ≡ xiφ(1i ,x)+ (1−xi )φ(0i ,x) for all x

This result is often used when obtaining the structure function of a complex structure. The

idea is to use pivotal decomposition of the component that makes the structure troublesome.

Conditioning on that component is functioning, i.e., xi = 1, we may rather easily obtain the

structure function of the remaining structure, i.e., φ(1i ,x), and similarly if xi = 0, we may rather

easily obtain the structure function of the remaining structure, i.e., φ(0i ,x), and then the result

for pivotal decomposition may be applied.

Example 13.6 Bridge structure

Consider the bridge structure in Figure F.4. If component 3 is functioning we have two parallel

structures {1,2} and {4,5} where these two parallels are in series. If component 3 is failed we have

two series structures {1,4} and {2,5} where these two are in parallel.

18.10.2023, 22:25 L13BridgeStructure.html
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Brostruktur
Betrakt brostrukturen nedenfor. Dersom komponent 3 fungerer har vi to parallellstrukturer, {1,2} og {4,5}, hvor disse to parallellstrukturene er i serie. Dersom
komponent 3 er i feiltilstand har vi to seriestrukturer, {1,4} og {2,5}, hvor disse to seriestrukturene er i parallell.

For den første situasjonen, dvs , har vi: .

For den andre situasjonen, dvs , har vi: .

Grafisk beskrivelse av brostrukturen:

a) b)
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= 1xi ϕ( , x) = ( + − , )( + − )1i x1 x2 x1 x2 x4 x5 x4x5

= 0xi ϕ( , x) = + −0i x1x4 x2x5 x1x2x4x5

ϕ(x) = ϕ( , x) + (1 − )ϕ( , x) =x3 13 x3 03

( + − )( + − ) + (1 − )( + − )x3 x1 x2 x1x2 x4 x5 x4x5 x3 x1x4 x2x5 x1x2x4x5

Figure F.4: Bridge structure

For the first situation, i.e., when x3 = 1, we have: φ(13,x) = (x1 + x2 − x1, x2)(x4 + x5 − x4x5),

and for the second situation, i.e., when x3 = 0, we have: φ(03,x) = x1x4+x2x5−x1x2x4x5. In total

we then have:

φ(x) = x3φ(13,x)+ (1−x3)φ(03,x) = (F.7)

x3(x1 +x2 −x1x2)(x4 +x5 −x4x5)+ (1−x3)(x1x4 +x2x5 −x1x2x4x5) (F.8)

□
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F.4 Summary: Finding the structure function

The following principles may be used to find the structure function for a reliability block dia-

gram:

• For a series structure we have φ(x) = x1 · x2 · ... · xn =∏n
i=1 xi .

• For a parallel structure we have φ(x) = 1− (1− x1)(1− x2). . . (1− xn) = 1−∏n
i=1(1− xi ) =∐n

i=1 xi .

• For a k-out-of-n structure we may represent the structure by a parallel structure where

each of the parallels comprises a series structure of k components. There are altogether(n
k

)
ways we may choose k components out of n components, hence we will have

(n
k

)
branches.

• For bridge structures and other structures where it is not easy to “see” series and parallel

structures, we may use pivotal decomposition, i.e.,φ(x) ≡ xiφ(1i ,x)+(1−xi )φ(0i ,x) where

we decompose around the “troublesome” component.

• If the minimal cut sets are available for a system (or a sub system), the corresponding

structure function is given by: φ(x) =∏k
j=1

∐
i∈K j

xi , and similarly for the path sets: φ(x) =∐p
j=1

∏
i∈P j

xi .

• We may identify sub-blocks in the diagram (modules), where we for each module repre-

sent the state variable of the module by a structure function. i.e., a function of the ele-

ments in the module, which is also binary, hence a “formula” can replace the module as if

it was a component. In principle any combination of series and parallel structure may be

analysed to get the structure function. Bridge structures and k-out-of-n structures may

also be handled this way. The same principle may also be used if a sub-block is repre-

sented by its minimal cut sets or minimal path sets.

F.5 System reliability

Up to now we have mainly used the symbol xi to represent the value a state variable may take.

In order to assess component and system reliability, we need to treat the state variables and

the structure function as random quantities (stochastic variables). We let Xi (t ) denote the state

variable i , and X(t ) = (X1(t ), X2(t ), ..., Xn(t )) be the state vector. Further the structure function is

now a random quantity, i.e., φ(X(t )). Now, introduce the following probabilities:

pi (t ) = Pr(Xi (t ) = 1) = Component reliability (F.9)

pS(t ) = Pr(φ(X(t )) = 1) = System reliability (F.10)
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Since both the state variables and the structure function is binary we have:

E[Xi (t )] = pi (t ) (F.11)

E
[
φ(X(t ))

]= pS(t ) (F.12)

Since the system reliability pS(t ) depends on the component reliabilities, we often write:

pS(t ) = h[p1(t ), p2(t ), . . . , pn(t )] = h[p(t )] (F.13)

F.5.1 Reliability of series structures

Since the structure function of a series structure is the product of the state variables, we have

h[p(t )] = E
[
φ(X(t ))

]= E

[
n∏

i=1
Xi (t )

]
=

n∏
i=1

E[Xi (t )] =
n∏

i=1
pi (t ) (F.14)

where we have used that the expected value of a product equals the product of the expectations

if the stochastic variables are independent.

