
THE FARMERS PROBLEM
Jørn Vatn/September-2024



Situation

▶ Farmer Tom can grow wheat, corn, and sugar beets on his 500 acres
▶ Yearly demand for feeding the cattle: 200 tons of wheat and 240 tons of
corn

▶ Production in excess of these amounts can be sold for $170/ton (wheat)
and $150/ton (corn)

▶ Any shortfall must be bought from the wholesaler at a cost of $238/ton
(wheat) and $210/ton (corn)

▶ Sugar beets can also be grown and sold for $36/ton for the first 6 000
tons, and excess of 6 000 tons can only be sold at $10/ton
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Situation, cont

Planting costs:
▶ Wheat: $150/acre
▶ Corn: $230/acre
▶ Sugar beets: $260/acre

Yield in a normal year:
▶ Wheat: 2.5 tons/acre
▶ Corn: 3 tons/acre
▶ Sugar beets: 20 tons/acre

If case of bad weather the yield is 80% and if the weather is good the yield is
120% of the normal yield. Equal probabilities to the 3 scenarios.
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Stochastic programming

▶ Tom needs to sow in the spring before he knows the weather for the
coming season

▶ Hence, the first stage decision is what to sow, and the second stage
decision is what to do after the harvesting.

▶ First stage decision variables:
▶ x1 = Acres allocated to wheat
▶ x2 = Acres allocated to corn
▶ x3 = Acres allocated to sugar beats
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Second stage decisions

Second stage decision variables:
▶ w1,i Tons of wheat sold, scenario i
▶ w2,i Tons of corn sold, scenario i
▶ w3,i Tons of sugar beats sold at favourable price, scenario i
▶ w4,i Tons of sugar beats sold at lower price, scenario i
▶ y1,i Tons of wheat purchased, scenario i
▶ y2,i Tons of corn purchased, scenario i

Scenario 1/2/3 = Good/Normal/Bad weather respectively
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Parameters
Prices:
▶ s1 = 170 = Sales price, wheat
▶ s2 = 150 = Sales price, corn
▶ s3 = 36 = Sales price, sugar beats favourable
▶ s4 = 10 = Sales price, sugar beats low

Costs:
▶ c1 = 150 = Planting cost, wheat/acre
▶ c2 = 230 = Planting cost, corn/acre
▶ c3 = 260 = Planting cost, sugar beats/acre
▶ b1 = 238 = Cost of buying from the wholesaler, wheat
▶ b2 = 210 = Cost of buying from the wholesaler, corn

5



Final parameters

▶ r1 = 2.5 = Yield per acre, wheat
▶ r2 = 3 = Yield per acre, corn
▶ r3 = 20 = Yield per acre, sugar beets
▶ d1 = 200 = Demand/requirements for Tom’s cattle, corn
▶ d2 = 240 = Demand/requirements for Tom’s cattle, wheat
▶ p1 = 1/3 = Probability, good weather
▶ p2 = 1/3 = Probability, normal weather
▶ p3 = 1/3 = Probability, bad weather
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Recall: The deterministic equivalent problem

Maximize: Z1,2 = cx +
k∑︁

i=1

piq(ui )yi

Subject to: Ax = b
B(ui )x + C(ui )yi = d(ui ), i = 1, 2, . . . , k
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In our case: Objective function

Maximize: Z = −
3∑︁

j=1

cixi +
3∑︁

i=1

pi
©­«

4∑︁
j=1

siwj ,i −
2∑︁

j=1

biyj ,i
ª®¬
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Constraints, i.e., Subject to:

Use of land:
3∑︁

j=1

xj ≤ 500

Sugar beats, scenario i :

w3 + w4 ≤ r3uix3

w3 ≤ 6000

where ui = yield factor (1.2, 1 and 0.8) depends on the scenario
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Constraints, i.e., Subject to:

Wheat:

x1r1ui − w1,i + y1,i ≥ d1

Corn:

x2r2ui − w2,i + y2,i ≥ d2

Solution in Python

10

http://folk.ntnu.no/jvatn/eLearning/TPK4191/solutions/Problem2_12.py


Solution

Variable Total Scenario 1 Scenario 2 Scenario 3
x1 170 170 170
x2 80 80 80
x3 250 250 250
w1i 310 225 140
y1i 0 0 0
w2i 48 0 0
y2i 0 0 48
w3i 6 000 5 000 4 000
w4i 0 0 0
Z 108 390 167 000 109 350 48 820
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About the Python implementation

▶ In Python we write a function: spSolve(p)
▶ where p is the probability vector for each scenario
▶ This will enable us to force the model to treat a specific scenario only, e.g.,
p = [1,0,0]

▶ In particular using p = [0,1,0] gives the expected value solution
▶ Later on, we also add an x-vector that can “lock” the first stage decision

12



The EV solution follows from:

