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Introduction

Background

According to EN133006 condition-based maintenance is preventive mainte-
nance which include assessment of physical conditions, analysis and possi-
ble ensuing maintenance actions. Predictive maintenance is condition-based
maintenance carried out following a forecast derived from repeated analy-
sis or known characteristics and evaluation of the significant parameters of
the degradation of the item. That is, predictive maintenance is a subset of
condition-based maintenance but where we explicitly need to understand the
degradation of the item.

The term ‘forecast’ is often replaced with the term ‘prognostics’. To sup-
port maintenance decisions it is desirable to know the point of time when a
failure will occur. Due to the random nature of the degradation, we are not
able to give one number for the point of time when the failure will occur. How-
ever, in many situations we are able to give a prediction with an uncertainty
interval for the time to failure. The remaining useful life (RUL) of an item is
the point of time where the item is not “usable” any more. RUL will depend
on the state and age of an item at the current time. “Remaining” therefore
means “from now on”. Further we recognize that the RUL is a stochastic vari-
able (random quantity). Note that it is not always easy to say when an item
is not “usable” any more. This has to be defined. In some cases RUL points
to the breakdown of the item, whereas in other cases RUL points to the point
of time when the item is “shut down” by protective systems.

Degradation

Degradation is the act or process of degrading, where degrading means to im-
pair in respect to some physical property. Wear, fatigue, erosion and corrosion
are all degradation mechanisms.

To measure degradation is not always easy. In some situations we have
direct measures of degradation i terms of for example size of fatigue cracks.
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Crack size could therefore be a degradation measure. Still for this measure
we have challenges because it might be hard to correctly measure the crack
size, further the direction of the crack size and where the crack is situated is
crucial for when a breakage will occur.

When it comes to rotating equipment it is even harder to measure degra-
dation. We may measure degradation indirectly by for example the vibration
level. But the vibration level is often not a very precise measure to forecast a
coming failure.

In this presentation we use the term ‘degradation’ in a rather loose man-
ner, independent on the challenges we will encounter. In some presentations
the term ‘health indicator’ is used rather than degradation to emphasize that
we are not always measuring degradation directly.

Anomaly detection, diagnostics and prognostics

A distinction is made between the terms ’anomaly detection’, ‘diagnostics’ and
‘prognostics’. All these terms are essential in predictive maintenance.

Anomaly detection

Anomaly detection is the process to distinguish normal behaviour from ab-
normal behaviour. In some situations we rather use the term ‘early warning
detection’. For anomaly detection there are generally three approaches that
are reported as promising:

1. First principle approaches where physical laws are used to represent
the normal behaviour of the system. Several related measurements are
linked together. Under normal operation we expect to observe some
correlation between these measurements. In case of an anomaly we
often observe a different pattern in the correlation, and this is used
as basis for anomaly detection. For example a sump pump in a hydro
power station is used to drain the sump regularly. When the level in the
sump exceeds a predefined level, the pump is started and runs until a
lower set-point is reached. When the pump runs the level is decreas-
ing. By measuring the level over time, we indirectly measure the pump
capacity. Upon degradation of the pump, we expect that it takes longer
time to empty the sump. However, since the level in the sump is in-
fluenced both by the pump capacity and the inflow into the sump the
time to empty the sump is not a precise measure. But if we in addition
measure the inflow into the sump when the pump is not running, we
can easily calculate the pumping capacity by comparing two curves. In
other situations we may apply laws from thermodynamics to establish
such “first principle” laws.
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2. In recent years machine learning (ML) approaches replace the “physi-
cal based” models for correlation with models that are purely obtained
by data-driven approaches. Several cases studies have been performed
that show promising results. Machine learning is attractive because
we do not need to specify in detail the physical laws. What we do is
to present the data for the “machine”. For example we might mea-
sure temperature, pressure, flow, rotation speed etc in a multi-stage
compressor system. Under normal operation we assume that there is
a relation between these measurements but we are not really able to
specify. Then we present for example 70% of the available data to the
“machine” which now will search for “correlation” among the measure-
ments. Example of “algorithms” used in machine learning is “artificial
neural network”, “deep learning networks”, and “support vector ma-
chines”. Different algorithms have different “performance” for different
data sets. When we have “trained” the model on the 70% training set,
we test the model on the remaining 30% of the data.

