Problem 2.7

Table 1: Decision variables									
Variable	Definition								
x_1	Frozen fish fillet, today								
x_2	Fresh fish fillet, today								
x_3	Fish au gratin, today using high quality fish								
x_4	Fish au gratin, today using low quality fish								
x_5	Slack, high quality								
x_6	Slack, low quality								
x_7	Slack, workers								

Table 2: Parameters

Parameter	Value	Description
$\overline{p_{Fz}}$	20	Profit frozen fish fillet
p_{Fr}	40	Profit fresh fish fillet
p_{Fq}	10	Profit fish au gratin
u_{Fz}	0.7	Utilization frozen fish fillet
u_{Fr}	0.6	Utilization fresh fish fillet
u_{Fq}	0.8	Utilization fish au gratin
$H_{HQ}^{\ \ \ \ \ \ \ \ \ \ \ \ }$	$2\ 000$	Holding high quality
H_{LQ}	3 000	Holding low quality
$ ho_{Fz}$	500	Production rate per worker, frozen fish fillet
$ ho_{Fr}$	750	Production rate per worker, fresh fish fillet
$ ho_{Fq}$	1 000	Production rate per worker, fish au gratin
n_W	5	Number of workers

Objective function:

Maximize:
$$Z = p_{Fz}u_{Fz}x_1 + p_{Fr}u_{Fr}x_2 + p_{Fg}u_{Fg}x_3 + p_{Fg}u_{Fg}x_4 = 14x_1 + 24x_2 + 8x_3 + 8x_4$$

Subject to:
$$x_1 + x_2 + x_3 + x_5 = H_{HQ}$$

 $x_4 + x_6 = H_{LQ}$
 $1/\rho_{Fz}x_1 + 1/\rho_{Fr}x_21/\rho_{Fg}x_3 + x_6 = n_W$

Variables:				x 1	X 2	X 3	X 4	X 5	X 6	X 7
Objective function c _i 's				14	24	8	8	0	C	0
Variable values:		Z=	0							
Relative profit:										
Number of variables	7									
Number of constraints	3									
Constraints coefficients	Basic var.	Upper limit	b _i	a i1	a i2	a i3	a i4	a 15	a 16	a 17
	5		200	0 1	. 1	1	0	1	(0
	6		300	0 0	(0	1	0	1	. 0
	7			5 0.002	0.001333	0.001	0.001	0	C	1

Figure 1: Initial tableau

Calculation scheme for the risk priority number:

$$\begin{aligned} & \text{RP}_1 = c_1 - c_5 a_{1,1} - c_6 a_{2,1} - c_7 a_{3,1} = 14 - 0 \cdot 1 - 0 \cdot 0 - 0 \cdot 0.002 = 14 \\ & \text{RP}_2 = c_2 - c_5 a_{1,2} - c_6 a_{2,2} - c_7 a_{3,2} = 24 - 0 \cdot 1 - 0 \cdot 0 - 0 \cdot 1.333 \text{E} - 03 = 24 \\ & \text{RP}_3 = c_3 - c_5 a_{1,3} - c_6 a_{2,3} - c_7 a_{3,3} = 8 - 0 \cdot 1 - 0 \cdot 0 - 0 \cdot 0.001 = 8 \\ & \text{RP}_4 = c_4 - c_5 a_{1,4} - c_6 a_{2,4} - c_7 a_{3,4} = 8 - 0 \cdot 0 - 0 \cdot 1 - 0 \cdot 0.001 = 8 \end{aligned}$$

The idea is to repeat for all non-basic variables, e.g., for non-basic variable x_1 : Increase it's value with one unit from 0 to 1. This increases profit by c_1 . To balance constraint equation 1, basic variable x_5 has to be reduced by $a_{1,1}$ units. Profit is then reduced by $c_5a_{1,1}$. Similarly to balance constraint equation 2, basic variable x_6 has to be reduced by $a_{2,1}$ units, with a profit reduction of $c_6a_{2,1}$ and so on.

