
Problem 2.10

The idea in dynamic programming is often to obtain an accumulative return
function, say fn(Sn), where the accumulative return at stage n is the return
at stage n plus the accumulative return at stage n− 1. If we know the best
accumulative return at stage n− 1, it follows that

f(n, S) = max{Log(c) + b * f(n - 1, S - c)}

where b is the discount factor used to reduce the value of the future ac-
cumulated returns. S − c is the remaining capital to spend for periods
n− 1, n− 2, . . . , 1. The essential recursive function to write is:

Function f(n, S)

fStar = -1

If n = 1 Then

f = Log(S)

cStar = S

Else

For c = 1 To S - n + 1

fTest = Log(c) + b * f(n - 1, S - c)

If fTest > fStar Then

fStar = fTest

cStar = c

End If

Next c

f = fStar

End If

Exit Function

Recall that for the last period (stage n = 1) we consume whatever is left.
We have to spend minimum 1 unit per period. The function above did not
perform any bookkeeping. The optimal consumption in stage N = 5, i.e.,
the first period, is found from Table 1 and shows that 3 units should be

1



Table 1: Calculations for stage N = 5

S4 f∗
4 (S4) c5 u(c5) = ln(c5) f5(10, c5) = ln(c5) + bf∗

4 (S4)

4 0 6 1.79 1.79
5 0.69 5 1.61 2.16
6 1.25 4 1.39 2.39
7 1.69 3 1.1 2.45
8 2.1 2 0.69 2.37
9 2.45 1 0 1.96

consumed. Running the code shows that it is optimal to consume 2 units
for the 3 following periods, and one unit for the last period.

2


