
Solution in TPK 4191 - Production optimization and

control

Jørn Vatn

Email: jorn.vatn@ntnu.no

September 8, 2024

Problem 2.8

Model parameters

Assume that all travelling times from node i to node j , i.e., di , j is saved in a matrix with corre-

sponding element d[i,j]. Further assume that the start node (S) has number 0, and destination

is the number of the destination node (5).

The essential recursive code is:

D(j) = mi ni {di , j +D(i)}

where D(j) is the lowest total travelling time from the start node to node j . The Python code for

implementing D(j) is:

def D(j, predecessor=[0]):

if j == 0 :

return 0

else:

best = 1E+30

for i in range(destination):

if i != j:

if d[i, j] > 0:

test = d[i, j] + D(i)

if test < best:

best = test

iBest = i

predecessor[0] = iBest

return best

1

2

The main program reads:

predecessor=[0]

n = 5

while n > 0:

dd=D(n, predecessor)

print("To node ", n, " from node " ,predecessor[0], " - total

distance =",dd)

n = predecessor[0]

Note we start calling D(5), i.e., total distance to the end node (5). This function returns in

predecessor the best node we could reach node (5) from. This appears to be predecessor

= node (4). Then we call D(predecessor) and find which node it was best node we could reach

node (4) from etc. In this manner we find the entire trajectory from the star node to the destina-

tion node. The print is shown in the opposite direction.

