
PK8207 - Lecture memo

Jørn Vatn
Email: jorn.vatn@ntnu.no

Updated 2020-08-23

Markov State Model - An introduction

Introduction

Consider a stochastic process {Y (t), t ∈Θ}, where Y (t) describes the state (de-
terioration level) of an item at time t. In the following we will assume that
the state variable only takes a finite number of states. We first present the
model when no maintenance is carried out, i.e., we start at time t = 0 and
observe the system until failure. Let:

Y (0)= y0

Y (T)= yr (1)

where T per definition is the time of the first failure. Between y0 and yr there
are r−1 intermediate sates. By choosing a large value of r we could obtain
a very good approximation to a continuous process if this is required. We
will now let T̃i, i = 0, . . . , r−1 be sojourn times, i.e., how long the system stay
in state i. Notationally we will typically denote the states by their number
rather than by the value to simplify notation.

For the initial model we assume that the sojourn times are independent
and exponentially distributed with parameter λi. Later on we will investi-
gate how sojourn times may be modelled by arbitrary distributions. We also
assume that the process runs through all states chronologically from y0 to yr
without “stepping back” at any time.

Before we present the modelling framework for this simple situation we
introduce the maintenance model. Figure 1 depicts the development of Y (t)
as a function of time. On the x-axis it is indicated that the system is inspected
at period of times τ,2τ,3τ, . . .. If the system is found in state Y (t) ≥ yl at an
inspection, the system is renewed to an as good as new state, i.e., y0.

We now go back to the simple situation where maintenance is not consid-
ered. Let Pi(t) denote the probability that the system is in state i at time t.
By standard Markov considerations we obtain the Markov differential equa-
tions:

Pi(t+∆t)≈ Pi(t)(1−λi∆t)+Pi−1(t)λi−1∆t (2)

1



y1

y2

yl

yr

1

2

r

l

Time
�

y0 0

:
:

Maintenance limit

���� �� �� �� ����

�0

� r-1

�1

Figure 1: Markov transition diagram

where ∆t is a small time interval and and we set λ−1 = 0 per definition. Fur-
ther the initial conditions are given by:

P0(0)= 1

Pi(0)= 0 for i > 0 (3)

Equation (2) could easily be integrated by a computer program, for example
VBA in MS Excel. It is now easy to find MTTF by another integration, i.e.,

MTTF=
∫ ∞

0
[1−Pr(t)]dt (4)

and we should verify that we get MTTF =∑r−1
i=0 λ

−1
i . Note that the transition

rates, λi ’s, are assumed to be known, that is either they are estimated from
data, or found by expert judgement exercises.

Exercise

Assume r = 5 and λi = 0.01, i = 0,1, . . .. Integrate the Markov differential
equations and obtain the expected value and variance of the time to failure.
Hint: Use partial integration for the variance similar to MTTF= ∫

R(t)dt. �

Equation (2) may be used in situations where we only allow transitions from
state i to state i+1. In more general situations there could be transitions in
principle from any state i to state j. In this situation we need to work with
matrices. Let A be an (r+1)× (r+1) matrix where element (i, j) represents
the constant transition rate from state i to state j. The indexing here starts
at 0, e.g., A(0,1)= a0,1 is the transition from state 0 to state 1.

Further, let P(t) be the time dependent probability vector for the various
states defined in A. We now let P(t = 0) = [1,0,0, . . . ,0] to reflect that the
system starts in state 0. From standard Markov theory we now need the
Markov differential equations, i.e., P(t) ·A= Ṗ(t), from which it follows:

P(t+∆t)≈P(t)[A∆t+I] (5)

2



where ∆t is a small time interval. Equation (5) is now used repeatedly to
find the time dependent solution for the entire system. This corresponds to
integrating Equation (2).

We now outline the main principle for working with matrices to find the
time dependent solution and other relevant quantities. Assume we have ac-
cess to a small library of matrix routines:

Function mMult(A,B) -> Returns a matrix equal to A * B

Subroutine fixA(A) -> Fill diagonal of A such that sumrow=0

Function getIntMatrix(A, DeltaT) -> [A * DeltaT + I]

In the following we assume that the matrix library is defined by standard
indexing, i.e., the first row is denoted row number 1 and so on. A warm up
exercise to find MTTF is now:

Function getMTTF(A)

fixA A

MTTF = initial guess

DeltaT = MTTF / 1000

hlp = 0

t=0

P=[1,0,0,....]

IM = getIntMatrix(A, DeltaT)

Do While t < 5*MTTF

P = mMult(P, IM)

hlp = hlp + (1-P(r+1)) * DeltaT

t = t + DeltaT

Loop

getMTTF = hlp

End Function

To get higher precision we could increase the integration to e.g., 10MTTF.
Note the motivation for this approach is given by:

MTTF=
∫ ∞

0
R(t)dt =

∫ ∞

0
[1−Pr(t)]dt (6)

where 1−Pr(t) is the probability that we are not in state r at time t.

Exercise

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Find MTTF by
numerical integration. Compare with the analytical result. �

So far the maintenance regime is not reflected in the approach. Let
λE(τ, l) be the effective failure rate, i.e., the expected number of failures per
unit time if the system is inspected every τ time unit, and renewed whenever
Y (t) ≥ yl at an inspection. In the integration of Equation (5) we start with
t = 0 and whenever t coincides with τ, 2τ etc., special actions are taken:

3



Function lambdaEffective(A,tau,l)

fixA A

MTTF = getMTTF(A)

DeltaT = MTTF / 1000

hlpF = 0

t=0

localTime=0

P=[1,0,0,....]