F.5.2 Reliability of parallel structures

A similar argument may be used for a parallel structure which gives:

h[p(t )] = 1−
n∏

i=1

[
1−pi (t )

]= n∐
i=1

pi (t )

In a more general setting assume that we are able to write the structure function as a sum of

products of the state variables. Further assume independent components and that we have re-

moved any exponents in the expressions, i.e., xn
i = xi . We then use the results that “the expec-

tation of a sum equals to the sum of expectations” and “the expectation of a product equals the

product of the expectations”. This means that pS(t ) = E
[
φ(X(t ))

]
will equal the sum of prod-

ucts of expectations, i.e., a sum of products of E[Xi (t )]’s. Further since E[Xi (t )] = pi (t ) we have

proven that the system reliability pS(t ) may be found by replacing all the x ′
i ’s in the structure

function with corresponding pi (t )’s.

Note that this approach is only valid if we have carried out the multiplication, i.e., resolved

any parentheses in the expression for the structure function, and removed any exponents.

General approach utilizing the structure function

1. Map the physical system into a reliability block diagram or another representation as a

starting point
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2. Use various approaches (series, parallels, bridges, k-out-of-n’s etc) to derive the structure

function

3. Multiply out any parentheses, collect terms, and remove any exponents, yielding a struc-

ture function as a sum of products

4. The system reliability, pS(t ) is now found by replacing all the xi ’s with corresponding

pi (t )’s in the sum of product version of the structure function

Example

Assume that we have component 1 in series with a parallel of two components 2 and 3 as shown

in Figure F.5

1

2

3

a b

Figure F.5: Example RBD

The structure function is

φ(x) = x1 · (x2 ⨿ x3) = x1x2 +x1x3 −x1x2x3

We now replace all the x ′
i ’s in the structure function with corresponding pi (t )’s to get the system

reliability. Assuming p1 = 0.99, p2 = p3 = 0.9 gives:

pS(t ) = p1p2 +p1p3 −p1p2p3 = 0.891+0.891−0.8019 = 0.9801

Pivotal Decomposition and Critical component

In connection with bridge structure in chapter 4 we introduced the technique of pivotal decom-

position, i.e.,

φ [X(t )] = Xi (t )φ [1i ,X(t )]+ [1−Xi (t )]φ [0i ,X(t )]

where 1i and 0i are flags to specify that component i takes the values 1 and 0 respectively. Since

we assume independent components we use the product rule for expectations, and by rearrang-

ing the terms we get:

h[p(t )] = E
[
φ(X(t ))

]= pi (t )
(
h

[
1i ,p(t )

]−h
[
0i ,p(t )

])+h
[
0i ,p(t )

]
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where 1i and 0i are flags to specify that reliability of component i is 1 and 0 respectively

Component i is said to be critical if the rest of the components are in such states that the

system is functioning when component i is functioning and fails when component i fails. Thus

component i is critical if and only ifφ [1i ,X(t )] = 1 andφ [0i ,X(t )] = 0. For a coherent and binary

system component i is critical if and only if:

φ [1i ,X(t )]−φ [0i ,X(t )] = 1

The probability that component i is critical is thus given by:

Pr(Component i is critical) = Pr(φ [1i ,X(t )]−φ [0i ,X(t )] = 1)

E
[
φ [1i ,X(t )]−φ [0i ,X(t )]

]= h
[
1i ,p(t )

]−h
[
0i ,p(t )

]
where we have used that the [1i ,X(t )]−φ [0i ,X(t )] is binary to go from probability to expectation.

If this probability is high, component i has a high reliability importance.

F.6 Birnbaum’s Metric of Reliability Importance

Birnbaum’s metric of reliability importance of a component is a sensitivity measure expressing

the change in system reliability if component i is slightly changed, i.e.,:

I B(i | t ) = ∂h(p(t ))

∂pi (t )

It follows that a small change ∆pi (t ) in the component reliability will result in the following

change in system reliability:

∆h(p(t )) = I B(i | t )∆pi (t )

A disadvantage with Birnbaum’s metric is that it is difficult to calculate. If we are able to write

down the system reliability function, it should be rather easy to find Birnbaum’s metric. But in

practice we will not be able to write down the system reliability function explicitly, and hence

we cannot derive Birnbaum’s metric. In some cases we may utilize that:

I B(i | t ) = h(1i ,p(t ))−h(0i ,p(t ))

which may be used if we are able to determine h(p(t )) with reasonable high precision. The

results follows from pivotal decomposition of h(p(t )) around component i .



