

European Safety and Reliability Conference Trondheim, Norway, 17-21 June 2018

Industry 4.0 and real-time synchronization of operation and maintenance

Jørn Vatn

Department of Mechanical and Industrial Engineering NTNU - Norwegian University of Science and Technology, Norway

lacksquare Norwegian University of Science and Technology

Background

- Maintenance decisions need to take into account
 - *Current* state of the component, system etc ("real-time")
 - Cost of maintenance and failures taking *current* operational context into account ("real time")
 - *Future* loads affecting the probability of failure
 - These loads may be *influenced* by changing operational profiles

Can we use Industry 4.0 concepts to approach the challenges?

Objectives

- Elaborate on basic elements of Industry 4.0
 - Digital twin, stochastic digital twin
 - Real-time
 - Digital twins interacting
- Present elements of a case study: towards a set of interacting digital twins

Industry 4.0 (Forth industrial revolution)

- Industry 4.0 is a collective term particularly used in manufacturing to emphasize technologies and concepts of value chain organizations
- Related terms
 - Cyber-Physical Systems
 - the Internet of Things
 - Cloud computing
 - Digital Twin
- Although the term originates from the manufacturing industry, the elements of Industry 4.0 are relevant for most businesses (Maintenance 4.0, Safety 4.0, Ship 4.0,...)
- The current usage of the term Industry 4.0 has been criticized as essentially meaningless

Focus on the **elements** rather than the term Industry 4.0 as such ! (avoid buzzwords)

IoT - Internet of Things

- The Internet of Things (IoT) is the network of items embedded with *electronics*, *software*, *sensors*, *actuators*, and *network connectivity*
- which enable these objects to connect and exchange data

IoT is what we need to connect

Cloud computing

- Cloud computing is an information technology paradigm that enables *access* to shared pools of configurable system *resources*
- In some presentations the term Internet of Services (IoS) rather than cloud computing

With cloud computing we do not need to think about platforms, how to connect etc (hopefully)

O NTNU Norwegian University of Science and Technology

Digital twin

- The digital twin refers to a digital *replica* of physical assets, processes and systems that can be used in real-time for control and decision purposes
 - Computerized mathematical model (what we have done over years)
 - Real-time, thanks to IoT
- In contrast to a physical asset, the digital twin can immediately respond to *what-if* inquiries

Digital Twin vs Stochastic Digital Twin

Stochastic digital twin

- A stochastic digital twin is a computerized model of the stochastic behavior of a system where
 - the model is updated in real-time
 - based on sensor information and other information
 - accessed via the internet and the use of cloud computing resources
- What-if inquiries result in *pdf*'s rather than single values

Real time model vs test model

"Google maps – Traffic" vs "Google maps Bicycle-friendly routes»

Real-time model

- A real-time model is a model where it is possible to obtain values of system performance and system states in *real-time*
- With real-time we mean that data referring to a system is analysed and *updated at the rate at which it is received*

NTNU Norwegian University of Science and Technology

Test model

- A test model is a mathematical model describing relations between future and current values of the variables of interest, but where we are not able to monitor system performance and system states in realtime
- Such a model is often referred to as an off-line model or a sandbox model
- A test model is still valid in order to establish decision rules to be used in real-time

NTNU Norwegian University of Science and Technology

Case study – Turnout monitoring

- Turnouts (switches) are important components in the railway infrastructure, and failure of a turnout will usually give large problems with the circulation, and delays are expected
- A range of condition monitoring techniques exist
- BaneNOR is running at test project in Norway where the *electric current* of the motor is monitored, and represents a *signature* that can alert a coming failure

Signature (Normal operation)

Current

lacksquare Norwegian University of Science and Technology

Indication of a potential failure

Background theory

RUL = Residual useful life

RUL = Residual useful life

• Do we need it?

- Yes

- What is it?
 - Useful life, not necessarily time to failure
- Is it a single number?
 - No, for decision purposes it is a *random variable*
- How to assess it?

RUL - assessment

- 1. Stochastic processes
 - Gamma process, Markov chains etc
- 2. Life time models

 $- z(t|y,x(t)) = z_0(t)e^{\beta_y y + \beta_x x t}$

3. Physical degradation models with stochastic loads

$$-\frac{da}{dt} = \frac{A(\Delta K)^m}{(1-R)^{m(1-\lambda_W)}}$$

- 4. Signal processing approaches
- 5. Machine learning
- 6.

