Shock model - Proof testing in case of hidden function
- In case of a hidden function a functional test (proof test) is often appropriate to reveal a hidden failure
- This means that a periodic function test is the natural maintenance strategy
- We need to assess the PFD (Probability of Failure on Demand) which expresses the portion of time the system is not able to perform the required function
- For a k oo N system the PFD is given by: $ \color{blue}{ \mathrm{PFD}(\tau) \approx \binom{N}{N-k+1} \frac{(\lambda \tau)^{N-k+1}}{N-k+2}+\beta \lambda \tau /2 } $
- β is the rate of common cause failures
- Where a k oo N system is a system comprising N (identical)
units where the system is functioning if and only if k or more of the units are functioning
- In case of a single component the folloing more familiar formula may be used: PFD = λτ/2
- The cost equation to minimiize: C(τ) = CFT/τ +
N⋅CR(λ - λ2τ/2) +
CH⋅PFD(τ)⋅fD
- CFT is the cost of performing a functional test of all the N units
- CR is the cost of repairing one of the N units in case of revealing a failure during the functional test
- CH the ecconomical cost of an hazardous event
- fD the rate of demands of the hidden funciton, typically the rate of gas leakages, fires etc