Appendix G

Markov Analysis

G.1 Introduction

Markov analysis is used to model systems which have many different states. These states range

from “perfect function” to a total fault state. The migration between the different states may

often be described by a so-called Markov-model. The possible transitions between the states

may further be described by a Markov-diagram, or a state diagram.

Markov analysis is well suited for deciding reliability characteristics of a system. Especially

the method is well suited for small systems with complicated maintenance strategies. In a

Markov analysis the following topics will be of interest:

• The average time the system is in each state. These numbers might further form a basis

for economic considerations

• How many times the system in average “visits” the various states. This information might

further be used to estimate the need for spare parts, and maintenance personnel

• The mean time until the system enters one specific state, for example a critical state.

The main learning objectives of this Appendix is:

• The definition of a Markov process, and what is meant by homogeneous transition prob-

abilities

• That it is possible to derive the Markov differential equations, but we do not need to know

all the details

• The understanding of states and how we derive the Markov transition diagram

• How to map the information in the Markov transition diagram into the transition matrix,

A

237
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• The understanding of the Markov differential equations: P(t ) ·A = Ṗ(t )

• How to find the steady state solution: (i) Steps required for the numerical solution, (ii) that

it is possible to find an analytical solution....

• The definition of the visiting frequencies, and how to find them

• That the time dependent solution is given by P(t ) = P(0)e tA which cannot be used unless

a comprehensive matrix library is available

• How to use the iterative scheme: P(t +∆t ) ≈ P(t )[A∆t + I] if we have access to a computer

with simple matrix functions

G.2 Definitions

A Markov process is a special type of stochastic processes where the process posses the so-called

Markov property. A stochastic process {X (t ), t ∈Θ} is a collection of random variables. The setΘ

is called the index set of the process. For each index t inΘ, X (t ) is called the state of the process

at time t .

In the general presentation we always assume that X (t ) can only take the values 1,2, ...,r .

In practical examples it is often convenient to allow for an additional zero value for the state

variable. A process is said to have the Markov property if:

Pr(X (t + s) = j |X (s) = i ∩ some history up to time s) =
Pr(X (t + s) = j |X (s) = i )

This means that given the process is in state i at some time s, the probability of being in another

state, say j , t time units later is independent of the history up to time s, i.e., we may ignore all

information regarding the process in the past when looking into the future. The only thing that

counts is the current state.

This general presentation also only treats Markov processes with stationary transition prob-

abilities. This means that:

Pr(X (t + s) = j |X (s) = i ) = Pr(X (t ) = j |X (0) = i ) for all s, t ≥ 0

that is, the probability of going from state i to j during a time period of t is independent of the

starting point of such a “journey”.

The following notation is introduced:

Pi j (t ) = Pr(X (t ) = j |X (0) = i )
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The so-called sojourn time, T̃i , is the time the process spends in state i from it arrives to

state i before it jumps out of state i . Further let Ti j denote the time the process spends in state

i before it eventually jumps to state j . The transition rate from state i to state j is denoted ai j

and is the limiting conditional probability of jumping to state j given that the process is in state

i (divided by the length of the interval considered). It may be argued that the Markov prop-

erty and the stationary transition probabilities yields that all transition times are exponentially

distributed. The total rate of transition out of state i is denoted αi , where

αi =
∑
j ̸=i

ai j

From the fact that the sojourn time and all other transition times are exponentially distributed

it follows that:

Pi i (∆t ) = Pr(T̃i >∆t ) = e−αi∆t ≈ 1−αi∆t

Pi j (∆t ) = Pr(Ti j ≤∆t )) = 1−e−ai j∆t ≈ ai j∆t

Rearranging and letting ∆t approach 0, we get:

lim
∆t→0

1−Pi i (∆t )

∆t
=αi (G.1)

lim
∆t→0

Pi j (∆t )

∆t
= ai j (G.2)

These two equations will later be used to obtain the Kolmogorov differential equations. From

the Markov property and the law of total probability we have:

Pi j (t + s) =
r∑

k=1
Pi k (t )Pk j (s)

This equation is denoted the Chapman-Kolmogorov equations. We utilize this equation to find:

Pi j (t +∆t ) = Pi j (∆t + t ) =
r∑

k=1
Pi k (∆t )Pk j (t )

Rearranging (having in mind we are seeking the derivative) we get:

Pi j (t +∆t )−Pi j (t ) =
r∑

k=1
k ̸=i

Pi k (∆t )Pk j (t )− [1−Pi i (∆t )]Pi j (t )

Now dividing by ∆t , inserting equations G.1 and G.2, letting ∆t → 0, and defining ai i =−αi , we
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get after some rearrangements:

Ṗi j (t ) =
r∑

k=1
ai k Pk j (t ) (G.3)

These differential equations are denoted the Kolmogorov backward equations. Similarly, we may

obtain the Kolmogorov forward equations:

Ṗi j (t ) =
r∑

k=1
ak j Pi k (t ) (G.4)

The term ‘backward’ refers to that the equations were derived by considering an instant jump

(transition) to state k back at the start of the interval, and then go to the required state j , i.e.,

first ∆t and then t . The ‘forward’ equations are derived by first considering going from i to k

during time t and then make an instant jump to the required state j at the end of the interval,

i.e., first t and then ∆t .

G.3 Markov state equations

We now assume that we know the initial state, and assume that the process started in state i . We

then simplify notation by omitting the index for the initial state, hence we write P j (t ) instead of

Pi j (t ).

It is convenient to introduce matrix and vector notation. First we define the transition rate

matrix, A:

A =


a11 a12 · · · a1r

a21 a22 · · · a2r
...

... · · · ...

ar 1 ar 2 · · · ar r


where

ai i =−αi =−
r∑

j=1
j ̸=i

ai j

which means that the diagonal elements are defined such that the sum of each row equals zero.

Further we define the row vectors: P(t ) = [P1(t ),P2(t ), . . . ,Pr (t )] and Ṗ(t ) = [Ṗ1(t ), Ṗ2(t ), . . . , Ṗr (t )].
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We may then write the Kolmogorov forward equations on matrix format:

[P1(t ),P2(t ), . . . ,Pr (t )] ·


a11 a12 · · · a1r

a21 a22 · · · a2r
...

... · · · ...

ar 1 ar 2 · · · ar r

= [Ṗ1(t ), Ṗ2(t ), . . . , Ṗr (t )]

that is:

P(t ) ·A = Ṗ(t ) (G.5)

G.4 Time dependent solution for the Markov process

To solve Equation (G.5) as a function of time we may use an analogy to ordinary differential

equations in one dimension and we get:

P(t ) = P(0)eAt (G.6)

Although this is a very elegant solution, it is not very attractive since taking the exponential of a

matrix is not that easy. Computer codes such as Matlab is required. We may, however, rewrite

Equation (G.5) as:

Ṗ(t ) = lim
∆t→0

P(t +∆t )−P(t )

∆t
= P(t ) ·A

yielding

P(t +∆t ) ≈ P(t )[A∆t + I] (G.7)

where I is the identity matrix. This equation may now be used iteratively with a sufficient small

time interval∆t and starting point P(0) to find the time dependent solution. Only simple matrix

multiplication is required. Implementing a solution in for example VBA some considerations

are required regarding the step length ∆t . Choosing a too low value gives numerical problems

and will also require longer computational time. Choosing a too high step length will cause the

approximation in Equation (G.7) to be inaccurate. A rule of thumb will be to use a value of one

tenth of the inverse value of the highest transition rate.

Note that in Markov analysis we usually only require the time-dependent solution for a lim-

iting time period, and typically we would like to calculate P(t ) at values t = 0,∆t ,2∆t , . . .. Using

Equation (G.7) is therefore attractive. To improve the approximation in Equation (G.7) we could
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use one “intermediate” point, i.e., we could use:

P(t +∆t ) ≈ P(t )[A∆t/2+ I][A∆t/2+ I] (G.8)

and even improve by splitting into 2n sub-intervals, yielding:

P(t +∆t ) ≈ P(t )
[
A∆t/2n + I

]2n

(G.9)

Note the similarity between Equation (G.9) and Equation (11.106) in the textbook. The advan-

tage of Equation (G.9) is the calculation efficiency, i.e., we only need n matrix multiplications to

reduce the step-length by a factor 2n . Note that we only calculate [A∆t/2n + I]2n
once in Equa-

tion (G.9), so we could afford double precision in that part of the calculations to increase the

precision. It should be noted that there is still a trade-off between round-off errors and accuracy

in the approximation in Equation (G.9), and a good choice of n would be in the range 4-6.

Steady state solution for the Markov process

In the long run we will have that Ṗ(t ) → 0 when t →∞, hence P(t ) ·A = 0. We define the steady

state probabilities by the vector P = [P1,P2, . . . ,Pr ], where we have omitted the time dependency

(t ) to reflect that in the long run the state probabilities are not changing any more.

To solve the steady state equations we realize that the matrix A has not full rank due to the

way have have established the diagonal elements. To overcome this problem we remove one

(arbitrary) of the equations in the following set of equations:

[P1,P2, . . . ,Pr ] ·


a11 a12 · · · a1r

a21 a22 · · · a2r
...