3. Signal processing. For rotating equipment the standard approach for
anomaly detection has been vibration analysis. For a rotating equip-
ment we may measure distance, velocity and acceleration with a higher
sampling frequency than the rotation frequency. These measurements
can then be analysed in various ways. Both time domain and frequency
domain analysis (FFF = fast Fourier analysis) is used. The tutorials
on the vibration rig in the RAMS lab should indicate aspects of such
anomaly detection

Diagnostics

In predictive maintenance diagnosis usually relates to search for root causes
behind symptoms observed. For rotating machinery very often analyse the
data stream in the frequency domain is the preferred approach. FFT of the
data can identify typical “frequencies” and these are mapped to various un-
derlying root causes. For static equipment and structures we usually have
less “high resolution” information and hence it is more difficult to use the
data to set the correct diagnosis. In recent years also machine learning has
demonstrated success when it comes to diagnostics. When machine learning
is used for anomaly detection we may process large amount of data rather au-
tomated because the period of “normal” behaviour is assumed to be known,
and hence we know what is “normal”. In diagnostics machine learning is
more challenging because we manually need to code, or more precisely, label
the data. For example when we detect a “potential anomaly”, we manually
label the situation, for example this is an outer ring failure of the bearing,
a ball failure etc. Since manual labelling is required, machine learning re-
quires significant analysis work to supervise the “training”.
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Diagnostics is crucial in order to get meaningful result out of prognostics.
The various degradation mechanisms might show quite different degradation
pattern, and hence a precise diagnose will give better prognoses.

Prognostics

Prognostics is the process of establishing models for the degradation when
we look ahead.

Prognostics and residual useful life prediction comprise two main chal-
lenges; (i) how to describe in the time domain the development of some degra-
dation measure used to monitor the condition of a system, and (ii) what is the
failure threshold, i.e., at what “value” measured by the chosen degradation
measure will result in a failure.

For the first problem we may use both ML methods and more classical
models either physic based models with random loads and stochastic pro-
cesses. A limitation of ML methods is usually that we have very few obser-
vations where the system is run to failure, hence in general we have less
trust in ML methods wrt shed light on what happen in late life of the compo-
nent. To cope with this last phase physical models and stochastic processes
together with stochastic modelling of the failure threshold is considered more
appropriate.

The remaining part of this memo will elaborate on some relevant models
used in prognostics.

PF-model

The so-called PF-model is a popular model used in predictive maintenance.
Figure 1 shows a principal sketch of the failure progression (degradation
level) of a component. Up to point of time P there is no indication of a failure.
But then starts failure progression until the failure progression exceeds the
failure limit at point of time F. The point of time P is often referred to as a
potential failure whereas the point of time F is a real failure. The time inter-
val between the points P and F is denoted the PF-interval. The PF-interval
is treated as a stochastic variable. Given that we are at time P in 1, the PF-
interval is corresponding to the RUL. More formally let T denote the length
of the PF-interval. In the modelling it is now crucial to assess the probabil-
ity density function, or the cumulative distribution function, FT (t). In Bane
NOR the PF-interval for rail cracks were assessed and used for determina-
tion of the frequency of ultrasonic inspection of the rails. A general model
with E(T)= 5 years and SD(T)= 3 years were used.

The PF-model as presented above will not be able to take current condi-
tion and future load into account. A reasonable simple extension of the model
used in the previous section will be derived. The starting point is the failure
rate function for the PF-interval, z(t). If se stick to the Weibull distribution
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Figure 1: PF-model

the failure rate function is given by z(t)=αλαtα−1. We observe that z(t) does
not contain neither the current state nor the future loads. The so-called Cox-
proportional hazard model is often used to incorporate the current state in
the failure rate function. Let y be the vector of current relevant state infor-
mation for the component, for example temperature, vibration level and so
on. Next let Let x(t) be the vector of average loads in the time period [0, t).
The failure rate function may be written on the form:

z(t|y, x(t))= z0(t)eβ1 yeβ2x(t) (1)

where β1 and β2 are regression coefficient vectors established by for example
statistical analysis of data. Statistical data analysis is beyond the scope of
this lecture. z0(t) is a baseline failure rate function, typically on the form
z0(t)=αλαtα−1

Now assume that the parameters α, λ, β1 and β2 are all estimated by
analysis of statistical data. Further assume that the current component
state, y, is known and that we have an estimate of future load x(t).

It may now be shown that the cumulative distribution function is given
by:

FT (t|y, x(t))= 1−exp
(
−

∫ t

0
z(u|y, x(u))du

)
(2)

When we know the cumulative distribution function it is rather straight for-
ward to optimize for example the optimal time for replacement/corrective
maintenance. We might also use this model to determine if relaxing on the
future loads will be a strategy when there is a long time to wait for the “main-
tenance window”. For example in offshore wind maintenance the weather
window might be closed for several months in the winter, and an operational
strategy would be to shut down a damaged wind turbine when wind speed
exceeds for example 10m/s.
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Markov chain

Another popular degradation model is the Markov chain model. Figure 2
illustrates the situation.

