
Solution in TPK 4191 - Production optimization and

control

Jørn Vatn

Email: jorn.vatn@ntnu.no

September 8, 2024

Problem 2.6

Decision variables

Introduce:

• x1 to x6 are order size for each month (October = 1, November = 2, etc).

• x7 to x12 are inventory level at end of month (October = 7, November = 8, etc)

• y1 to y6 are binary variables, 1 = Order, 0 = Do not order

Objective function

The cost vector for the x-variables is defined by the following Python statement:

c = [100 , 100 , 110 , 120 , 100 , 100 , 5, 5, 5, 5, 5, 5]

Note that since linprog cannot handle binary variables, the y-variables are not included in the

objective function. However, we use the y-variables as part of the constraint definition.

Constraint modelling

The following constraints ensures that we do not order more than 50 units, if we order:

1 · xi ≤ 50 · yi , i = 1, . . . ,6

which translates to:

1 ·xi −50 · yi ≤ 0, i = 1, . . . ,6

1

2

if we included the y-variables as part of the LP-model. However since we will not include

the y-variables as part of our LP-model, we stick to 1 ·xi ≤ 50 · yi , i = 1, . . . ,6 and the Python code

when we consider a given value of the y-vector reads:

for i in range(nMonths):

A_i = np.zeros([nVar])

A_i[i] = 1

LP.upperBound(maxOrder[i]*y[i],A_i)

To fulfil the demand, i.e., d[i] is the demand in month i we have the following equality constraint:

1 · xi +1 ·xi+6−1 −1 · xi+6 = di , i = 1, . . . ,6

where “6-1” is the shift to address the inventory level at the beginning of each month, and “6-1”

is the shift to address the inventory level at the end of each month. Special attention should be

paid to the first month were there is “no inventory level”. The Python code reads:

for i in range(nMonths):

A_i = np.zeros([nVar])

A_i[i] = 1

A_i[i+nMonths] = -1

if i > 0:

A_i[i+nMonths-1] = 1

LP.equalityConstraint(d[i],A_i)

Finally, inventory level at end of each month cannot exceed 30, which in Python reads:

for i in range(nMonths):

A_i = np.zeros([nVar])

A_i[i + nMonths]= 1

LP.upperBound(30,A_i)

To optimize the idea is test all combinations of the y-vector. For each value of y we run the

linprog to find the corresponding x-vector, and the value of the objective function. Since the

linprog model does not include the fixed cost, cF , we add the fixed cost in the comparison.

The essential Python code reads:

best=1e30

yComb = LP.all_binary_combinations(6)

for y in yComb:

#

Here come the specification of the cost coefficients of the objective

function and all the constraints as specified above

#

res=LP.lpSolve(True)

if res.success:

3

test = res.fun + sum(y)*c_F

if test < best:

best = test

best_y = y

best_x = x

A simplified approach and Excel failure

In the first version of the solution, I made the assumption that it was only required to test the

situation where we only in one month did not made an order. That is, we could test the following

y-vectors: [0,1,1,1,1,1], [1,0,1,1,1,1], ..., [1,1,1,1,1,0]. This resulted in that the best

option was not to order the last month.

However this solution was not optimal. The optimal solution is to in October, November,

January and February as found by the solution indicated above. Therefore the updated solution

where all possible combination of the y-vector was investigated is the only guarantee that we

obtain the optimal solution.

Note also that Excel fails to find the optimal solution. This is why I was “fooled” in the first

place, since the Excel solution showed that it was only one month where we should not place

an order, I assumed that it was only required to test month by month.... The first version of the

solution is available in the solution folder: Problem2_6testOneByOne.py.