... · · · ...

ar 1 ar 2 · · · ar r

= [0,0, . . . ,0]

and replace it by the following equation:

r∑
j=1

P j = 1
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For example replacing the first equation gives:

[P1,P2, . . . ,Pr ] ·


1 a12 · · · a1r

1 a22 · · · a2r
...

... · · · ...

1 ar 2 · · · ar r

= [1,0, . . . ,0]

In matrix form we write:

P ·A1 = b (G.10)

where b is a row vector of zeros except for the first element which equals one. Note that Equation

(G.10) is not on standard form A ·x = b. Transposing each side on the equal symbol in Equation

(G.10) gives AT
1 ·PT = bT which could be solved by standard Gauss-Jordan elimination.

Ideally we could obtain an analytical solution for the steady state equations, but for r > 3 we

usually stick to numerical solutions.

G.4.1 Visit frequency

The visiting frequency, ν, is one of several system performance that we define for the steady-

state situation. The visiting frequency for state j , ν j , is the unconditional transition rate into

state j . We could make different arguments for the arrival rate, say ν j
arr, and the departure rate,

say ν j
dep. Considering departures we may argue directly that:

ν j
dep =α j P j (G.11)

Similarly for arrival we have from the law of total probability:

ν j
arr = ∑

k ̸= j
Pk ak j (G.12)

Since in the long run we should fulfil the balance equations stating that the total rate into a state

equals the total rate out of that state we get:

ν j =α j P j =
∑
k ̸= j

Pk ak j (G.13)

G.5 Mean time to first passage to a given state

The visiting frequency ν j is the unconditional transition rate into state j , whereas 1/ν j is the

unconditional mean time between state j is visited. In some situation we would rather find the
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mean time to the first time the system enters state j . To solve this problem we can make state j

an absorbing state. An absorbing state means that we can not leave that state. To make a state

absorbing we just remove all arcs out of that state.

Since we are considering state j as an absorbing state, we obtain the transition rate matrix

identical with the original transition state matrix, except that the j ’th row (corresponding to a

departure) comprises only zeros. From before we know that the transition matrix has not full

rank, and we may therefore remove any of the equations. It is convenient to remove the j ’th

column of the matrix. Further, since row j only contains zeros, P j (t ) will disappear from all

equations. We may therefore also remove the j ’th row in the transition rate matrix. The result is

a set of r −1 differential equations with r −1 unknowns, P1(t ), . . . ,P j−1(t ),P j+1(t ), . . . ,Pr (t ).

Note that when establishing the reduced system by removing the j ’th row and the j ’th col-

umn, the underlying argument is that we treat the modified system with j as an absorbing state,

we can not do this in general. The reduced matrix is denoted AR.

To solve the set of differential equations we introduce the Laplace transform. The Laplace

transform of a function, say f (t ) is given by f ∗(s) = L f (t ) = ∫ ∞
0 e−st f (t )d t . The following rule

applies for the Laplace transform:

L [ f ′(t )] = sL [ f (t )]− f (0) = s f ∗(s)− f (0) (G.14)

In addition we have that the Laplace transform of a sum of functions equals the sum of the

Laplace transforms of those functions. Now taking the Laplace transform on both sides of the

set of differential equations, we observe that the right hand side is the derivative of the state

probabilities, hence the Laplace of the right hand side will be sP∗
i (s)−Pi (0), where Pi (0) = 1

only for the initial state, and 0 else.

The result is a set of r −1 linear equations with r −1 unknowns, P∗
1 (s), . . . ,P∗

j−1(s), P∗
j+1(s), . . . ,

P∗
r (s). In principle we may solve these equations by elimination, or we just use the solver in our

linear algebra library.

The Laplace transform of the survivor function is

R∗(s) =
r∑

i=1,i ̸= j
P∗

i (s) (G.15)

If we are able to take the inverse Laplace transform, we may also find the survivor function R(t )

of the system. A trick to do this would be to arrange the denominator on the form (s−k1)(s−k2)

and then factorize, and hope that we get something we recognize from the table of Laplace

transforms of known functions.

Our objective, is however, to find the mean time to the first time the system enters state j .
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We have that

E[T ] =
∫ ∞

0
R(t )d t

Further we also have

R∗(s) =L R(t ) =
∫ ∞

0
e−st R(t )d t (G.16)

Thus, by inserting s = 0 we have E(T ) = ∫ ∞
0 R(t )e0d t = R∗(0).

