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Introduction to maintenance optimization

Introduction

The main objective of this course is to increase our understanding of main-
tenance and improve maintenance modelling skills. In particular we focus
on Data Driven Prognostics and Predictive Maintenance. With maintenance
we understand “the combination of all technical and administrative actions,
including supervision actions, intended to retain an item in, or restore to, a
state in which it can perform a required function”. With maintenance optimi-
sation we understand “balancing the cost and benefit of maintenance”. There
are many aspects of maintenance optimisation, and some of these are:

¢ Deciding the amount of preventive maintenance (i.e. choosing mainte-
nance intervals)

* Deciding the degradation level upon it is beneficial to replace a compo-
nent

¢ Deciding whether to do first line maintenance (on the cite), or depot
maintenance

¢ Choosing the right number of spare parts in stock

* Preparedness with respect to corrective maintenance
¢ Time of renewal

* Grouping of maintenance activities.

With preventive maintenance (PM) we understand “the maintenance car-
ried out at predetermined intervals or according to prescribed criteria and
intended to reduce the probability of failure or the degradation of the func-
tioning of an item” (EN 13306). There exist several approaches to determine
a preventive maintenance program. A concept that is becoming more and
more popular is the concept of Reliability Centred Maintenance (RCM). RCM



is “a systematic consideration of system functions, the way functions can fail,
and a priority based consideration of safety and economics that identifies ap-
plicable and effective PM tasks.

An RCM analysis is usually conducted as a pure qualitative analysis
with focus on identifying appropriate maintenance tasks. However, the RCM
methodology does not give support for quantitative assessment in terms of
e.g., interval optimisation. In this course we will present the framework for
optimising maintenance interval as well.

The strength of RCM is its systematic approach to consider all system
functions, and set up appropriate maintenance task for these functions. On
the other hand, RCM is not a methodology that could be used to define a
renewal strategy. To determine optimal renewal strategies for larger systems
we usually work work with Life Cycle Cost modelling (LCC), see example in
TPK5115.

In contrast to traditional calendar based preventive maintenance the main
idea of a predicative maintenance strategy is to utilize component condition,
future loads, and opportunity windows to determine a “just in time” plan for
maintenance. Condition information is basically used for:

1. Anomaly detection, i.e., early warning of coming events
2. Diagnostics, i.e., the search for root causes behind symptoms observed

3. Prognostics, i.e., estimation of degradation rate, time to failure, remain-
ing useful life etc based on relevant information

Classical maintenance optimization

Within maintenance optimisation literature it is common to present some
basic models such as the Age Replacement Policy (ARP) model, the Block Re-
placement Model (BRP) and the Minimal Repair Policy (MRP). Such models
were introduced by Barlow and Hunter (1960) and have later been gener-
alised in several ways, see e.g. Block et. al. 1988, Aven and Bergman (1986),
and Dekker (1992). There exists also several major (review) articles in this
area, e.g. Pierskalla and Voelker (1979), Valdez Flores and Feldman (1989),
Cho and Parlar (1991) and Wang (2002).

Some of these classical methods will be discussed in this course. However,
in order to have a standardized framework for the modelling we will intro-
duce a common term, i.e., the “effective failure rate” which may be applied in
very many situations.

The effective failure rate is the expected number of failures per unit time
as a function of our preventive maintenance strategy. In the simplest cases
the preventive maintenance strategy is to maintain at predefined intervals.
We will denote the failure rate by Ag(). For example if we as a preventive



maintenance activity replace the item at intervals of fixed length 7, we write
the effective failure rate as Ag(7).

Now there are two challenges, first we want to establish the relation Ag(7)
depending on the (component) failure model we are working with, then next,
we need to specify a cost model to optimise. The cost model will generally
involve system models as fault tree analysis, Markov analysis etc. This en-
ables us to find the optimum maintenance intervals in a two step procedure.
Note also that when we use Ag(7) in the system models we then assume a
“constant failure rate” which of course is an approximation for ageing compo-
nents. However, if the component is maintained preventively it is reasonable
that those failures “escaping” our maintenance strategy are independent of
time, hence the constant failure rate approximation is reasonable.