The calculation shows that variable x_2 has the highest risk priority number (24), and x_2 is therefore the new variable to add as basic variable.

Calculation scheme for the Upper Limit:

$$\begin{aligned} &\mathrm{UL_{Eq1}} = b_1/a_{1,2} = 2000/1 = 2000 \\ &\mathrm{UL_{Eq2}} = b_2/a_{2,2} = 3000/0 = \infty \\ &\mathrm{UL_{Eq3}} = b_3/a_{3,2} = 5/1.333\mathrm{E} - 03 = 3750 \end{aligned}$$

Idea: By increasing the new potential basic variable, i.e., x_2 , the existing

basic variables have to be reduced. But we can not reduce a basic variable so much that it becomes negative. For example in constraint equation 1 basic variable x_5 can be reduced from the current value b_1 to 0. This means that a maximum of b_1 units could be "released" and taken by the new basic variable, i.e., x_2 . For each unit we increase x_2 we need to "eat" $a_{1,2}$ units, hence the upper limit is $b_1/a_{1,2}$. Similarly for the other basic variables. The basic variable with the *lowest* upper limit is the one that is "limiting" the new basic variable most, and is therefore removed as a basic variable.

Here equation 1 has the lowest value of the upper limit, hence x_2 replaces x_5 as a new basic variable. The first step of the pivot operation is to divide constraint equation 1 (corresponding to the basic variable to remove) by $a_{1,2}$. Then for each of the other constraint equations we need to "get rid of" $a_{i,2}$. In constraint equation 2 we do not have to do anything since $a_{i,2}=0$. For constraint equation 3 we subtract constraint equation 1 multiplied by $a_{3,2}$ from constraint equation 3 to get $a_{3,2}=0$. For example, $b_3=b_3-b_1a_{3,2}=5-2000\cdot 0.00133=2.333$. The result after applying the pivot operation is shown in Figure 2:

Variables:				X 1	X 2	X 3	X 4	X 5	X 6	X 7
Objective function c _i 's				14	24	8	8	0	0	0
Variable values:		Z=	48000	0	2000	0	0	0	3000	2.333
Relative profit:				14	24	8	8	0	0	0
Number of variables	7									
Number of constraints	3									
Constraints coefficients	Basic var.	Upper limit	b _i	a i1	a i2	a i3	a i4	a 15	a ₁₆	a ₁₇
	2	2000	2000	1	1	1	0	1	0	0
	6	1E+30	3000	0	0	0	1	0	1	0
	7	3750	2.33333	7E-04	0	-3E-04	0.001	-0	0	1

Figure 2: Tableau after the first pivot operation

In the second iteration x_4 has the highest risk priority number (8). Calculating the upper limit for the basic variables, equation 3 has the lowest value (2333.33), hence variable x_7 is to be replaced by x_4 . Applying the pivot operation we get the result shown in Figure 3:

In the third iteration all the risk priority numbers are negative, hence the solution cannot be improved. Resolving the constraints equations gives $x_2 = 2\,000$ and $x_2 = 2\,333$. Total profit is $Z = 66\,666$ We note that $x_6 = 667$, hence not all raw material is used. If more workers were available we would have been able to use all the raw material.

Variables:				x 1	x 2	X 3	X 4	X 5	X 6	X 7
Objective function c _i 's				14	24	8	8	0	0	0
Variable values:		Z=	66666.7	0	2000	0	2333.3	0	666.7	0
Relative profit:				-10	0	-16	8	-24	0	0
Number of variables	7									
Number of constraints	3									
Constraints coefficients	Basic var.	Upper limit	bi	a i1	a i2	a _{i3}	a _{i4}	a 15	a 16	a ₁₇
	2	1E+30	2000	1	1	1	0	1	0	0
	6	3000	666.667	-0.67	0	0.3333	0	1.3	1	-1000
	4	2333.3333	2333.33	0.667	0	-0.333	1	-1	0	1000

Figure 3: Tableau after the second pivot operation