Since R∗(0) =∑r
i=1,i ̸= j P∗

i (0) we therefore obtain the mean time to first system failure by:

MTTF =
r∑

i=1,i ̸= j
P∗

i (0) (G.17)

Note that we by this procedure may establish the mean time to the first visit to sate j without

actually calculating the Laplace transforms. What we actually do is to solve a set of linear equa-

tions, where the unknown variables are the P∗
i (0)’s from the reduced systems by removing the

row column corresponding to the absorbing state. Further note that the right hand side equals

0 for all equations except the equation representing the initial state, where the right hand side

equals -1, since sP∗
i (s) = 0 for s = 0.

Note that we here have assumed that state 0 represent the system failure. In a more general

setting we apply the same approach but rather than deleting the first row and column to ob-

tain the reduced matrix, we delete the rows and columns corresponding to one or more system

failure states.

G.6 Birth-death processes

A birth-death process is a special type of Markov process where the transitions are to the next

state immediately above or immediately below the current state. The states has some natural

ordering, for example the number of customers being served by one or more servers. For that

reason we also usually start the numbering from zero rather than one. The transition matrix is

then tridiagonal as shown in Equation

A =


a00 a01 0 . . . . . . . . .

a10 a11 a12 0 . . . . . .

0 a21 a22 a23 0 . . .
... 0 a32 a33 a34 0

 (G.18)
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Figure G.1: Markov transition diagram

The above-diagonal elements, ai j , j − i = 1 are denoted births and causes the system state to

increase by one, whereas the below-diagonal elements, ai j , i − j = 1 are denoted deaths, and

causes the system state to decrease by one. In birth-death processes it is common to use λ as

a transition symbol for births and µ as transition symbol for deaths. A birth-death process may

have a finite or an infinite number of states.

Example

Consider a workshop with three critical machines. Each machine has a constant failure rate

equal to λ and there is one repair man that can repair failed machines. The rate of repair is µ

meaning that the mean repair time is 1/µ. The state variable represent the number of failed

machines. The transition matrix is given by:

A =


? µ 0 0

λ ? µ 0

0 2λ ? µ

0 0 3λ ?


Figure G.1 shows the Markov transition diagram corresponding to the transition matrix.

Note when the system is in state 3 and all machines are functioning, there are 3 machines

that potentially may fail, hence the transition rate from state 3 to state 2 equals 3λ. In state 2

there is only two machines that may fail, hence the transition rate from state 2 to state 1 is 2λ.

Since there is only one repair man, all the above-diagonal elements equal the repair rate µ.

The question marks in the transition matrix represent the diagonal elements. They are com-

pleted at the end when all the “real" transitions are specified by applying the rule that all rows

should sum to one, i.e., we get:

A =


−µ µ 0 0

λ −λ−µ µ 0

0 2λ −2λ−µ µ

0 0 3λ −λ


Figure G.2 shows the specification of this model in MS-Excel. It is convenient to give names

to the cell containing λ and µ. The numerical values used are: λ= 0.001 and µ= 0.1.
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Figure G.2: MS Excel specification of the transition matrix

Table G.1 shows the calculated steady state probabilities. Full production is achieved in 97%

of the operating hours. For some 3% one machine is down for corrective maintenance, whereas

the probability of two or more failed machines is very low.

Table G.1: Steady state probabilities

State Pi

3 0.9703
2 2.91E-02
1 5.82E-04
0 5.82E-06

Problem

In a workshop there are two production lines in parallel. Each production line has a critical

machine with constant failure rate λ = 0.01 failures per hour. There is one (common) spare

machine that can replace a failed machine. We assume that switching time can be ignored. The

repair rate of the machines is assumed constant and equal to µ = 0.2 per hour. If a production

line is down the loss is assumed to be cU = 10 000 NOKs per hour. Only one repair man is

available.

• Construct the Markov diagram and find the steady state solution.

• Calculate the expected loss due to downtime.

• If production is not 24/7 but runs from 07:00 to 15:00 it is reasonable to assume that each

morning we start with 3 functioning machines. Find the time dependent solution and find

the expected loss due to downtime.

• Repeat the analysis, but assume that two repair men are available.

• How much should one be willing to pay per hour for having this extra backup on repair

resources?



APPENDIX G. MARKOV ANALYSIS 248

G.7 Procedure

The Markov Analysis is usually carried out in six steps:

1. Make a sketch of the system

2. Define the system states

3. Group similar sates to one state (reduce dimension)

4. Draw the Markov diagram with the transition rates

5. Quantitative assessment

6. Compilation and presentation of the result from the analysis

Below we describe the state together with an example

Step 1 - Make a sketch of the system

The sketch is mainly used to visualise parallel and serial structures, stand-by systems, switching

systems etc. In Figure G.3 we have drawn a sketch of a simple cold standby system. We consider

a system comprising an active pump and a spare pump in cold stand-by. If the active pump

fails, the stand-by pump is started and continue to do the duty. The failed active pump is then

repaired. If the stand-by pump, which now is working, fails during the repair of the failed pump

there will be a system failure.