Introductory example

Consider a component for which the effective failure rate is given by Ag(7) =
7/100, where 7 is the maintenance interval. Assume that the cost of a com-
ponent failure is Cy = 10 (corrective maintenance cost, production loss etc).
Further let Cpy = 1 be the cost per preventive maintenance action carried
out at intervals of length 7. The total cost per unit time is then given by:

C(t)=Cpm/Tt +Cp1/100 =1/7 +7/10 (1)

To minimize cost we differentiate, and equate to zero:
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Expanding the cost model

In many situations we would be more explicit on the cost of a failure. A
standard form of the cost model to consider is given by:

C(7) = Cpm/T + A(T)CF = Cpm/T + AE(T)[Ccm + CEp + CEs + Cem] (3)
where

¢ Cppy is the cost per preventive maintenance activity

* CcmMis the cost of a corrective maintenance activity

¢ Cgp is the expected economic value of production loss upon a failure
often expressed as: Cgp = Pr(P)[CpMDT + Cr], where

— Pr(P) is the probability that a component failure gives a system
failure with production loss

— Cp is the value of production loss per time unit (typically per hour)
when the system is down



— MDT is the mean down time after a failure (typically in hours)

— Cr a fixed cost upon a trip, i.e., when the system goes down inde-
pendent of the duration of the downtime

* (Cgsis the expected economic value related to safety loss upon a failure,
and is often expressed as: Cgg = Pr(S)Cgs, where

— Pr(S) is the probability that a component failure gives a system
failure with safety impact

— Cgis the corresponding cost given that the “safety event” occurs

* Cgwm is the expected economical value of material losses upon the com-
ponent failure .

By an explicit modelling of the failure cost Cp we might investigate other as-
pect of the optimization problem than the effective failure rate. For example
MDT might depend on availability of spare parts, preparedness etc, further
Pr(P) might depend on the reliability of backup systems, and Pr(S) might de-
pend on other safety barriers. In the following we will not pursue this idea,
and generally we collect all costs into Cp.

The effective failure rate, Ag()

There is no general formula for the effective failure. We need to consider each
situation individually. However, there are some standard situations where
we are able to provide explicit formulas or ways to calculate the effective
failure rate.

The “simple” situation

A very simple way to find the effective failure rate is described below. This
approach is very often sufficient, although the approximation might be rather
rough. Assume that we have an ageing item, i.e., an item with an increasing
failure rate function z(¢). Further assume that times to failure are Weibull
distributed with mean time to failure MTTF and ageing (shape) parameter
a. If we replace the item periodically with times between replacements equal
to 7, we approximate the effective failure rate with the average failure rate
function in the interval [0, 7]. This gives:
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A slightly improved approximation

Equation (4) is not very accurate if the 7 > MTTF/3. It might be shown that a
better approximation is given by:
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where the correction term y(z,a, MTTF) is given by:
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Computationally Equation (5) will not cause any problems. But if we search
for analytical solutions we will not be able to find such ones with this im-
proved approximation.

An almost exact approximation

The effective failure rate is the expected number of failures per unit time.
Assuming that the item always is replaced by a new one every 7 time unit,
the expected number of failures in one cycle of length 7 is given by the renewal
function, W(r) = E(N(1)). This means that the effective failure rate is given
by:
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From the fundamental renewal equation, W(¢) = Fp(¢)+ fg Wt —x)fr(x)dx we
are able to set up an iterative scheme to calculate the effective failure rate.
Assume we have a reasonable initial approximation, for W(¢), say Wy(¢). We
may then use the following iteration scheme:
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to obtain better and better solutions for W(¢). An initial approximation would
be:
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To solve the convolution integral in Equation (8) we need numerical methods.
For each iteration we need to maintain a vector of W-values. Fp(t) and fr(t)
are the cumulative distribution function and probability density function for
the time to failure respectively, and in our case we usually assume Weibull
distributed times to failure. For typical values of t < MTTF the solution con-
verges after 2-3 iterations.

Although we need rather few iterations, computational time might still
be long because it is required to calculate the effective failure rate several
times in order to minimize total expected cost.

Exercise

Assume a component is replaced with a new one every 7 time unit indepen-
dent of when failures occur. Calculate the effective failure rate by Equation
when 7 = MTTF/2 and a = 3. Compare with equations (4) and (5).