Figure 2: Markov chain model for emergency shutdown valve

A component is assumed to have five states, where state 1 corresponds to
a new component, whereas the other states represents more and more degra-
dation. State 5 is the fault state. In this model the λ’s represent transition
from one state to another. The times to jump from one state to another is in
the Markov chain model exponentially distributed, that is the reason for the
name ‘Markov’ after a Russian mathematician. Compared to the PF-model,
we may say that the Markov chain model is a refined model where we distin-
guish between various states. A potential failure corresponds to the second
state in the Markov model, whereas the failure state corresponds to the fifth
state in the Markov model. The mathematical analysis simplifies if we can
assume exponentially distributed transition times. In a more general situa-
tion we may model the transition times similarly to equation (1). So-called
phase type distributions may then be used to overcome the non-Markovian
behaviour of the intermediate transitions. The mathematical framework re-
quired is beyond the scope for this lecture. The usage of such a model could
be multiple:

1. Determination of inspection intervals. Here the inspection interval
may vary between states.

2. Determination of repair strategies, i.e., in which state is a repair re-
quired, and is it always required to repair to an “as good as new” condi-
tion

3. How long can we wait before we repair?

4. Can we relax on the operational load in order to postpone the repair
activity, i.e., if we are able to link the transition rates to the operational
load mathematically?

There are two main reasons for working with a discrete model for degra-
dation. Firstly the available data will in many cases only provide discretized
state information, This is the case in many oil and gas companies as well in
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hydro power stations. Further a Markov chain model is often more attractive
to work with than the stochastic processes where the state (degradation) vari-
able is continuous. In the next section we will, however, introduce a stochastic
process where the state variable is continuous.

Continuous state stochastic processes

Figure 3 shows how may imagine that degradation evolves in time. Degra-
dation means a change of condition (or health) from a good state to a worse
state. The degradation level, here denoted D(t), is a stochastic process, and
the future degradation level is uncertain and can therefore represented by
a stochastic variable (random quantity). This is indicated by one path up to
the current time, and then we indicate different paths that may be followed.
If there is a threshold, or failure limit L, the hitting time (i.e. the time the
stochastic project reaches/hits the failure limit L) will also be a stochastic
variable. The remaining useful life (RUL) is defined as the time from now
until the failure limit is hit.

Figure 3: Continuous degradation over time

The model has similarities with the Markov chain model, but here we
assume that degradation is continuous rather than following a discrete path.

Several mathematical models exist for describing the degradation. In
these models we assume that it is the increments in the degradation level
from day to day that represent the randomness in the process. We let∆D(t,∆t)
denote the degradation in a small time interval from t to t+∆t. This can often
be understood in terms of loads that cause damage to an item and hence an
increase in the degradation level. Here the increments are typically stochas-
tic independent for different points of times

The gamma and Wiener processes are classical stochastic processes used
for degradation in the maintenance models. For the stationary gamma pro-
cess we assume that increments are independent and gamma distributed.
For the stationary Wiener process we assume that the increments are inde-
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pendent and normally distributed. Thus:

D(t+∆t)= D(t)+∆D(t,∆t) (3)

Physical arguments may be used to argue that the increments depend on the
current degradation level, cf. the Paris law for fatigue cracks. A relevant
stochastic process to consider in this situation is a Geometric Brownian Mo-
tion (GBM):

∆D(t,∆t)=µD(t)∆t+σD(t)∆W(∆t) (4)

Where ∆W(∆t) is normally distributed with zero mean and standard devi-
ation ∆t. µ represents the “percentage drift” and σ represent “percentage
volatility”.

Given that the degradation level at time t is observed to be D(t) and we
know the parameters µ and σ, uncertainty intervals can be obtained for the
degradation level at the future time t+ s rather easily. To find uncertainty
intervals for the time to hit the failure threshold by means of analytical meth-
ods is more complicated, but rather easy if we apply Monte Carlo methods.

The GBM model will result in an exponentially increasing degradation.
This may be reasonably from physical arguments as discussed for fatigue
cracks. Case studies have also indicated that the exponentially trajectory
is changing at some critical values. A so-called twin-exponential model has
been proposed for this situation.

In the twin-exponential model, it is proposed to use a two-stage process
by combining two GBMs with different parameters. Before the first predic-
tion time (FPT), which is the time when the process changes from slow to
fast development, GBM has parameters µ1 and σ1. After the FPT, GBM pa-
rameters are changed to µ2 and σ2. The transition occurs at time t =φ. The
parameters µ1,σ1,µ2,σ2 and φ (=FPT) are unknown in the model and needs
to be estimated.

Figure 4 shows the degradation level (health indicator) for pump bearing
data:

The health indicator here is the so-called root mean square (RMS) of the
wavelet transform of the raw vibration data. The health indicator is estab-
lished by a so-called feature extraction procedure. Feature extraction is be-
yond the scope of this lecture.

In a study performed in the MonitorX project within the hydro power
industry, this model were tested. In addition to model the degradation with
the twin-exponential model, also the failure threshold L was modelled by a
stochastic variable.

Around Christmas time we plan to use our vibration rig in the RAMS
lab to conduct experiments. Bearings will be exposed to extreme loads (force
and/or particles enforced inside the bearing) to accelerate the degradation
process. The twin-exponential model is one out of many model we will test
for RUL prediction with our own generated data.
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Figure 4: Twin-exponential model
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