Active 
pump

Standby 
pump

Figure G.3: Example of cold standby system

Step 2 - Define the system states

Based on the sketch of the systems the various components are identified. For each compo-

nent one or more states are defined. Often a number is given to each state, where the highest

number represents perfect performance, whereas zero represent a complete fault state. Next

the various states of all components are combined. This may lead to very many states due to the

combinatorial effect. Table G.2 shows the states for the example system.
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Table G.2: States for the example system

State Explanation

2 Active pump is running
1 Active pump failed, stand-by pump running
0 Both pumps failed

Step 3 - Group similar sates to one state (reduce dimension)

This step is only introduced in order to reduce the dimension of the problem. In many situations

several components may be identical and it will usually be possible to group similar system

states into one system state, and hence reduce the dimension of the problem. For example if we

have n = 3 pumps we can group into state 3={All 3 pumps are OK}, 2={2 pumps are OK}, 1={One

pump is OK} and 0={All pumps are failed}. For state 1 and 2 we do not distinguish between which

pumps are functioning. In the example there is no need to group states.

Step 4 - Draw the Markov diagram with the transition rates

The various system states are now drawn in a Markov diagram. Each state is drawn as a circle

labelled with the state number. Transitions between the states are visualised by drawing arrows

between the corresponding circles. On each arrow the transition rate is labelled. Very often the

Greek letter λ represents component failure rates, whereas the Greek letter µ represents repair

rates.

Table G.3 shows the transition rates for the example system. Here we assume that both

Table G.3: Transition rates
Rate Explanation

λ1 failure rate of the active pump
λ2 failure rate of the standby pump (while running, λ2 = 0 in standby position)
µ1 repair rate of the active pump
µB repair rate when both pumps are in a fault state

pumps are repaired as part of one common repair activity if we enter state 0. Figure G.4 shows

the transition diagram for the example system.

2 1 0

λ 1 λ 2

μB
μ1

Figure G.4: Transition diagram for the example system
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Step 5 - Quantitative assessment

Steady state solution:

The transition matrix A is given by:

A =

 a00 a01 a02

a10 a11 a12

a20 a21 a22

=

 −µB 0 µB

λ2 −λ2 −µ1 µ1

0 λ1 −λ1


To find the steady state solution we solve the system P·A1 = b where we may replace any column

(equation) in A with ones. To simplify the set of equations as much as possible we now choose

to replace the last column:

[P0,P1,P2] ·

 −µB 0 1

λ2 −λ2 −µ1 1

0 λ1 1

= [0,0,1]

To solve the set of equation we start with the second equation:

P1(−λ2 −µ1)+P2λ1 = 0 ⇒ P1 =λ1/(λ2 +µ1)P2

Inserted in the first equation:

P0(−µB )+P1λ2 = 0 ⇒ P0 =λ2/µB P1 = λ1λ2

µB (λ2 +µ1)
P2

Now P0 and P1 may be inserted in the third equation:

P0 +P1 +P2 =
[

λ1λ2

µB (λ2 +µ1)
+ λ1

λ2 +µ1
+1

]
P2 = 1

Multiplying with µB (λ2 +µ1) on both sides and rearranging gives:

P2 = µB (λ2 +µ1)

λ1(λ2 +µB )+µB (λ2 +µ1)

P1 = µBλ1

λ1(λ2 +µB )+µB (λ2 +µ1)

P0 = λ1λ2

λ1(λ2 +µB )+µB (λ2 +µ1)
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Visiting frequencies:

From ν j =−P j a j j we get for example:

ν0 =−P0a00 =−P0(−µB ) = µBλ1λ2

λ1(λ2 +µB )+µB (λ2 +µ1)

Time dependent solution:

The time dependent solution requires to solve the Laplace equations, and is rather complicated.

Therefore we stick to numerical methods. At the end of this document we demonstrate the use

of Laplace to find the time dependent solution for a simpler situation with only one component.

Mean time to first system failure:

We use the Laplace transform approach. That is, first we delete the row and column correspond-

ing to the absorbing state, i.e., state 0, and replace the P j ’s with P∗
j s:

[P∗
1 ,P∗

2 ] ·
[

−λ2 −µ1 µ1

λ1 −λ1

]
= [0,−1]

with the solution P∗
1 = 1/λ2 and P∗

2 = (λ2 +µ1)/(λ1λ2), and thus:

MTTFS = P∗
1 +P∗

2 = (λ1 +λ2 +µ1)/(λ1λ2)

G.8 Time dependent solution for a repairable component

Consider a component with constant failure rate λ and constant repair rate µ. Let state 1 rep-

resent the functioning state and state 0 represent the failed state. The transition matrix for this

system is given by:

A =
[

−µ µ

λ −λ

]

Assuming the system starts in state 1 we have P0(0) = 0 and P1(0) = 1, and the Laplace transform

of the time dependent solution is given by:

[P∗
0 (s),P∗

1 (s)]

[
−µ µ

λ −λ

]
= [sP∗

0 (s), sP∗
1 (s)−1]
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Thus

−µP∗
0 (s)+λP∗

1 (s) = sP∗
0 (s)

µP∗
0 (s)−λP∗

1 (s) = sP∗
1 (s)−1

Adding these two equations yields:

sP∗
0 (s)+ sP∗

1 (s) = 1 ⇒ P∗
0 (s) = 1/s −P∗

1 (s)

and inserting into the last of the above equations:

µ/s −µP∗
1 (s)−λP∗

1 (s) = sP∗
1 (s)−1

which is solved wrt P∗
1 (s):

P∗
1 (s) = 1

λ+µ+ s
+ µ

s

1

λ+µ+ s

This expression is not recognized in the list of Laplace transforms. A trick is now to multiply

with (λ+µ)/(λ+µ):

P∗
1 (s) = λ+µ

λ+µ
(

1

λ+µ+ s
+ µ

s

1

λ+µ+ s

)
=

λ

λ+µ · 1

λ+µ+ s
+ λ

λ+µ · µ
s
· 1

λ+µ+ s
+ µ

λ+µ · 1

λ+µ+ s
+ µ

λ+µ · µ
s
· 1

λ+µ+ s

= λ

λ+µ · 1

λ+µ+ s
+ µ

s
· λ+ s +µ
λ+µ · 1

λ+µ+ s
= λ

λ+µ · 1

λ+µ+ s
+ µ

λ+µ · 1

s

Now using L eαt = 1/(s −α) and L 1 = 1/s we find the inverse Laplace of P∗
1 (s) (−α=λ+µ):

d

and

P0(t ) = 1−P0(t ) = λ

λ+µ
(
1−e−(λ+µ)t

)
Note that when t > 3/(λ+µ) the time dependent solution is deviating from the steady state

solution with only 5%. In practice, we therefore often say that steady state is achieved after 3

times the shortest expected transition time, here 3/µ. The time dependent solution is often

needed in FTA (fault tree analysis) and RBD (reliability block diagram) analyses.
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Calculating Q0 in the PF-model

In this Appendix we will describe the method used for calculating the probability that a potential

failure is not detected by the inspection regime. There are two main sources for not detecting

a potential failure in due time; i) the inspection interval is to long compared to the PF- inter-

val, and ii) the quality of the inspection is too low to detect a potential failure. The following

quantities are defined:

• TPF = PF interval (stochastic variable).

• ξ(t ) = Probability density function of TPF

• q = Failure probability of one inspection

• qC = Common cause part of q

• qI = Independent part of q

• τ= Inspection interval

The probability that the inspection strategy fails to reveal a potential failure before a critical

failure occurs could be found by the low of total probability:

Q0(τ,ξ, q) =
∫ ∞

0
Qt (τ, q, t )ξ(t )d t (H.1)

where Qt (τ, q, t ) is the probability of not detecting a potential failure given that the PF inter-

val, TPF, equals t . In order to calculate Qt (τ, q, t ) we observe that when TPF = t , then number

of possibilities to detect a failure equals n or n + 1 where n = int(t/τ) and int(·) is the integer

function.

The probability that we will have n +1 opportunities equals t/τ−n and thus the probability

that we will have n opportunities to detect a potential failure equals n +1− t/τ. Since the prob-

ability that a given inspection fails to detect a potential failure equals q , Qt (τ, q, t ) could easily
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be obtained by:

Qt (τ, q, t ) = (n +1− t/τ)qn + (t/τ−n)q (n+1) (H.2)

if the inspections could be considered statistically independent. However, the assumption that

inspections are independent does not seem realistic. A more realistic assumption would be to

assume that the failure probability of one inspection is given by:

q = qC +qI (H.3)

where qC represents common cause failures due to systematic failures such as low coverage,

and qI represents the failure probability due to specific conditions for one run, e.g., inadequate

velocity of the measuring wagon, human errors etc.

Assuming that the failure probability of one inspection could be split into a common and

an independent part as shown in Equation (H.3) we calculate the total failure probability of the

inspection strategy as:

Q∗
0 (τ,ξ, qC, qI) = 1− (1−qC)

[
1−Q0(τ,ξ, qI)

]
(H.4)

Codes for implementing Q0(τ,ξ, q) in this course assume that ξ(t ) is the gamma probability den-

sity function with some expected value and standard deviation. If we use the gamma distribu-

tion the format of the Q0-function will be Q0(τ,EPF,SDPF, qI).
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