IM = getIntMatrix(A, DeltaT)

Do While t < 10*MTTF

P = mMult(P, IM)

hlpF = hlpF + P(r + 1) Add to effective failure rate

P(1) = P(1) + P(r + 1) If system is failed, it is assumed to be renewed

P(r + 1) = 0 Clear probability

If localTime >= tau Then

sumP = 0

For i = l+1 To r

SumP = SumP + P(i)

P(i)=0

Next i

P(1) = P(1) + SumP

localTime = 0

Else

localTime = localTime + DeltaT

End If

t = t + DeltaT

Loop

lambdaEffective = hlpF / t

End Function

Note the indexing, i.e., the failed state is r+1 and the maintenance limit is
l+1.

In the If localTime = tau part of the script above we have used a loop
to simulate what is happening during an inspection. A more efficient way to
do this would be to create an “inspection matrix”, say M defined by:

M=



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...
1 0 0 · · · 0
1 0 0 · · · 0
...
1 0 0 · · · 0


(7)

4



where the starting point is an identity matrix, but where we from the row
corresponding to state l shift the “ones” to the left.

:

If localTime >= tau Then

P = mMult(P, M)

localTime = 0

Else

:

Such an inspection matrix could also be used to specify that an inspection
is not perfect. For example if q is the probability that an inspection fails to
reveal that the actual state is l or higher, the corresponding leftmost “one” is
replaced by 1− q and the diagonal element is replaced by q for rows corre-
sponding to states l, l +1, . . . , r−1. A inspection matrix could also be used to
specify that upon an inspection it might be decided to repair to a state which
is not as good as new. For example in 80% of the cases we repair to state 0, in
15% of the cases we repair to sate 1 and in 5% of the cases we repair to state
2.

Exercise

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system
is inspected with intervals of length τ = 26. If the system is found in state
l = 4 the system will be renewed. Renewal takes place immediately. The
probability that a inspection reveals that the system is in state l = 4 is 70%
when this is the case. Find the effective failure rate for this situation. �

Significant repair times

So far we have assumed that repair times could be neglected. If we can not
neglect repair times we need to model repair times in the transition matrix
A. For example if at an inspection we with some probability q will decide
to repair from state i to state j with constant repair rate µ a first approach
would be to modify the A-matrix, i.e., A(i, j) = ai, j = qµ. However, this would
imply that a repair starts immediately after the system has reached state j.
In reality, a repair can first start after the coming inspection.

To handle the situation we now introduce “virtual” states. A virtual state
is a state in the A-matrix representing the situation where a maintenance
action has been decided and the repair is actually started. For each pair (i, j)
where there could be a repair from state i to state j a virtual state ki, j is
defined. Then the associated transition rate is set to aki, j , j = µ. The row and
column representing the virtual state ki, j can be any ones larger than those
already “occupied”. The inspection matrix M will also get an additional row

5



Figure 2: Markov transition diagram with potential repairs

and column representing the virtual state ki, j, where M(i,ki, j)= q, where we
in addition need to ensure that the row sum equals one.

Note that while repairing from state i to state j represented by aki, j , j = µ

there might be a “competing” transition from for example state i to state l,
thus we also need to specify aki, j ,l =λi,l .

Figure 2 illustrates the full Markov diagram for a situation with r = 4.
Here λi j is the transition rate from state i to state j representing degrada-
tion. Further µi j is the repair rate from state i to state j. When a repair is
initiated as a result of a proof-test, virtual states are introduced. For exam-
ple state (2,1) represent that it after a test is decided to repair from state 2 to
state 1. The doted lines represent transitions that instantaneously take place
after a proof-test. The probabilities given by the q-values represent mainte-
nance decisions. For example q3,3.0 = 1 represents that if a state 3 is revealed
by a proof-test, we always initiate a repair to state 0. q2,2.0 is representing
the probability that we after revealing a state 2 on a proof-test we initiate
a repair to state 0. The q-values are entered into the inspection matrix, M.
Note that in Figure 2 we use the notation aFrom,To without indicating the
actual row and column numbers in the transition matrix. The notation aki, j ,l
on the other hand, is used to identify a row and column number in a matrix
in the code.

In previous sections we have focused on the effective failure rate, but we
might also be interested in the average portion of time we are in each state.
For example we may use:

:

Do While t < 10*MTTF

P = mMult(P, IM)

Pavg = Pavg + P

If localTime >= tau Then

P = mMult(P, M)

localTime = 0

6



Else

localTime = localTime + DeltaT

End If

t = t + DeltaT

Loop

Pavg = Pavg * DeltaT / t

:

Exercise

Assume r = 5 and λi = 0.01, i = 0,1, . . . (time unit weeks). Assume the system
is inspected with intervals of length τ= 26. If the system is found in state l =
4 the system will be renewed. There is a logistic delay of in average 4 weeks
before the repair takes place. Delay time is assumed to be exponentially
distributed. The probability of revealing state l = 4 is still 70%. Find the
effective failure rate for this situation. �

7