RUL assessment challenges

- We have some models and techniques...
- We have some ideas regarding the data we need to feed into models
- We have not convinced the industry to structure and collect data that *fulfils our needs and wishes*
- Systematic mapping of applicable methods for different failure mechanisms missing
- When to combine?
 - For example machine learning for diagnosis, stochastic process for prognosis
- Can we update our RUL assessment in real-time?

Digital twins

- A maintenance twin
- A production twin (including punctuality)

Digital twin for maintenance (degradation)

- The focus is on "when to act" upon a potential failure rather than the classical inspection interval approach
- A PF-model is used for RUL:

•
$$z(t|y, x(t)) = z_0(t)e^{\beta_y y + \beta_x xt}$$

- Where
 - $z_0(t)$ = baseline failure rate function, T_{PF}
 - y = degradation level at the point of warning
 - x(t) = future load in the near future (t is typically minutes and hours)
 - β_y and β_x regression coefficient in the Cox-proportional hazard model

Real-time ?

• Not actually in Bane NOR, the case study is only illustrative

• But

- y = current degradation level in real-time is *in principle accessible*
- -x(t) =future loads
 - This is something the digital twin for the production *in principle can respond on*, i.e., how many trains are scheduled to pass the coming hours and how many shifting operations are required?
 - In a "what-if" analysis, we may also investigate what is happening if we relax on operation, i.e., if we move crossing to another station to avoid operating the switch (and reduce the likelihood of a failure)

For example y is obtained in real-time by

lacksquare Norwegian University of Science and Technology

Real-time ?

- Not actually in Bane NOR, the case study is only illustrative
- But
 - *y* = current degradation level in real-time is *in principle accessible*
 - x(t) =future loads
 - This is something the digital twin for the production *in principle can respond on*, i.e., how many trains are scheduled to pass the coming hours and how many shifting operations are required?
 - In a what-if analysis, we may also investigate what is happening if we relax on operation, i.e., if we move crossing to another station to avoid operating the switch (and reduce the likelihood of a failure)

NTNU Norwegian University of Science and Technology

Stochastic digital twin?

• Yes:

- $F(t|y, x(t)) = 1 e^{\int_0^t z(u|y, x(t))d}$
- The cumulative distribution function, *F*(), is essentially what we need for the optimization:

The objective function to minimize:

- $C(t,x) = c_{\rm PM}(t) + c_{\rm U}F(t|y,x) + c_{\rm R}(x)$
 - t = time for when to act upon the potential failure = decision variable
 - x = how many times we operate the degraded switch = decision variable
 - $c_{PM}(t)$ = Cost of preventive action, decreases as function of t, to be obtained from the production digital twin
 - $c_{\rm U}$ = Punctuality (unavailability) cost upon a failure (production digital twin, or punctuality model)
 - F(t|y,x) = Failure probability, maintenance digital twin
 - $c_{\rm R}(x)$ = Relaxing cost, i.e., a function of how many times the switch is operated (production digital twin)

lacksquare Norwegian University of Science and Technology

Results

- It is assumed that maintenance opportunities exist at time 3, 5, 7 and 9 hours at various "costs"
- Calculation examples are shown in the paper
- Result (optimal intervention time, *t*):

t (hours)	Delay (min)	CPM	$C_{\rm F}$	C _{Tot}
3	30	18 500	822	19 322
5	15	11 750	3 4 2 2	(15 172)
7	10	9 500	9812	19 312
9	0	5 000	22 562	27 562

NTNU Norwegian University of Science and Technology

Konklusjoner

- Moderne (prediktivt) vedlikehold vil i større grad legge tilstands- og belastningsprofil til grunn for beslutninger
- Vi trenger matematiske modeller som jobber i sann tid
 Dvs digitale tvillinger både for vedlikehold og produksjon/drift
- NTNU er involvert i mange forskningsprosjekter hvor vi ser på hvordan vi kan utnytte resultatene av digitaliseringen
 - Styring (adm støttesystemer)
 - Optimalisering (bruk av informasjon til å fatte riktig beslutning)