Maximize: ZEV = cx + q(u)y

Subject to: Ax = b
B(u)x + C(u)y = d(u)

x ≥ 0
b ≥ 0
y ≥ 0

d(u) ≥ 0
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The EV solution - Python considerations

▶ We are to: Maximize: ZEV = cx + q(u)y
▶ In Python we can easily solve this by putting all probability mass to
scenario 2, i.e., the “average scenario”, i.e., we call the function
spSolve([0,1,0])

▶ This will give us both the first and second stage decision variable values
▶ The second stage values are of not interest wrt. the EV solution, but

▶ In the next step we need to “lock” the first stage variables
▶ Let xEV be a vector defining the “locked” first stage variables.
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Python considerations, ZEEV

▶ The ZEEV value is obtained by running the spSolve() function with the
original p-vector, and locking the first stage variables, i.e.,

▶ spSolve(p,x_EV)
▶ where x_EV is the expected value solution for the first stage variable
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The expected value of the expected value solution

The expected value of the expected value solution is now the value of the
following optimization problem:

Maximize: ZEEV = cxEV +
k∑︁

i=1

piq(ui )yi

Subject to: B(ui )xEV + C(ui )yi = d(ui ), i = 1, 2, . . . , k
yi ≥ 0

d(ui ) ≥ 0, i = 1, 2, . . . , k

Here the solution, yi, for each scenario i could be found individually
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The expected value of the expected value solution - VBA
considerations

▶ We are to maximize ZEEV = cxEV +
k∑

i=1
piq(ui )yi

▶ We now have to options:
(a) Maximize q(ui )yi for each scenario individually, find the weighted average

k∑
i=1

piq(ui )yi and add cxEV

(b) Maximize wrt all yi -vectors simultaneously, i.e., maximize

ZEEV = cxEV +
k∑

i=1
piq(ui )yi

▶ Option (a) is much faster since the problem is reduced, but more tedious
▶ Pptions (b) is implemented by spSolve(p,x_EV)
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Results, expected value solution

Variable Total Scenario 1 Scenario 2 Scenario 3
x1 120 120 120
x2 80 80 80
x3 300 300 300
w1i 160 100 40
y1i 0 0 0
w2i 48 0 0
y2i 0 0 48
w3i 6 000 6 000 4 800
w4i 1 200 0 0
Z 107 240 148 000 118 600 55 120
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The value of the stochastic solution

▶ Let the value of the optimization problem: ZEEV = cxEV +
k∑

i=1
piq(ui )yi be

denoted Z ∗
EEV

▶ Let the value of the optimization problem:

Maximize: Z1,2 = cx +
k∑

i=1
piq(ui )yi be denoted Z ∗

1,2

▶ The difference between these two is denoted the value of the stochastic
solution:

VSS = Z ∗
1,2 − Z ∗

EEV = 108 390 − 107 240 = 1 150
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Discussion
▶ The highest relative profit is achieved by growing sugar beats
▶ However, this is true only up to 6 000 ton
▶ In the EV solution, we therefore maximize to achieve exactly 6 000 ton of
sugar beats given a normal season

▶ In case of a good season, we then exceed this limit an the value of a good
season is limited since we have to sell at a low price

▶ In the stochastic solution, on the other hand, we grow less sugar beats
and more wheat

▶ We observe that for the stochastic solution, we grow so much sugar beats
that we exactly reach 6 000 ton for the good season, and hence never
have to sell at the low price
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Expected value of perfect information
The optimization problem for the “wait and see” situation given that we
observe u = ui is given by:

Maximize: Zi = cxi + q(ui )yi

Subject to: Axi = b
B(ui )xi + C(ui )yi = d(ui )

x ≥ 0
b ≥ 0
yi ≥ 0

d(ui ) ≥ 0
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Expected value of perfect information, cont.

▶ Let Z ∗
i be the result of: Maximize: Zi = cxi + q(ui )yi

▶ The expected profit when averaging over all scenarios is given by ∑i piZ ∗
i

▶ The expected value of perfect information is thus:

EVPI =
k∑︁

i=1

piZ ∗
i − Z ∗

1,2 ≈ 115 406 − 108 390 = 7 015
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Expected value of perfect information, cont.

▶ Let Z ∗
i be the result of: Maximize: Zi = cxi + q(ui )yi

▶ The expected profit when averaging over all scenarios is given by ∑i piZ ∗
i

▶ The expected value of perfect information is thus:

EVPI =
k∑︁

i=1

piZ ∗
i − Z ∗

1,2 ≈ 115 406 − 108 390 = 7 015
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Intermediate results, wait and see solutions

Variable Total Scenario 1 Scenario 2 Scenario 3
x1 183.3 120 100
x2 66.7 80 25
x3 250 300 375
w1i 350 100 0
y1i 0 0 0
w2i 0 0 0
y2i 0 0 180
w3i 6 000 6 000 6 000
w4i 0 0 0
Z 115 406 167 667 118 600 59 950
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Thank you for your attention
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